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Simple Summary: Olive oil is the utmost ingredient in the Mediterranean diet, offering
numerous health benefits to consumers. However, the extraction of olive oil generates
significant by-products, which pose serious environmental challenges. The dehydrated
residue, known as olive cake, has been utilized as an alternative feedstuff for various farm
animals due to its low cost and rich content of polyphenols and unsaturated fatty acids,
which provide antioxidant and anti-inflammatory properties. Additionally, it contributes
to environmental sustainability and aligns with the principles of a circular economy. In this
study, maize was replaced with olive cake in the diets of dairy cows, and various parameters
including milk yield, overall health, uterine health, and fertility were assessed. Although
no significant difference in milk production was observed, cows fed olive cake exhibited
an earlier onset of postpartum estrus, improved health, and more rapid restoration of the
uterine environment post-calving compared to control cows. These findings suggest that
incorporating olive cake into dairy cow diets is not only environmentally beneficial but
also enhances overall health and fertility.

Abstract: Olive cake was incorporated at a low inclusion rate (3.7%) into the rations of
dairy cows through partial substitution of maize, and its effects on milk production, general
health, and fertility traits were investigated. Multiparous purebred Holstein dairy cows
(n = 148) were divided into two groups: a treated group (n = 86) and a control group
(n = 62). The control ration (group C) was modified by replacing 1 kg of maize with an
equal quantity of olive cake (group T). The experiment lasted from 60 days prepartum
to 150 days postpartum. Electronic aids were utilized to quantify daily milk yield and
detect estrus expression, while clinical and uterine examinations were performed weekly.
Blood samples, uterine epithelial cells, and endometrial tissue samples were collected
from a subgroup of healthy animals in both groups at specific time points. Blood samples
were examined to determine the β-hydroxybutyric acid (BHBA), acute phase proteins
(haptoglobin [Hpt] and serum amyloid A [SAA]), progesterone, and pregnancy-associated
glycoproteins concentrations. Uterine epithelial cells were assessed for polymorphonu-
clear neutrophil (PMN) counts, and the expression of nine genes encoding inflammatory
cytokines and immune system activation was analyzed in uterine biopsy tissue. No signifi-
cant differences (p > 0.05) were observed between groups in milk yield, general morbidity,
clinical endometritis, or conception rates. However, animals in group T came to estrus
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approximately 6 days earlier (p = 0.013) than those in group C; progesterone concentrations
on day 7 of the subsequent cycle tended (p = 0.07) to be higher in group T. On day 21,
BHBA concentrations were higher in group C than in group T (p < 0.05). Throughout the
experiment, Hpt levels in group T were consistently lower (p < 0.001), while SAA was lower
on day 7 compared to group C. From days 21 to 42 postpartum, there was a significant
reduction in PMN numbers (group C p = 0.02; group T p < 0.0001), with a tendency for
a greater reduction rate in group T (p = 0.08). Among the genes studied, a significant
difference was revealed in the expression of the ILA1 gene, with strong correlations of gene
expression in group C and weak to moderate correlations in group T. In conclusion, under
the conditions of this experiment, the inclusion of olive cake into dairy cows’ rations did
not affect milk production but improved certain health and fertility parameters, making
olive cake a suitable alternative feedstuff for high-producing animals.

Keywords: dairy cows; olive cake; fertility; acute phase proteins; immune system; gene
expression; uterine cytology

1. Introduction
Olive oil production constitutes the largest segment of the Greek primary sec-

tor, with an annual output of approximately 300,000 tons. According to the Eurostat
(https://ec.europa.eu/eurostat/web/main/search accessed on 28 November 2024 ) and
the International Olive Council (https://internationaloliveoil.org, assessed on 28 Novem-
ber 2024) in Greece, the olive trees (Olea europaea) are cultivated in 750,000 agricultural
holdings, occupying more than 1 million hectares of arable land. With this production,
Greece ranks third worldwide after Spain and Italy. Since 2005, the annual global olive oil
consumption has been steadily increasing, which puts strong pressure on the intensification
of production. However, each ton of olive oil produced generates a corresponding amount
of waste, which can be equal to or up to twice the quantity of oil extracted, depending on
the extraction method. The olive oil by-products contain fruit pulp, skin, stones, leaves
(18–32%), and water (40–60%), which pose a serious environmental hazard for the produc-
tion areas. Traditionally these wastes have been used as fertilizers, or fuel by households,
greenhouses, and local cheese dairies. In recent years, the partly dehydrated olive cake has
been incorporated into farm animal diets. This practice has been shown to provide multiple
benefits, including the reduction in environmental pollution and minimized management
costs for production units, while the cake can partly substitute the inclusion rate of expen-
sive cereals or forages in animals’ rations. On a dry matter basis, the olive cake contains
proteins (6–8%), fatty acids (5–9%), cellulose (7–9%), lignin (26–30%), hemicellulose (7–9%)
and various phenolic compounds, such as tyrosol, hydroxytyrosol, and oleuropein. Its
energy content is comparable to that of cereals [1,2]. Notably, only a very small proportion
(0.5 to 2%) of the olive fruit phenolic compounds remains in the olive oil, while, at least 98%
is retained in the olive cake [3]. Depending on the method of extraction, the total phenolic
compound of the olive cake ranges from 2.2 gr/kg to 4.4 gr/kg [4]. The unsaturated
fatty acids and the presence of phenols confer unique properties to olive cake, allowing
it to be characterized as a potential bioactive or functional feedstuff. Olive oil contains
various biocomponents with antioxidant, free radical scavenging, and anti-inflammatory
properties. Its high inclusion rate in the Mediterranean diet is linked to the relatively low
incidence of various types of cancer, atherosclerosis, and coronary heart disease (reviewed
by [5–7]). Phenolic compounds are present in nearly all plants and fruits; however, olives
are recognized as a significant natural source of bio-phenols, leading to the incorporation

