The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Experimental Section
2.1. Diet Formulation
Ingredients, % | 0% Fresh Meat | 20% Fresh Meat |
---|---|---|
Mechanically Deboned Chicken | 0.00 | 20.00 |
Chicken Fat | 5.32 | 2.34 |
Chicken By-Product Meal | 20.94 | 10.91 |
Brewers Rice | 21.21 | 18.84 |
Corn | 21.21 | 18.84 |
Wheat | 21.21 | 18.84 |
Beet Pulp | 4.00 | 4.00 |
Corn Gluten Meal, 75% | 3.00 | 3.00 |
Calcium Carbonate | 0.75 | 0.75 |
Potassium Chloride | 0.49 | 0.42 |
Sodium Chloride | 0.46 | 0.43 |
Dicalcium Phosphate | 0.87 | 1.12 |
Choline Chloride | 0.20 | 0.20 |
Natural antioxidant, Dry | 0.07 | 0.07 |
Natural antioxidant, Liquid | 0.02 | 0.01 |
Trace Mineral Premix | 0.10 | 0.10 |
Vitamin Premix | 0.15 | 0.15 |
Nutritional Composition in the final product * | ||
Crude Protein | 21.69–22.36 | 20.24–21.58 |
Crude Fat | 5.42–8.86 | 5.35–-9.65 |
Ash | 6.53–10.74 | 6.36–6.75 |
Crude Fiber | 1.84–2.95 | 2.15–7.86 |
Moisture | 4.20–6.67 | 4.23–6.25 |
2.2. Grinding and Mixing
2.3. Processing
2.4. Extrusion
2.5. Baking
2.6. Descriptive Sensory Analysis
2.6.1. Panelists
2.6.2. Sample Presentation and Evaluation
2.7. Volatile Compounds Measurement
2.7.1. Extraction Procedure of Volatile Aroma Compounds
2.7.2. Chromatographic Analyses
2.8. Data Analysis
3. Results and Discussion
3.1. Descriptive Sensory Analysis
Attribute | Sample | Fresh Meat effect | TI effect | Proc. effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0B | 20B | 0LE | 20LE | 0ME | 20ME | 0HE | 20HE | STDEV | ||||
Brown ap | 2.7 | 2.9 | 4.3 | 3.9 | 4.0 | 3.7 | 3.6 | 3.5 | 0.860 | NS | 0.003 | <0.0001 |
Porous ap | 3.9 | 3.3 | 1.9 | 1.8 | 2.1 | 2.2 | 3.2 | 3.1 | 1.136 | NS | <0.0001 | <0.0001 |
Grainy ap | 2.4 | 2.3 | 2.2 | 2.3 | 2.6 | 2.3 | 2.9 | 2.7 | 0.776 | NS | 0.004 | NS |
Fibrous ap | 0.8 | 1.0 | 1.5 | 1.0 | 1.7 | 1.5 | 1.7 | 1.9 | 0.839 | NS | 0.03 | 0.0007 |
Toasted ar | 1.4 | 1.6 | 1.6 | 1.6 | 1.7 | 1.8 | 1.7 | 1.8 | 0.467 | NS | NS | 0.018 |
Brown ar | 0.5 | 0.5 | 0.3 | 0.3 | 0.1 | 0.5 | 0.2 | 0.3 | 0.597 | NS | NS | 0.02 |
Stale ar | 1.5 | 1.3 | 1.6 | 1.9 | 1.9 | 1.9 | 1.6 | 1.6 | 0.746 | NS | NS | 0.018 |
Fish ar | 0.0 | 0.3 | 0.4 | 0.6 | 0.3 | 0.5 | 0.5 | 0.5 | 0.622 | NS | NS | 0.017 |
