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Simple Summary: Aeromonas hydrophila and Aeromonas veronii are common pathogenic
bacteria in grass carp aquaculture. Through comprehensive histopathological analysis
and molecular characterization, we found that both pathogens caused severe cellular
necrosis, cytoplasmic vacuolization, and hemorrhage in the liver of grass carp, similar to
the manifestations of infection in other aquatic animals. The grass carp showed complex
regulation of immune and metabolic responses during infection, especially activation of
Toll-like receptors and TNF signaling pathways. Our findings provide new insights into
host–pathogen interactions during Aeromonas co-infection in grass carp and provide a
scientific basis for the development of prevention and control strategies.

Abstract: The grass carp (Ctenopharyngodon idella) is highly susceptible to infections caused
by Aeromonas species, particularly A. hydrophila and A. veronii. However, the immunological
mechanisms underlying co-infection by these pathogens remain largely uncharted. This
study investigated the pathogenesis and host immune response in grass carp following
concurrent infection with A. hydrophila and A. veronii. Mortality was observed as early
as 24 h post-infection, with cumulative mortality reaching 68%. Quantitative analysis
demonstrated significantly elevated bacterial loads in hepatic tissue at 3 days post-infection
(dpi). Histopathological evaluation revealed severe hepatic lesions characterized by cel-
lular necrosis, cytoplasmic vacuolization, and hemorrhagic manifestations. Comparative
transcriptomic analysis of hepatic tissues between co-infected and control specimens iden-
tified 868 and 411 differentially expressed genes (DEGs) at 1 and 5 dpi, respectively. Gene
ontology and KEGG pathway analyses revealed significant enrichment of immune-related
genes primarily associated with Toll-like receptor signaling and TNF signaling cascades.
Notably, metabolic pathways showed substantial suppression while immune responses
were significantly activated after infected. These findings provide novel insights into
the host–pathogen interactions during Aeromonas co-infection in grass carp, which may
facilitate the development of effective prevention and control strategies.
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1. Introduction
Grass carp (Ctenopharyngodon idella) represents one of the most economically valu-

able freshwater fish species in global aquaculture, with annual production exceeding
5.9 million tons [1]. However, bacterial infections pose substantial threats to grass carp
farming, leading to significant economic losses in the aquaculture industry [2]. Among
these pathogens, Aeromonas hydrophila and Aeromonas veronii, two representative species
of the genus Aeromonas [3], are particularly concerning due to their ubiquitous presence
in aquatic environments [4] and their ability to cause severe disease outbreaks. These
opportunistic pathogens can induce hemorrhagic septicemia, skin ulceration, and internal
organ damage in infected fish [5–7], significantly impacting aquaculture productivity.

Bacterial co-infections—defined as the simultaneous infection of a single host by mul-
tiple pathogens—have emerged as a significant concern in aquaculture. Recent studies
have demonstrated that such co-infections frequently result in enhanced virulence and syn-
ergistic effects, leading to increased disease severity and higher mortality rates compared
to single infections [8]. This phenomenon has been documented across various fish species.
For instance, in zebrafish (Danio rerio), co-infection with A. hydrophila and A. veronii caused
severe pathological changes, including renal tubular necrosis, tubular atrophy, and skin
lesions, leading to higher mortality. The mortality rate in co-infected zebrafish was 87%,
surpassing that of A. hydrophila (72%) or A. veronii (67%) alone [9]. Similar synergistic effects
have been observed in other species: barramundi (Lates calcarifer) co-infected with Strepto-
coccus iniae and Shewanella algae developed cutaneous ulcers and systemic disease [10]; koi
carp (Cyprinus carpio var. koi) challenged with Vibrio cholerae and A. veronii exhibited multi-
ple organ lesions and intestinal hemorrhage. However, koi subjected to infection with only
V. cholerae showed only bleeding in the intestinal wall [11]; cobia (Rachycentron canadum)
co-infected with Photobacterium damselae and Vibrio harveyi exhibited a 100% mortality rate,
which was higher than the mortality rates observed with Photobacterium damselae (50%) or
Vibrio harveyi (60%) alone [12]; and rainbow trout (Oncorhynchus mykiss) with concurrent
Pseudomonas fluorescens and Yersinia ruckeri infections experienced an 80% mortality rate,
which was higher than the mortality rates observed with Pseudomonas fluorescens (40%) or
Yersinia ruckeri (60%) alone [13]. These studies underscore the significant impact of bacterial
co-infections in fish and highlight the need for further research into their mechanisms
and management strategies. These studies underscore the significant impact of bacterial
co-infections in fish, demonstrating that such infections frequently result in enhanced
virulence, synergistic pathogenic effects, and consequently, increased mortality rates with
diverse clinical manifestations. Understanding the pathological changes and immune
responses during such co-infections is crucial for developing effective preventive strategies
in grass carp aquaculture.