https://ec.europa.eu/eurostat/web/main/search
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of olive products into numerous pharmaceutical and cosmetic formulations. The addition
of olive cake to animal diets is increasingly attractive due to its positive impact on nutrition
costs and its contributions to improved antioxidant and anti-inflammatory status, as well
as potentially enhancing the immune status of the animals [8]. Further, the exploitation of
olive cake as an alternative feedstuff contributes to addressing an alarming environmental
issue related to the excessive generation of waste. At the same time, it improves the nutri-
tional properties of milk by increasing the concentration of monounsaturated fatty acids
(MUFAs) and decreasing the saturated fatty acids (SFAs) levels [2], of cheese by decreasing
the concentration of de novo synthesized saturated fatty acids and the atherogenic index
and increasing the monounsaturated long-chain fatty acids in the Haloumi [2,9], and of
meat by increasing the tocopherol concentration in muscles and improving the overall
oxidative stability of the meat [10]. It is noteworthy that improved product properties do
not possess any adverse effects on the overall productivity of the animals [2,9,10].

The transition period for dairy cows—defined as 21 days before and after calving—is
characterized by a physiological need for cows to adapt from a low nutrient demand
during the dry period to the high energy requirements of early lactation. During this
period, the incidence of metabolic or infectious diseases is at its peak among all productive
phases of the animal’s life. Disorders that occur during this transition can impair milk
production and future fertility, increase the risk of early culling, and compromise cow
welfare [11,12]. The negative energy balance (NEB) is regarded as a primary cause of
increased morbidity and reduced production during early lactation [13–15]. While nutrition
and NEB are directly related to metabolic disorders, they have a prominent role in infectious
diseases, as they contribute to immune system functionality either directly through specific
nutrients or indirectly through specific and biologically active metabolites [16]. Postpartum
immunosuppression is a physiological condition, but the rigorous genetic selection for high
milk production and the intensification of cattle production systems have been associated
with the aggravation of this condition and subsequent reduction in fertility [17]. The
role of the immune system is not confined to the defense mechanisms, but it is pivotal in
many physiological processes, such as the detachment of the fetal membranes, the gamete
transport, the corpus luteum formation, the maternal recognition of pregnancy, etc. [18]. It
is, therefore, vital new dairy management practices are adopted to support undisturbed
immune system functionality and fertility during the critical phases of cattle breeding.

In light of these considerations, we investigated the effects of feeding dairy cows with
olive cake during the transition period and early lactation on reproductive performance,
uterine health, and immunity in the early stages of lactation.

2. Materials and Methods
The procedures outlined in this study were approved by the Ethical Committee of Ani-

mal Welfare of the University of Thessaly Veterinary Faculty, (license number 112/19/9/20),
and conducted in accordance with regulations pertaining to the protection of animals used
for scientific purposes (Directive 2010/63).

2.1. Animals

The study was carried out on a commercial dairy farm in central Greece, which housed
380 Holstein cows, averaging a milk production of 9870 L/cow per lactation. Individual
daily milk yield, rumination rate, and physical activity were electronically monitored and
recorded via an automated electronic monitoring system installed in the farm (SCR, Cow
Monitoring Systems, Allflex, Netanya, Israel). The cows of all groups were housed in
sheltered loose pens equipped with cubicles having waterbed matrices bedding, at a 1 to 1
rate (1 cubicle per cow). An automated cooling system was installed including fans and
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sprinklers, which operated during the hot periods of the year. All animals were fed once
daily a total mixed ration (TMR), had unlimited access to drinking water, and were milked
three times daily at 5:00, 13.00, and 21:00.

The pregnant cows had a typical dry period lasting for 58 to 66 days prior to the
expected calving, divided into two subgroups: the far-off (from drying off until day 18 to
21 pre-calving) and the close-up (18 to 21 days pre-calving) groups. The enrolled animals
were selected from the far-off group and allocated into one of the two treatment subgroups
of the close-up and lactation groups. Pregnant cows (n = 148) in their 2nd to 4th gestation
were included in the study, which was conducted during the thermoneutral period of the
year (October to April).

The control group comprised multiparous cows (group C, n = 62) with a mean parity
of 3.0 ± 1.2 and a BCS of 3.6 ± 0.3. The treated group consisted of multiparous cows (group
T, n = 86) with a mean parity of 3.4 ± 1.6 and a BCS of 3.8 ± 0.4. Animals in group C
were fed with the standard ration used in the farm (TMR) based on forages, cereal grains,
and soybean meal, according to the recommendations of INRA [19]. The modification of
group T′s ration included the replacement of 1 kg of maize with an equivalent quantity
of partially destoned dried olive oil cake (Ruminolive, Spartalife, Sparta, Greece). In the
lactation ration, the inclusion rate was 3.7%; additional slight adjustments were made
to ensure that both diets were isocaloric and isonitrogenous. The nutrient and chemical
composition of the Ruminolive and the composition of the TMR of lactation are presented
in Tables 1 and 2, respectively. The modified ration was offered until day 150 post-partum
(pp) at which point animals of both groups were combined into another lactation group.

Table 1. Chemical composition of olive cake (Ruminolive).