Toasted fl | 1.4 | 1.6 | 1.9 | 1.8 | 1.7 | 1.7 | 1.9 | 2.1 | 0.509 | NS | NS | 0.004 |
Grain fl | 2.9 | 3.2 | 3.3 | 3.3 | 3.5 | 3.5 | 3.4 | 3.3 | 0.665 | NS | NS | 0.01 |
Vitamin fl | 0.4 | 0.7 | 1.1 | 0.8 | 1.0 | 0.6 | 0.8 | 0.8 | 0.689 | NS | NS | 0.03 |
Stale fl | 2.1 | 2.0 | 2.2 | 2.4 | 2.2 | 2.1 | 2.4 | 2.4 | 0.774 | NS | NS | 0.02 |
Bitter | 4.6 | 4.2 | 4.3 | 4.2 | 4.3 | 3.9 | 4.0 | 3.9 | 0.740 | 0.03 | NS | 0.03 |
Musty fl | 1.3 | 1.2 | 1.6 | 1.2 | 1.1 | 1.1 | 1.0 | 1.0 | 0.890 | NS | 0.03 | NS |
Ox oil fl | 2.6 | 2.6 | 2.7 | 3.0 | 3.0 | 2.8 | 3.0 | 2.8 | 0.625 | NS | NS | 0.007 |
Fish fl | 0.3 | 0.7 | 1.0 | 1.2 | 1.0 | 1.1 | 0.6 | 1.5 | 0.938 | 0.008 | NS | 0.001 |
Attribute | Sample | Fresh Meat effect | TI effect | Proc effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0B | 20B | 0LE | 20LE | 0ME | 20ME | 0HE | 20HE | STDEV | ||||
Barn. at | 2.7 | 2.5 | 2.9 | 2.9 | 3.1 | 2.8 | 2.8 | 2.7 | 0.711 | NS | NS | 0.03 |
Salty at | 1.3 | 1.2 | 1.7 | 2.0 | 1.9 | 1.6 | 1.5 | 1.8 | 0.827 | NS | NS | 0.004 |
Bitter at | 4.8 | 4.5 | 4.5 | 4.5 | 4.3 | 4.5 | 4.1 | 4.1 | 0.896 | NS | NS | 0.04 |
Vitamin at | 0.1 | 0.4 | 1.1 | 0.5 | 1.0 | 0.4 | 0.5 | 0.7 | 0.707 | NS | NS | 0.003 |
Musty at | 1.2 | 1.2 | 0.8 | 0.9 | 0.8 | 1.2 | 0.7 | 0.8 | 0.992 | NS | NS | 0.005 |
Ox oil at | 2.4 | 2.2 | 2.5 | 2.5 | 2.6 | 2.5 | 2.5 | 2.8 | 0.735 | NS | NS | 0.01 |
Liver at | 0.7 | 0.9 | 1.5 | 1.3 | 1.5 | 1.4 | 1.2 | 1.5 | 1.052 | NS | NS | 0.0003 |
Fish at | 0.2 | 0.4 | 1.0 | 0.8 | 0.9 | 1.0 | 0.8 | 1.0 | 0.799 | NS | NS | 0.0004 |
Coh. mass | 2.5 | 3.0 | 3.6 | 3.8 | 3.7 | 4.9 | 3.4 | 4.3 | 1.552 | 0.01 | NS | 0.0003 |
Fractu-rability | 5.3 | 5.0 | 6.9 | 6.8 | 7.9 | 8.0 | 7.7 | 7.3 | 2.087 | NS | 0.048 | <0.0001 |
Hardness | 5.1 | 5.1 | 8.5 | 8.3 | 8.0 | 8.0 | 7.9 | 7.5 | 1.791 | NS | 0.001 | <0.0001 |
Powdery | 3.7 | 3.8 | 2.3 | 2.5 | 2.5 | 2.4 | 2.1 | 2.3 | 1.111 | NS | NS | <0.0001 |
Crispness | 6.0 | 5.9 | 9.9 | 9.8 | 10.7 | 10.7 | 10.7 | 10.5 | 2.409 | NS | 0.04 | <0.0001 |
Mouthcoat | 2.9 | 2.4 | 2.1 | 2.2 | 1.8 | 2.1 | 2.0 | 1.9 | 0.581 | NS | NS | <0.0001 |
No | Volatile | KI Exp | KI Lit | Sample | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0B | 20B | 0LE | 20LE | 0ME | 20ME | 0HE | 20HE | ||||
Alcohols | |||||||||||