Despite extensive research on bacterial co-infections in various fish species, the molec-
ular mechanisms underlying host responses to such infections remain poorly understood,
particularly in grass carp. There are numerous studies on single infections of A. hydrophila
or A. veronii in grass carp [14–17]. However, to the best of our knowledge, there are no
studies addressing co-infection by these two pathogens. Therefore, we believe that in-
vestigating the co-infection of A. hydrophila and A. veronii in grass carp is a novel and
significant aspect of our research. To address this knowledge gap, we investigated the
pathological changes and immune responses in grass carp liver during co-infection with A.
hydrophila and A. veronii. Through comprehensive histopathological analysis and molecular
characterization, this study aims to elucidate the key immune mechanisms activated during
bacterial co-infection, thereby providing valuable insights for developing effective control
strategies against these opportunistic pathogens in aquaculture.
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2. Materials and Methods
2.1. Fish and Challenge Experiments

Healthy grass carp (Ctenopharyngodon idella) were from Suzhou Shenhang Eco-technology
Development Limited Company (Wujiang District, Suzhou, China). A total of 60 healthy grass
carp, each weighing 70–80 g, were selected. The fish were acclimated in 50 cm × 40 cm × 35 cm
glass aquaria under controlled laboratory conditions for one week before the experiments
commenced. Aeromonas hydrophila (23091906bs) and Aeromonas veronii (23090701bs) strains
were sourced from the National Pathogen Collection Center for Aquatic Animals, Shanghai
Ocean University. Both bacterial strains were cultured in a Luria–Bertani (LB) medium
at 28 ◦C for 24 h with constant shaking. Bacterial cells were harvested via centrifugation,
washed with sterile phosphate-buffered saline (PBS), and resuspended in an LB medium to
achieve a final concentration of 1 × 107 CFU/mL.

For challenge experiments, a total of 60 healthy grass carp were randomly divided
into two groups (co-infection and control) with 3 replicates (10 fish per replicate, n = 30 per
group). Fish in the co-infection group were intraperitoneally (i.p.) injected with 200 µL
of a bacterial suspension mixed in the same ratio (1 × 107 CFU/mL), while control fish
received an equal volume of sterile PBS. Liver were collected at 1, 3, 5, and 7 days post-
infection (dpi). At each time point, three randomly selected fish from each group were
euthanized with MS-222, and their livers were immediately fixed in 4% paraformaldehyde
for histopathological examination. The remaining liver samples were flash-frozen in liquid
nitrogen, and stored at −80 ◦C until further processing.

2.2. Histological and Bacterial Load Determination

For the histopathological examination, the liver was fixed in 4% paraformaldehyde.
Briefly, tissues were dehydrated through a graded ethanol series, embedded in paraffin
wax, sectioned at 5 µm thickness, and stained with hematoxylin and eosin (H&E) [18].
Histological changes were examined and photographed using a light microscope.