Chemical Composition Ruminolive

CP, % 8.50
EE, % 10.50
NDF, % 56.60
ADF, % 37.90
ADL, %
Fatty acid composition of olive cake

14.0

Lauric acid (C12:0), % 0.05
Myristic acid (C14:0), % 0.05
Myristoleic acid (C14:1), % 11.09
Palmitic acid (C16:0), % 0.69
Palmitoleic acid (C16:1), % 0.19
Heptadecanoic acid (C17:0), % 0.09
Stearic acid (C18:0), % 2.71
Oleic acid (C18:1), % 70.77
Linoleic acid (C18:2) (ω-6), % 10.77
Linolenic acid (C18:3) (ω-3), % 0.48
Arachidic acid (C20:0), % 0.85
Eicosenoic acid (C20:1), % 0.11
Arachidonic acid (C20:4), % (ω-6) 0.13
Behenic acid (C22:0), % 0.12

CP = crude protein, EE = ether extract, NDF = nondetergent fiber, ADF = acid detergent fiber, ADL = acid
detergent lignin.
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Table 2. Ingredients and chemical composition of the experimental diets of lactating cows offered a
standard ration (group C) or a modified ration with the addition of olive cake.

Group C Group T

Ingredient composition (kg)

Maize silage 33 33
Alfalfa hay 2 2
Wheat straw 0.7 0.6
Grounded corn 4.0 5
Soybean meal (47%) 5.4 5.4
Cottonseed with lint 2.1 2.1
Molasses 1.4 1.4
Lipid supplement 0.25 0.17
Ruminolive - 1
Sodium bicarbonate 0.15 0.15
Sodium chloride 0.03 0.3
Mineral-vitamin premix 0.5 0.5
Chemical composition
DM, % 52.90 53.22
CP, % DM 18.08 17.93
EE, % DM 4.65 4.57
NFC, % DM 41.76 41.66
NDF, % DM 30.02 30.60
Ash, % DM 5.49 5.24
ME (Mcal/kg) 2527 2509

DM = Dry mater, CP = crude protein, EE = ether extract, NFC = non-fibrous carbohydrates,
NDF = nondetergent fiber.

2.2. Clinical Examinations

All clinical examinations were performed by the same veterinary surgeons who visited
the farm biweekly. The pregnancy status of all animals was confirmed upon drying off and
the body condition score (BCS) was evaluated on a five-point scale ranging from emaciation
(score 0) to obesity (score 5) [20]. No clinical examinations were carried out during the
entire dry period.

2.3. Post-Partum Uterine Examinations

During the first week of pp, all cows underwent a general clinical examination,
and uterine content was evaluated via gloved hand sampling. In the presence of ab-
normal uterine content, the cows were treated accordingly. Cows diagnosed with metritis—
characterized by an enlarged uterus with a red-brown watery, fetid vaginal discharge and
an internal temperature of ≥39.5 ◦C—were treated with ceftiofur hydrochloride (2 mg/kg
BW, Excenel, Zoetis, Louvain-la-Neuve, Belgium) and flunixin meglumine (2.2 mg/kg,
Finixin, MSD, Berlin, Germany). Metricheck was performed after day 21 pp for the de-
tection of clinical endometritis. Following disinfection of the vulval lips, the sterilized
hemisphere of the instrument was lubricated and inserted into the vagina. The retrieved
content was evaluated on a 5-point scale (0 to 4), where: 0 = healthy cows with clear
and transparent mucus; 1 = no pus but clouded mucus (indicating mild endometritis);
2 = mucus with pus traces; 3 = mucus containing <50% mucopurulent material; 4 = dis-
charge with >50% pus and/or sanguineous mucus. Cows scored as 2 or 3 were treated
with two PGF2α injections (0.5 µg cloprostenol, 2 mL, Estrumate, MSD, Friesoythe, Ger-
many) given with an interval of 11 to 14 days. The same PGF2α treatment along with an
intrauterine cephapirine (500 mg/cow, Metricure, MSD, Bad Waldsee, Germany) treatment
given 5 days after the first prostaglandin injection was applied to cows with a score of 4.
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Two weeks after treatment, all treated cows were re-examined to assess uterine health or
determine if additional treatment was necessary.

2.4. Ovarian Resumption, Estrus Expression, Artificial Insemination and Pregnancy Diagnosis

Estrus detection was based on physical activity data provided by the electronic moni-
toring system and was confirmed by visual observation of the sexual behavior of the cow.
Ovarian examinations commenced in the third-week pp. The day pp at which a corpus
luteum (CL) was identified by rectal palpation/ultrasonographic examination was defined
as the time of ovarian resumption; this was subsequently confirmed by the first rise in
blood progesterone concentration above 1.5 ng/mL.

The voluntary waiting period was set at 65 days in milk. Any cow that had not
expressed estrus by day 60 pp was synchronized with the double OVSYNCH protocol [21].
All cows were inseminated with semen from the same sire by the same farm technician.

Pregnancy-associated glycoproteins (PAG) concentrations were determined on days
29 to 36 post A.I. for initial pregnancy diagnosis, which was confirmed 10 to 15 later by
rectal palpation and/or transrectal ultrasonography.

2.5. Hematological and Biochemical Examinations

On days −7, 0, 7, 14, 21, and 42 (calving = day 0), blood samples were collected from
the tail vein in plain tubes for the analysis of acute phase protein concentrations. The
samples were allowed to clot and serum was separated by centrifugation and stored at
−20 ◦C until analysis for haptoglobin (Hpt) and serum amyloid (SAA).