A1 | Octen-3-ol | 960 | 961d | 1.61±0.70 | 1.80±0.47 | 3.15±0.74 | 2.69±0.57 | 3.07±0.43 | 3.62±0.26 | 2.17±0.28 | 2.30±0.37 |
A2 | 2-Decen-1-ol | 1187 | 1101c | ND | ND | 0.32±0.02 | 0.32±0.10 | 0.30±0.00 | 0.45±0.02 | 0.20±0.02 | 0.32±0.04 |
A3 | 2-Butyl octanol | 1298 | 1201c | 2.44±0.71 | 3.34±0.94 | 0.76±0.05 | 2.63±0.38 | 2.52±0.29 | 2.94±0.35 | 0.85±0.07 | 2.13±0.13 |
Total alcohols | 4.06 | 5.15 | 4.23 | 5.64 | 5.89 | 7.02 | 3.22 | 4.75 | |||
Aldehydes | |||||||||||
A4 | 3-Methylbutanal | NA | 654c | 1.41±0.82 | 1.74±0.30 | 1.06±0.04 | 0.70±0.28 | 1.28±0.23 | 0.99±0.15 | 1.13±0.30 | 0.89±0.14 |
A5 | Hexanal | NA | 800a | 21.34±11.53 | 23.89±5.24 | 54.47±7.34 | 67.03±20.77 | 50.21±6.98 | 85.77±13.68 | 39.06±5.91 | 54.46±6.52 |
A6 | 3-Furaldehyde | NA | 829b | 0.50±0.30 | 0.55±0.23 | 0.34±0.01 | 0.36±0.14 | 0.38±0.03 | 0.40±0.05 | 0.45±0.05 | 0.40±0.08 |
A7 | 2-Hexenal(E) | NA | 854b | 0.30±0.13 | 0.31±0.08 | 0.35±0.02 | 0.45±0.05 | 0.33±0.03 | 0.48±0.07 | 0.24±0.03 | 0.31±0.03 |
A8 | Heptanal | 872 | 872d | 1.96±0.89 | 2.24±0.49 | 3.90±0.70 | 3.46±1.17 | 4.07±0.63 | 4.95±0.73 | 3.21±0.43 | 3.63±0.58 |
A9 | 3-Methylthiopropanal | NA | 902c | 0.31±0.18 | 0.49±0.14 | 0.25±0.05 | 0.16±0.02 | 0.26±0.03 | 0.22±0.04 | 0.26±0.02 | 0.20±0.04 |
A10 | 2-Heptenal(Z) | 902 | 904d | 1.31±0.66 | 1.77±0.64 | 1.65±0.29 | 1.81±0.19 | 1.54±0.21 | 2.50±0.11 | 0.90±0.03 | 1.21±0.10 |
A11 | Benzaldehyde | 909 | 910d | 4.56±2.62 | 4.30±1.06 | 6.34±1.10 | 5.36±2.28 | 6.42±1.02 | 6.08±0.90 | 5.16±0.93 | 4.98±1.18 |
A12 | Octanal | 976 | 977d | 1.09±0.47 | 1.22±0.28 | 3.05±0.57 | 3.16±1.00 | 3.02±0.25 | 4.55±0.61 | 2.52±0.36 | 3.34±0.51 |
A13 | 2-Ethyl-2-hexenal | 979 | NA | ND | ND | 0.29±0.05 | 0.12±0.03 | 0.38±0.05 | 0.25±0.04 | 0.33±0.02 | 0.25±0.07 |
A14 | Benzeneacetaldehyde | 1006 | 1006d | 1.24±0.52 | 1.59±0.39 | 1.31±0.10 | 1.02±0.02 | 1.56±0.23 | 1.57±0.39 | 1.58±0.02 | 1.00±0.06 |
A15 | 2-Octenal | 1010 | 1010d | 1.20±0.35 | 1.36±0.31 | 1.81±0.10 | 2.04±0.22 | 1.03±0.05 | 1.47±0.20 | 1.56±0.05 | 0.95±0.14 |
A16 | Nonanal | 1082 | 1082d | 1.77±0.64 | 2.03±0.41 | 4.22±0.62 | 5.21±1.66 | 17.47±3.62 | 6.13±0.59 | 3.46±0.45 | 4.95±0.77 |
A17 | 2-Nonenal | 1119 | 1142c | 0.34±0.12 | 0.38±0.11 | 0.39±0.03 | 0.54±0.07 | 0.36±0.05 | 0.52±0.07 | ND | 0.45±0.02 |