The bacterial load in the liver was determined using the plate counting method.
Briefly, liver samples were weighed and homogenized in sterile saline. Serial dilutions
of the homogenates were prepared, and 50 µL of each dilution was plated onto LB agar
plates supplemented with ampicillin. Plates were incubated at 28 ◦C for 24 h, after which
colony-forming units (CFU) were counted.

2.3. Transcriptome Analysis

Total RNA was extracted from liver samples using TRIzol reagent (Invitrogen, Carls-
bad, CA, USA) following the manufacturer’s protocol. The RNA quality was assessed
using three methods: purity was evaluated using a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA), concentration was measured using a Qubit
fluorometer (Invitrogen, Carlsbad, CA, USA), and integrity was assessed using an Agilent
2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA). RNA integrity num-
ber(s) (RIN) >8.0 were used for library construction. RNA libraries were prepared using the
VAHTS Universal V6 RNA-seq Library Prep Kit following the manufacturer’s instructions.

Libraries were sequenced on an Illumina NovaSeq 6000 platform to generate 150 bp
paired-end reads. Raw sequencing data were filtered using FastP [19] to remove low-
quality reads, adaptor sequences, and contaminating sequences. Clean reads were aligned
to the grass carp reference genome using Hisat2 [20]. Differential expression analysis was
performed using the DESeq2 [21]. Genes with a fold change ≥2 and adjusted p-value < 0.05
were considered differentially expressed. Functional enrichment analysis of differentially
expressed genes (DEGs) was conducted using the ClusterProfiler [22], focusing on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Protein–protein interaction
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(PPI) networks were drawn using STRING 12.0 (https://cn.string-db.org/, accessed on 3
September 2024) and Cytoscape (v3.10.2) [23].

2.4. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9 (GraphPad Software
Inc., USA) [24]. The experimental data’s mean and standard deviation (mean ± SD) are
expressed. The results of hepatic bacterial load were statistically analyzed by employing
one-way ANOVA and Tukey multiple comparison post hoc test. The tests showed * p < 0.05,
** p < 0.01, and *** p < 0.001 for significant differences.

3. Results
3.1. Survival Rates and Bacterial Load

To investigate the pathogenicity of Aeromonas co-infection, healthy grass carp were
experimentally challenged with a mixed bacterial suspension containing A. hydrophila
and A. veronii. Initial mortality was observed at 1-day post-infection (dpi), followed by
a sharp increase in mortality rate that peaked at 3 dpi. The mortality pattern plateaued
after 5 dpi, yielding a final survival rate of 32%. Throughout the experimental period,
no deaths were recorded in the control group (Figure 1A). To determine the bacterial
colonization dynamics, we quantified the bacterial load in the liver at four time points
post-infection. The bacterial load exhibited a time-dependent pattern, reaching its apex at
3 dpi (4.8 × 105 CFU). Comparatively lower bacterial loads were detected at 1, 5, and 7 dpi,
measuring 2.6 × 104, 3.2 × 104, and 3.1 × 104 CFU, respectively (Figure 1B). Statistical
analysis was performed using one-way ANOVA followed by Tukey’s post hoc test to
determine significant differences between time points (Figure 1B). The results indicate
that the bacterial load was significantly higher at 3 dpi compared to the other time points.
Specifically, bacterial loads at 1 dpi, 5 dpi, and 7 dpi were significantly lower than at 3 dpi
(p < 0.05), highlighting the peak bacterial colonization at 3 dpi.
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drophila and A. veronii. (A) Survival curve of grass carp co-infected with A. hydrophila and A. veronii.
(B) Changes in hepatic bacterial load in grass carp co-infected with A. hydrophila and A. veronii.(“***” in-
dicates p < 0.001).