Acute phase proteins were determined in blood samples collected on days −7, 7, and
21 from healthy animals without any sign of clinical metritis and being scored Metricheck
0 or Metricheck 1 on days 14 and 21 (n = 10 and n = 16 for groups C and T, respectively),
using commercially available ELISA Kits (MyBioSource, San Diego, CA, USA). The Hpt
assay sensitivity was 0.02 ng mL−1, and intra- and inter-assay coefficients of variation
were 5.1% and 5.7% for samples containing low concentrations and 4.5% and 7.7% for high
concentrations. SAA assay had a sensitivity of 0.1 ng mL−1, while the intra- and inter-assay
coefficients of variation for samples with low and high concentrations were 5.9%, 7.5%,
9.5%, and 6.7%, respectively.

On days 7, 14, and 21, blood glucose and BHBA levels were determined by cow-side
tests (Precision Xseed, Abbott, CA, USA) using the respective glucose and ketone strips.

Progesterone concentrations were analyzed weekly starting from day 21 pp until
the expression of overt standing estrus. In addition, progesterone concentration was
determined on day 7 in 10 control and 20 treated cows. The hormone assessment was
performed by a commercial ELISA kit (NRG, Marburg, Germany). The sensitivity of the
assay was 0.08 ng mL−1, while the intra- and inter-assay coefficients of variation for low-
and high-concentration samples were 5.4%, 6.8%, 9.7%, and 5.6%, respectively.

Pregnancy-associated glycoprotein (PAG) concentration was analyzed by a commercial
ELISA (DG29 kit, Conception Animal, Beaumont, QC, Canada) with an assay sensitivity and
specificity of 96.8% and 98.7%, respectively [22]. All samples were analyzed in duplicates
and any sample with >5% difference within the duplicate was re-assayed.

2.6. Cytology

Endometrial cytological samples were collected from six animals in each group that
had previously been scored as Metricheck 1 on days 21 and 42 pp, following the methodol-
ogy described by [23]. Briefly, after disinfecting the vulva and perineum, a cytology brush
(Andwin Scientific, Simi Valley, CA, USA) was attached to a sterile metal stem and entirely
covered with a sterile stainless-steel tube. This system was introduced transcervically into
the uterine body, and the stem was advanced firmly to allow the brush to protrude from
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the tube. The metal stem was rotated two or three times before being retracted into the tube.
The brush was then rolled onto a glass slide. The smear was allowed to dry, fixed with
methanol, stained with Giemsa, and stored until microscopic evaluation at magnifications
of ×100 to ×400.

Each slide was examined blindly by the same operator, and the mean of two exami-
nations was used for analysis. Endometrial cells, epithelial cells, and polymorphonuclear
cells (PMNs) were counted, with a total of 300 cells evaluated. The percentage of PMNs
was calculated as their number divided by the sum of PMNs and epithelial cells [24,25].

2.7. Uterine Biopsy

Uterine biopsies were performed on days 35 to 37 pp on the same animals that had
been previously sampled for cytological examination. Following the application of caudal
epidural anesthesia (4–5 mL of Lidocaine, Xylosan Demo SA, Athens, Greece), the vulva
and perineum were disinfected. Laparoscopic biopsy punch forceps (R. Wolf 8383.124,
5 mm × 33 cm, Knittlingen, Germany), covered with a protective plastic sheath, were
guided to the external orifice of the cervix; the sheath was ruptured by pulling it backward,
allowing the instrument to be introduced into the uterus and advanced approximately 1 cm
into the right uterine horn. The jaws of the instrument were opened, and the uterine wall
was firmly pressed into the opened jaws. The endometrial sample was obtained by closing
the jaws of the instrument before its removal. The tissue sample was extracted using a
sterilized hypodermic needle and stored at −20 ◦C in RNA later until further processing.

2.8. RNA Extraction and cDNA Synthesis

Total RNA was extracted using E.Z.N.A. (Omega Bio-tek Inc, Norcross, GA, USA).
Total RNA Kit I, according to the manufacturer′s protocol. An extra step of DNAse treat-
ment was performed after the extraction to ensure the removal of any DNA residues.
The Maxima First Strand cDNA Synthesis kit for RT-qPCR was used for the synthesis of
complementary DNA (cDNA) following the manufacturer’s protocol.

2.9. Gene Expression Analysis

The genes of the study are coding for immune system proteins, since they participate in
essential immunity pathways, namely interleukin signaling, cell recruitment, TLR signaling,
etc. (Data from Reactome Database). Each gene was designed using Primer3 (https:
//primer3.ut.ee/ accessed on 17 March 2024) and was checked at Beacon Designer to
ensure their conformational suitability (https://www.premierbiosoft.com, accessed on 17
March 2024). Last, UCSC In-Silico PCR (https://genome.ucsc.edu/cgi-bin/hgPcr, accessed
on 17 March 2024) was used to ensure the unique annealing location of the primers in the
cow genome. Furthermore, a set of 3 housekeeping genes were used (YWHAZ, SDHA, and
GUSB), to normalize the gene expression values. The genes and the respective primers are
shown in Table 3. GeNorm and M value as an indicator of the gene expressions’ stability
across samples were used to evaluate the suitability of the reference genes.