3.2. Histomorphology

In the control group, hepatocyte structure and arrangement were normal (Figure 2A).
At 1 dpi, minor bleeding was observed in the liver tissue (Figure 2B). At 3 dpi, a large num-
ber of hepatocytes were observed to be necrotic, and a large number of nuclei disappeared

https://cn.string-db.org/
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in the livers of grass carp. During this period, some of the liver cell walls disappeared, and
the shape of hepatocytes became irregular (Figure 2C). At 5 dpi, necrosis and cavitation
gradually subsided, and new cells were regenerated (Figure 2D). At 7 dpi, necrosis and
cavitation had resolved, and large numbers of new cells grew. In addition, the connection
between blood vessels and hepatocytes was intact (Figure 2E).
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Figure 2. Histological effects of co-infection of A. hydrophila and A. veronii on liver of grass carp.
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3.3. Transcriptome

High-throughput sequencing generated approximately 412 million clean reads. The
mapping rates consistently exceeded 95.90%, Q30 percentages ranged from 93.98% to
94.92%, and GC content ranged from 45.51% to 46.68% (Table 1). Both principal component
analysis (PCA) (Figure 3A) and Pearson’s correlation analysis (Figure 3B) revealed distinct
clustering patterns between control and infected groups, with high reproducibility among
biological replicates.
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Table 1. Transcriptome sequencing data evaluation and statistical analysis.

Sample Clean Reads Mapped
Reads

Mapped
(%)

GC Content
(%)

Q30
(%)

L0_1 42,039,400 40,701,314 96.82 46.05 94.70
L0_2 42,851,546 41,490,832 96.82 46.68 94.92
L0_3 44,939,124 43,334,704 96.43 46.33 94.55
L1_1 45,719,910 43,887,889 95.99 45.51 94.28
L1_2 47,494,342 45,660,941 96.14 45.52 94.44
L1_3 46,304,186 44,664,653 96.46 46.03 94.58
L5_1 47,555,602 45,991,019 96.71 46.21 94.84
L5_2 48,151,050 46,446,187 96.46 46.05 94.79
L5_3 47,017,870 45,089,842 95.90 45.72 93.98

3.4. DEGs and Enrichment Analysis

Differential expression analysis identified 868 DEGs at 1 dpi (421 up-regulated and
447 down-regulated) and 411 DEGs at 5 dpi (261 up-regulated and 150 down-regulated)
(Figure 4A), as illustrated by volcano plots (Figure 4C,D). Hierarchical clustering analysis
of these DEGs demonstrated distinct expression patterns between infected and control
groups (Figure 4B). GO enrichment analysis at 1 dpi revealed significant enrichment in
membrane-associated components and metabolic functions, including pentosyltransferase
and steroid hydroxylase activities (Figure 5A). At 5 dpi, enriched terms were predominantly
immune-related, including chemokine activity and T cell immune response (Figure 5B).
Similarly, KEGG pathway analysis showed enrichment in metabolic pathways at 1 dpi,
particularly in histidine and tryptophan metabolism (Figure 5C), while immune-related
pathways, including toll-like receptor and TNF signaling, were significantly enriched at
5 dpi (Figure 5D).
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3.5. Protein–Protein Interaction Networks

KEGG pathway enrichment analysis revealed significant dysregulation of metabolic
and immune-related genes during infection. Notably, metabolic genes (amdhd1, aox1, urah,
aldh16a1, and hadh) showed substantial suppression, while immune-related genes (irf3, irf7,
epsti1, znfx1, cmpk2, cxcl11, and rsad2), were significantly activated in infected specimens
(Table 2). Protein–protein interaction analysis demonstrated extensive crosstalk between
these dysregulated metabolic and immune pathways during bacterial infection (Figure 6).

Table 2. The key candidate DEGs shared in two comparison groups.