Real-time PCR (qPCR) was performed using the SYBR Green Technology with a Rorot-
Gene Q (Qiagen, Hilden, Germany). Analysis of qPCR was carried out in a 10 µL reaction
volume after the addition of 1.5 µl cDNA in the PCR mix containing gene-specific primers
(200 nM final concentration) and 1x KAPA SYBR FAST qPCR Master mix (Sigma-Aldrich,
Burlington, MA, USA). qPCR conditions were 5 min at 95 ◦C and 40 cycles of 20 s at 95 ◦C
and 20 s at 60 ◦C for annealing and extension. At the end of every reaction, a melt curve
analysis was performed to ensure the specificity of the products. Samples were measured
in duplicate and a maximum ± 0.2 difference in Cq values was applied as a threshold in
the duplicates’ measurements.

https://primer3.ut.ee/
https://primer3.ut.ee/
https://www.premierbiosoft.com
https://genome.ucsc.edu/cgi-bin/hgPcr
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Table 3. List of genes under study and the designed primer pairs for each gene.

Gene Name Gene ID Gene Description Forward Primer Reverse Primer Product Size (bp)

CXCL8 ENSBTAG00000019716 C-X-C motif chemokine
ligand 8 CACATTCCACACCTTTCCAC AAGCAGACCTCGTTTCCATT 80

TLR2 ENSBTAG00000008008 toll-like receptor 2 ACTGGACTGACTTTTCTTGAGG TGGCTAATGTTCTGGATTGACT 88

TGFB2 ENSBTAG00000005359 transforming growth
factor beta 2 CGGAGCGACGAGGAATAC GTAGAAAGTGGGCGGGATG 176

TLR4 ENSBTAG00000006240 toll-like receptor 4 AGGTAGCCCAGACAGCATTT GAGCGAGTGGAGTGGTTCA 77

NLRP3 ENSBTAG00000001273 NLR family pyrin
domain containing 3 TAGGCAACAACGACTTGGGT TCAGGCTTTTCAGGAGGCAG 80

TNF ENSBTAG00000025471 tumor necrosis factor CCCTTCTCATCCCCTTCTGG GCCTCACTTCCCTACATCCC 79

IL1B ENSBTAG00000001321 interleukin 1 beta CCTCCGACGAGTTTCTGTGT GCCAGCACCAGGGATTTTTG 79

S100A8 ENSBTAG00000062307 S100 calcium-binding
protein A8 GAAGAAAAAGGATGCGGACA TTATCACCAGCACGAGGAACT 92

IL1A ENSBTAG00000047637 interleukin 1 alpha CTGAGGCTACTATCTGTGGCT CACGGCTTATTCCAACTGCT 105

YWHAZ ENSBTAG00000046019

tyrosine 3-
monooxygenase/tryptophan

5-monooxygenase
activation protein zeta

CTGTAACTGAGCAAGGAGC CCAAGATGACCTACGGGC 95

GUSB ENSBTAG00000000236 glucuronidase beta GCCGTTGTAATGTGGTCCTT GGGCTTTAGTGTGGGCAATC 81

SDHA ENSBTAG00000000704
succinate

dehydrogenase complex
flavoprotein subunit A

GCCCAGTGTGACCTCCTC CATCATCAGAGCCCATCCCC 97

For the differential gene expression analysis between the groups, a combinatorial
LinReg–Quantification Cycle (Cq) approach was used: Cq values were retrieved for each re-
action by setting a constant threshold, and the average efficiencies per gene were computed
using the LinReg software (version 2021.2). The relative gene expression was normalized
using the geometric mean of the three reference genes.

2.10. Statistical Analysis

The morbidity rate between groups was analyzed by a chi-square test. The days to
first estrus were analyzed by student’s t-test.

The statistical analyses for the biochemical markers (BHBA, glucose, progesterone,
and acute phase proteins) and PMNs as well as for the data from the Metricheck exami-
nations were performed in R, using the appropriate packages and tests. A normality test
was performed to check deviations from the normal distributions in order to choose the
appropriate parametric or non-parametric test. For the Metricheck data, a Fisher exact
test was performed, and for the PMN data, a repeated measures ANOVA analysis was
applied to detect the effect of two factors (feed and day) on the levels of PMNs, followed
by a posthoc test for pairwise comparisons between groups. A statistical threshold of
p-value < 0.05 was applied in all analyses.

The statistical analysis of DEGs was performed using R (version 4.3.2) and more
specifically the following:

1. The Shapiro test was applied in each gene to test for deviations from the normal distri-
bution and select the appropriate statistical tests for the differential gene expression.

2. The Wilcoxon test statistic among the groups fed with different was computed using
the function wilcox.test for each gene (threshold p < 0.05).

3. Spearman correlation coefficients were computed for each pair of genes in each group
using the cor function since correlated gene expression may be indicative of a similar
regulation mechanism underlying gene expression.

4. Boxplots and correlation coefficient plots for the gene expression data were designed
using ggplot2 (version 3.5.1).
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3. Results
3.1. Milk Yield

No difference (p = 0.75) was recorded in the milk production during the first 100 days
of lactation (4073 ± 778 kg and 3980 ± 827 kg for groups C and T, respectively).

3.2. General and Uterine Health

The chi-square test revealed that during the study period, both groups had similar
(p = 0.61) clinical disease incidence. The following numbers of clinical cases were recorded
in groups C and T, respectively: retained placenta 3 and 4, abomasal displacement 1 and 1,
metritis 3 and 3, ketosis 2 and 3, milk fever 1 and 1, lameness 1 and 1, endometritis 5 and 6,
and mastitis 7 and 11.

In both groups, the average Metricheck score declined in a time-dependent manner.
Between days 14 and 42, a reduction rate of almost 50% was recorded in both groups.
Although no statistically significant difference was observed at any time point, in group T
the mean score was steadily numerically lower than that of group C and tended to differ
(p = 0.1) on day 28, (Figure 1).
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3.3. Estrus Expression, Progesterone, and Conception Rate

Until day 60 pp, 38 (61.3%) group C and 59 (68.6%) group T cows were detected in
standing heat (p > 0.05), by electronic signaling, visual observation, and in all cases by
increased progesterone levels. For these animals, the calving to first estrus interval was
shorter (p = 0.013) in group T (40.1 ± 10.5 days) compared to group C (46.1 ± 11.1 days).

On day 7, after the expression of the spontaneous estrus, progesterone concentration
tended (p = 0.07) to be higher in animals of group T (6.60 ± 1.09 ng/mL) compared with
group C (6.02 ± 0.86 ng/mL).

No difference (p > 0.05) was observed in the percentage of pregnant cows by day
120 pp (71.0% and 76.7%, for groups C and T, respectively).

3.4. Glucose and BHBA

Glucose concentrations ranged from 28 mMol/L to 93 mMol/L; at any time point, no
difference (p > 0.1) was detected between the animals of the two groups.

On day 21, BHBA concentration in group T cows (0.96 ± 0.23 mMol/L) was lower
(p = 0.041) than in group C (1.20 ± 0.24 mmol/L). Data on BHBA concentrations are shown
in Figure 2.
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3.5. Acute Phase Proteins

Significant differences were detected in the concentrations of both acute phase proteins
between groups; details are shown in Figures 3 and 4. At all time points, Hpt concentrations
were lower (p < 0.001) in group T animals compared to group C (day −7 40.5 ± 24.3 ng/mL
and 77.2 ± 19.5 ng/mL; day 7, 36.7 ± 19.3 ng/mL and 66.4 ± 16.8 ng/mL; day 21,
25.6 ± 21.5 ng/mL and 72.2 ± 13.4 ng/mL, for groups T and C, respectively).
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Compared to group C, SAA levels in group T were lower (p = 0.0003) on day 7 and
tended (p = 0.062) to be so on day −7, while no difference was detected on day 21 (day −7
14.6 ± 4.8 mg/L and 23.3 ± 15.0 mg/L; day 7, 10.1 ± 0.9 mg/L and 22.3 ± 16.7 mg/L; day
21, 12.1 ± 4.1 mg/L and 19.6 ± 12.0 mg/L, for groups T and C, respectively).

3.6. Uterine Cytology

The two-way ANOVA analysis revealed that time affected the mean PMN numbers
(p = 0.0014). No difference was detected in the mean PMNs between groups in days 21
and 42. Between the two time points, the mean PMN (%) differs within groups (group C,
48.0 ± 14.9 and 31.8 ± 9.6, p = 0.02, and group T, 51.5 ± 15.9 and 23.1 ± 5.8, p < 0.0001,
for days 21 and 42, respectively). The reduction rates (%) between days 21 and 42 were
32.1 ± 13.3 and 50.6 ± 21.5 (p = 0.08) for groups C and T, respectively (Figure 5).
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3.7. Differential Gene Expression and Correlation Coefficients

Among the nine genes under study, only one gene showed differential gene expression
between the two groups, ILA1, which exhibited an upregulation in the olive diet, and
CXCL8 showed a tendency towards differential gene expression between the groups, being
upregulated in the olive diet. The corresponding p-values are shown in Table 4 and the
respective boxplots are shown in Figure 6.
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Table 4. Results of Wilcoxon test for each gene.

Gene p-Value

TNFA 0.849

CXCL8 0.117

IL1B 0.633

TGFB2 0.703

ILA1 0.026

NRLP3 0.443

S100A8 0.289

TLR4 0.246

TLR2 0.289
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Correlation coefficients showed differences between the two diets, as shown in Figure 7.
In group C, there were only positive correlation coefficients, with specific pairs of genes
exhibiting strong positive correlations (Table 5). On the other hand, the correlations in
group T were weak or moderate, and, in contrast to the control diet, there were also negative
correlations (Figure 7).
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Table 5. Strong correlations between pairs of genes in the control group.

Gene 1 Gene 2 Coefficient

CXCL8 ILA1 0.9

NRLP3 TNFA 0.9

NRLP3 TGFB2 0.8

NRLP3 TLR4 0.8

TLR4 TNFA 0.9

4. Discussion
The exploitation of compounds with high biological value is undoubtedly where the

olive oil sector should be directed. While the health benefits of olive oil consumption for
humans are well established, it is equally important to highlight the potential advantages
for animal health and farm profitability through the inclusion of olive oil by-products in
animal rations. Evidence is accumulating that olive oil by-products are valuable sources of
bioactive compounds that can be recovered using green technologies and incorporated into
animal feed in alignment with circular economy strategies. The anticipated benefits of such
practices include a reduction in feeding costs, an enhancement of the nutritional quality of
milk produced, and the conservation of cereals for human consumption. However, these
alternative feeds must not only provide immediate economic benefits but also ensure the
long-term health and productivity of the animals. Therefore, a thorough investigation into
their biological effects on animal physiology is essential prior to their incorporation into
dairy cow diets. Olive cake is one such alternative feedstuff, and its effects on farm animals
have been extensively studied by research groups from Mediterranean countries, which
are the primary, if not the sole, producers of this product [2,26].

In the present study, the inclusion rate was set at 3.7% on a DM basis, which is
considered relatively low. This decision was made after pre-experimental observations
indicated that a 7% inclusion rate led to prolonged customization periods during which the
dry cows exhibited reduced dry matter intake. During the first 100 days postpartum, no
significant difference in milk yield was observed between control cows (group C) and those
fed olive cake (group T). This finding aligns with other studies reporting neutral effects
of various olive oil by-products (including olive cake, partly destoned cake, and olive
paste silage) on milk production, even at inclusion rates as high as 15% of DM (IR 5% [9],
IR 5.6% [27], IR 10% [28], IR 13% [29], and IR 15% [30,31]).