ID Description Abbreviation
Log2 Fold Change

L1 vs. L0 L5 vs. L0

Cide__011375 Epithelial stromal interaction 1 (EPSTI1) EPSTI1 4.00 3.31
Cide__020487 Zinc finger NFX1-type containing 1 (ZNFX1) ZNFX1 3.78 3.30
Cide__020440 HELZ2 (Helicase with zinc finger 2) HELZ2 3.04 2.91
Cide__001364 DHX58 (DEXH box helicase 58) DHX58 2.12 2.30
Cide__023962 Ubiquitin specific peptidase 18 (USP18) USP18 3.65 2.76
Cide__017820 Cytidine/uridine monophosphate kinase 2 (CMPK2) CMPK2 4.52 3.89
Cide__029329 Interferon regulatory factor 3 (IRF3) IRF3 3.09 3.00
Cide__031701 Interferon regulatory factor 7 (IRF7) IRF7 4.62 4.35
Cide__017821 Radical S-adenosyl methionine domain containing 2 (RSAD2) RSAD2 5.09 4.08
Cide__010428 Interferon induced with helicase C domain 1 (IFIH1) IFIH1 2.87 2.20
Cide__023845 Beta-2 microglobulin (B2M) B2M 2.69 2.34
Cide__002970 Aminoadipate-semialdehyde dehydrogenase 1 (AMDHD1) AMDHD1 −3.57 −1.67
Cide__005141 Aldehyde oxidase 1 (AOX1) AOX1 −2.23 −1.21
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Table 2. Cont.

ID Description Abbreviation
Log2 Fold Change

L1 vs. L0 L5 vs. L0

Cide__022550 Arginase 2 (ARG2) ARG2 2.45 1.67
Cide__001177 Aldehyde dehydrogenase 16 family member A1 (ALDH16A1) ALDH16A1 −2.21 −1.39
Cide__015820 Urate hydroxylase (URAH) URAH −2.94 −1.12
Cide__020438 Phosphoenolpyruvate carboxy kinase 1 (PCK1) PCK1 2.49 5.36
Cide__009138 Hydroxy acyl-CoA dehydrogenase (HADH) HADH −2.17 −1.03
Cide__001608 Karyopherin alpha 2 (KPNA2) KPN2A 2.27 2.41
Cide__010370 RAN binding protein 2 (RANBP2) RANBP2 4.68 3.16
Cide__007370 C-X-C Motif Chemokine Ligand 11(CXCL11) CXCL11 2.30 3.01
Cide__028555 Mitogen-Activated Protein Kinase Kinase 6(MAP2K6) MAP2K6 −2.75 −2.56
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4. Discussion
Bacterial co-infection represents a significant challenge in aquaculture, frequently

leading to complex disease manifestations and altered pathogenesis [25]. Although such co-
infections substantially impact fish health, their pathogenic mechanisms and host–pathogen
interactions remain poorly understood. Co-infection, defined as the simultaneous infection
of a host by multiple genetically distinct pathogens [26,27], can result in either antagonistic
or synergistic interactions between pathogens [26], with the latter typically causing more
severe clinical outcomes. These outcomes are characterized by enhanced disease severity,
elevated mortality rates, modified host susceptibility patterns, and extended infection
periods [28]. In the present study, we investigated the co-infection of grass carp with
Aeromonas hydrophila and Aeromonas veronii, focusing on the liver as a primary site of
bacterial colonization and immune response [29,30]. Our results demonstrated that bacterial
loads peaked at three days post-infection (dpi), correlating with maximum mortality rates
that ultimately reached 68%, consistent with previous observations by Sarkar et al. [31].
The enhanced pathogenicity of bacterial co-infections has been documented across various
fish species. For instance, Chandrarathna et al. [9] reported that co-infection of zebrafish
with multidrug-resistant strains of A. hydrophila and A. veronii resulted in significantly
higher mortality compared to single infections. Similarly, in striped catfish, co-infection
with Edwardsiella ictaluri and A. hydrophila induced 95% cumulative mortality, substantially
exceeding the mortality rates observed in single infections (80% for E. ictaluri and 10% for
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A. hydrophila). These comparative findings strongly suggest synergistic pathogenic effects
during bacterial co-infections.