Although the effects of olive cake have been extensively studied in relation to milk
yield and milk quality characteristics, to the best of our knowledge, this is the first study to
report on reproductive indices and uterine health parameters after the inclusion of olive
cake in dairy cows’ rations.

Cows in group T exhibited earlier expression of estrus and had lower concentrations
of β-hydroxybutyric acid (BHBA) on day 21 pp compared to group C. The transition
period and the initial months of lactation are characterized by significant changes in
metabolism and immune system functionality that are interrelated and directly associated
with increased morbidity. During early lactation, cows mobilize fat reserves to support milk
synthesis; while this is a normal adaptive process, excessive fat mobilization due to severe
negative energy balance can affect the immune system and increase the risk of metabolic
and infectious diseases [12]. Conversely, metabolic status and energy balance are critical
determinants for the timely restoration of communication among the components of the
hypothalamic-pituitary-ovarian axis. BHBA results from partial hepatic oxidation of non-
esterified fatty acids (NEFA) produced during fat mobilization in periods of heightened
energy demand [32]. Cows that resume ovarian activity early typically experience mild or
no negative energy balance and demonstrate improved fertility compared to those with
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delayed luteal activity [33,34]. Early ovarian resumption is associated with shorter calving-
to-conception intervals and overall higher pregnancy rates [35,36]. While the role of energy
availability in controlling postpartum ovarian resumption is well recognized, the dietary
energy availability in this study did not differ among groups; therefore, any observed
differences should be attributed to factors other than energy density or availability.

Lactogenesis, which commences before parturition and peaks a few weeks thereafter,
is accompanied by increased lipolysis and markedly reduced lipogenesis, contributing to a
decrease in adipose mass [37]. Excessive lipolysis is considered an inflammatory process
that activates macrophages [38] and induces oxidative stress characterized by the excessive
production of free radicals such as reactive oxygen and nitrogen species [39]. Throughout
the transition period, particularly immediately after calving, the increase in milk synthesis
and immune system activation necessitates a high energy supply in the form of glucose [40].
During inflammatory responses, an overstimulated immune system withholds significant
amounts of glucose, exacerbating existing negative energy balances [41]. This is manifested
by elevated NEFA levels and subsequently high BHBA concentrations [42]. In our study,
the increased BHBA concentrations observed in the control cows can be interpreted as
a result of enhanced lipolytic and inflammatory responses, as indicated by persistently
elevated levels of haptoglobin (Hpt) and serum amyloid A (SAA) on day 7. During bacterial
or viral infections or under stress, monocytes secrete pro-inflammatory cytokines (IL-1, IL-6,
TNF-α). Similarly, during the periparturient period, increased lipolysis accompanied by
elevated pro-inflammatory cytokines suggests a condition resembling sterile inflammation
or metabolic syndrome in humans [43,44]. Pro-inflammatory cytokines bind to specific
receptors on hepatocyte membranes and induce an acute phase response that includes the
liver’s release of acute phase proteins [45]. Both Hpt and SAA are positive acute-phase
proteins that increase during the acute-phase response [46]. It is well established that
ketosis, characterized by elevated concentrations of non-esterified fatty acids (NEFA) and
beta-hydroxybutyric acid (BHBA), is positively correlated with increased levels of acute
phase proteins (APPs) [47,48]. Notably, in group C, but not in group T, the BHBA concen-
trations on day 21 indicated mild subclinical ketosis, reflecting a higher negative energy
balance. Therefore, we propose that the elevated BHBA levels are positively associated
with increased acute phase protein concentrations in group C, or that the more pronounced
subclinical conditions in this group contributed to the sustained elevation of acute phase
proteins. It is important to note that in the present study, the animals assessed for acute
phase protein concentrations and polymorphonuclear cell (PMN) counts were clinically
healthy, exhibiting only very mild uterine infections that, according to standard procedures,
required no treatment. Between days 21 and 42 postpartum, the number of PMNs in both
groups decreased; however, both the degree of difference and the clearance rate were
greater in group T, suggesting an enhanced anti-inflammatory capacity in these animals.
This effect may be attributed to the biological properties of the polyphenols present in olive
cake. Similar findings we observed in a previous study where soymeal was substituted
with a mixture of flaxseed and lupins rich in polyunsaturated fatty acids [23]. However,
other researchers argue that elevated PMN counts may simply indicate enhanced cellular
migration rather than serve as a definitive marker of inflammation [49,50].

Based on PMN counts and the Metricheck score, both groups exhibited mild en-
dometritis at the initial examination (day 21). Current understanding posits that PMNs
constitute a critical first line of defense against pathogens and are vital components of
the innate immune response. These cells migrate from the vascular compartment to sites
of inflammation to kill or phagocytize bacteria [51], but they can also contribute to the
pathogenesis of conditions characterized by disturbed tissue homeostasis, such as trauma
and shock [52]. The earlier restoration of ovarian resumption in group T denotes that
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these animals were exposed to high estrogen levels earlier than those of group C. It is well
established that estradiol stimulates vascularization of the endometrium [53,54], enhances
uterine contractility [55], initiation of sexual receptivity [56], and supports sexual-specific
effects on the secretory immune system [57]. It is, therefore, logical to assume that, at least
partly, the faster clearing of the endometrium in group T could be attributed to the early
exposure to estrogens.