This study highlights the key adaptive immune response of grass carp in co-infection
with A. hydrophila and A. veronii, revealing the underlying molecular mechanisms of host
response and defense against invasion. Thus, pathogen interactions can cause changes
in bacterial load. To elucidate the pathological consequences of bacterial co-infection, we
conducted a comprehensive histopathological analysis of infected liver tissues. Previous
studies have demonstrated that single infections with Aeromonas hydrophila induce hepa-
tocyte swelling and vacuolation in grass carp [32], and cause vacuolar degeneration with
nuclear consolidation and ferric hemoflavin accumulation in Nile tilapia [33]. In our study,
co-infection with A. hydrophila and A. veronii resulted in progressive liver damage charac-
terized by severe hepatocyte necrosis, extensive vacuolar degeneration, and nucleolysis.
These pathological changes are attributed to a robust inflammatory response initiated by
the liver, where infiltrating inflammatory cells release various cytokines and enzymes that
contribute to hepatocyte damage. The compromised metabolic functions of hepatocytes
subsequently lead to lipid accumulation and further vacuolar degeneration. Notably, while
the observed hepatocellular necrosis, vacuolization, and hemorrhage were similar to those
reported in single A. hydrophila infections [16], the extent and progression of tissue damage
in co-infected fish were markedly more severe.

To elucidate the molecular mechanisms underlying host defense, we analyzed the
transcriptional responses in grass carp during bacterial co-infection. Functional enrichment
analysis revealed concurrent modulation of metabolic pathways—specifically histidine
and tryptophan metabolism—and immune pathways, particularly the Toll-like receptor
and TNF signaling cascades. The immune response was predominantly mediated through
innate immunity [34], with significant activation of the Toll-IFN signaling pathway [35,36].
It has been shown that the flagellum of Aeromonas is one of its major virulence factors [37].
TLR5, a member of the Toll-like receptor family, recognizes flagellin produced by the bac-
teria, which activates the host immune system and induces a defense response against
the bacteria [38,39]. Key components of the Toll-IFN pathway showed differential ex-
pression, including marked upregulation of usp18 in infected livers, suggesting enhanced
immune response to bacterial invasion. The pathway activation cascade involves ifih1-
mediated transcription of irf1—one of three key interferon regulatory factors alongside
irf3 and irf7 [40], leading to increased antimicrobial defense and inflammatory cytokine
production [41–43]. Concurrent with immune pathway activation, we observed signifi-
cant alterations in metabolic regulators. Notably, amdhd1, which mediates histidine and
tryptophan metabolism [44] and liver development [45], showed marked downregulation,
potentially compromising cellular metabolism and triggering stress-induced cell death.
Similarly, reduced expression of aox1, a tryptophan metabolite marker with antioxidant
properties [46], may impair cellular protection against oxidative stress. These metabolic
changes are particularly relevant as tryptophan and histidine regulate T-cell prolifera-
tion [47] and cytokine production [48], respectively. A key finding was the significant
upregulation of cmpk2 following co-infection with A. hydrophila and A. veronii. Through
NLRP3 inflammasome activation [43], elevated cmpk2 expression correlated with reduced
bacterial colonization in hepatocytes, as confirmed by histopathological and bacterial load
analyses. These findings demonstrate the intricate coordination between immune and
metabolic responses in countering bacterial co-infection.

5. Conclusions
In this study, we demonstrated that co-infection with A. hydrophila and A. veronii

results in severe hepatic damage in grass carp, manifested by extensive hepatocyte necrosis,



Animals 2025, 15, 263 10 of 12

vacuolization, and hemorrhage. Gene ontology and KEGG pathway analyses revealed the
synchronized modulation of immune and metabolic processes during co-infection, with
significant enrichment of immune-related genes primarily associated with Toll-like receptor
signaling and TNF signaling pathways, indicating a complex host response. These findings
highlight the complex host immune response to bacterial co-infection, emphasizing the
need for improved prophylactic strategies in grass carp aquaculture to mitigate infections
by these opportunistic pathogens.
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