Olive cake is recognized as an excellent source of polyphenols, and numerous studies
support the beneficial properties of these compounds. For instance, Vergani et al. [58]
demonstrated that polyphenols extracted from olive pomace protect hepatocytes against
excess fat and oxidative stress. The biological activity of polyphenols and lignans derived
from olive oil by-products has been investigated in relation to their cardioprotective effects
within the Mediterranean diet [59]. Additionally, olive oil phenolics have shown beneficial
effects on oxidation in vitro; for example, polyphenols have been found to reduce reac-
tive oxygen species (ROS) production while exhibiting significant free radical scavenging
properties [60,61]. In humans, antioxidant activity in the blood increases following the con-
sumption of olive oil phenolic compounds [62]. Compounds with antimicrobial properties
may help inhibit the growth of microorganisms and serve as therapeutic agents in the treat-
ment of certain infectious diseases [63]. Phenolic compounds found in olive cake, including
hydroxytyrosol, tyrosol, and oleocanthal, have demonstrated potent activity in vitro against
bacteria responsible for intestinal and respiratory infections [64]. Hydroxytyrosol, which
is abundant in olive cake, has been reported to exert significant anti-inflammatory effects
in animal models by attenuating the expression of pro-inflammatory cytokines such as
TNF-α and interleukin-1 beta (IL-1β) [65]. Furthermore, an in vitro study indicated that
hydroxytyrosol reduces levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2
(COX-2), and TNF-α in lipopolysaccharide (LPS)-challenged human monocytic THP-1
cells [66]. Olive polyphenols have also been shown to mitigate inflammatory responses in a
carrageenan-challenged mouse model of inflammation [67]. In trying to interpret our find-
ings related to uterine health, we infer that in group T animals the early exposure to high
estrogen concentrations along with lower degree of fat mobilization and enhanced immune
function, facilitated resolution of the uterine contamination more effectively compared to
group C. This hypothesis is further supported by the results from Metricheck assessments,
the cytology, and gene expressions. As shown in Figure 6, the group T exhibited a signifi-
cant upregulated expression of IL1A and a strong tendency towards upregulation of CXCL8.
IL1A is a member of the cytokine family, which acts as a mediator of the immune response,
while CXCL8 encodes for a member of a chemokine family, acting as a chemotactic factor by
guiding the neutrophils to the site of infection (data from NCBI). Both genes were found to
be upregulated in bovine endometrial epithelial cells in vitro when they were infected with
strains of Streptococcus uberis [68]. Additionally, the expression of IL1A, as well as CXCL8,
was found upregulated in cows suffering from postpartum endometritis [69,70]. Thus, the
over-expression of these genes may be involved in the restoration of uterine contamination,
despite the reduction in the number of PMNs in the T group. Thus, we propose that the
inclusion of olive cake in the diets of dairy cows enhances the ability of the uterus to resolve
existing mild inflammation through the anti-inflammatory and antioxidant properties of
the polyphenolic compounds present in the feed.

Cows experiencing negative energy balance may exhibit suppressed pulsatility of
luteinizing hormone (LH), which adversely affects the ovarian response to LH [71]. This
condition can lead to delayed ovarian resumption and the development of smaller ovulatory
follicles, resulting in corpora lutea with diminished secretory capacity [35,72]. This was
confirmed in the present study, where the progesterone concentration on day 7 of the
estrous cycle in group C was lower than that in group T. Notably, cows in group T exhibited
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their first spontaneous postpartum estrus earlier than those in group C. Olive cake is a feed
rich in polyunsaturated fatty acids, which influence the timing of follicular development,
the first ovulation, and oocyte quality. Numerous studies have documented a strong
positive correlation between the levels of polyunsaturated fatty acids and both the number
of ovarian follicles and the size of the preovulatory follicle [73–75]. Additionally, higher
concentrations of estradiol have been observed in cows fed diets rich in polyunsaturated
fatty acids, with the accompanying granulosa cells demonstrating increased steroidogenic
capacity, indicative of healthy follicle development [75,76].

In the context of this experiment, no statistically significant difference was detected
in the pregnancy establishment rate by day 120 postpartum; however, the pregnancy rate
in group T was 5.7% higher than in group C. This lack of significant difference may be
attributed to the limited number of observations. For monotocous species such as cattle,
approximately 800 animals must be tested to demonstrate a 5% difference at p < 0.05 [77].
Nevertheless, key parameters essential for restoring fertility and establishing early preg-
nancy were improved with the inclusion of olive cake in the diets of cows. The early
resumption of ovarian function increased steroidogenic capacity of the corpus luteum and
more rapid restoration of uterine health collectively provide a strong argument for the
supportive role that olive cake can play in enhancing dairy cattle fertility, particularly in
Mediterranean countries where this product is abundantly available in competitive prices
that are usually lower than that of cereals.

5. Conclusions
The findings of this study provide compelling evidence for the viability of utilizing

dried by-products from the olive oil industry as a safe and cost-effective alternative to cere-
als. Incorporating olive cake into the diets of dairy cows presents a valuable opportunity for
the olive oil sector to reduce the environmental impact associated with its waste products.
The observed early postpartum ovarian resumption, enhanced steroidogenic capacity of
the corpus luteum, decreased levels of acute phase proteins (APP), and effective resolution
of subclinical endometritis strongly suggest that feeding olive cake to high-producing
cows supports immune system function, thereby improving health and fertility outcomes.
The absence of statistically significant differences in conception rates is likely due to the
relatively small sample size. Our results indicate a need for further research to optimize
inclusion rates and explore the use of olive cake during immunosuppressive conditions,
such as periods of summer heat stress.
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