A18 | 2-Butyl-2-octenal | 1366 | 1366d | 0.15±0.02 | 0.09±0.02 | 0.22±0.04 | 0.23±0.11 | 0.23±0.09 | 0.13±0.04 | 0.22±0.09 | 0.14±0.01 |
Total aldehydes | 37.49 | 41.96 | 79.66 | 91.65 | 88.54 | 115.97 | 60.09 | 77.16 | |||
Ketones | |||||||||||
A19 | 2-Heptanone | 864 | 865d | 1.24±0.65 | 1.26±0.31 | 1.23±0.16 | 0.90±0.25 | 1.56±0.03 | 1.15±0.04 | 1.34±0.30 | 1.24±0.24 |
A20 | 2,5-Octanedione | 962 | 983c | 1.16±0.63 | 1.83±0.46 | 3.32±0.42 | 4.59±0.97 | 2.41±0.21 | 5.19±0.77 | 2.02±0.18 | 3.63±0.24 |
A21 | 6-Methyl, 5-hepten-2-one | 963 | 965d | 0.31±0.17 | 0.26±0.02 | 0.86±0.22 | 0.65±0.15 | 0.76±0.12 | 0.87±0.07 | 0.46±0.13 | 0.77±0.10 |
A22 | 3-Octen-2-one | 998 | 999d | ND | ND | 0.75±0.07 | 1.24±0.30 | 0.72±0.10 | 2.49±0.38 | 0.83±0.03 | 1.73±0.11 |
A23 | 2-Nonanone | 1071 | 1072d | 0.08±0.03 | 0.07±0.02 | 0.40±0.03 | 0.30±0.08 | 0.54±0.02 | 0.50±0.06 | 0.57±0.04 | 0.45±0.02 |
Total ketones | 2.79 | 3.42 | 6.56 | 7.68 | 5.99 | 10.20 | 5.24 | 7.81 |
No | Volatile | KI Exp | KI Lit | Sample | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0B | 20B | 0LE | 20LE | 0ME | 20ME | 0HE | 20HE | ||||
Esters | |||||||||||
A24 | Methyl butyrate | NA | 724c | 0.30±0.13 | 0.22±0.06 | 0.16±0.05 | 0.17±0.07 | 0.16±0.03 | 0.16±0.05 | 0.16±0.03 | 0.14±0.06 |
A25 | Methyl hexanoate | 883 | 916c | 0.33±0.20 | 0.45±0.17 | 0.43±0.18 | 0.50±0.25 | 0.40±0.10 | 0.55±0.16 | 0.32±0.08 | 0.42±0.10 |
A26 | Methyl octanoate | 1092 | 1107c | 0.03±0.02 | 0.06±0.03 | ND | ND | ND | ND | ND | ND |
A27 | Propanoic acid 2-methyl butylester | 1142 | NA | 3.70±0.37 | 2.93±1.20 | 1.50±1.26 | 2.96±2.72 | 1.10±0.58 | 2.22±2.39 | 2.04±1.31 | 1.53±1.10 |
Total esters | 4.36 | 3.66 | 2.09 | 3.62 | 1.66 | 2.94 | 2.52 | 2.09 | |||
Pyrazines | |||||||||||
A28 | Methylpyrazine | NA | 828b | 0.28±0.17 | 0.39±0.20 | ND | ND | ND | ND | ND | ND |
A29 | Pyrazine, 2,5-dimethyl | NA | 911c | 0.34±0.14 | 0.39±0.09 | 0.26±0.05 | 0.18±0.04 | 0.29±0.03 | 0.23±0.04 | 0.19±0.02 | 0.14±0.02 |
Total pyrazines | 0.62 | 0.78 | 0.26 | 0.18 | 0.29 | 0.23 | 0.19 | 0.14 | |||
Furans | |||||||||||
A30 | 2-Butylfuran | 893 | 895d | ND | ND | 0.25±0.04 | 0.34±0.08 | 0.28±0.03 | 0.28±0.05 | 0.27±0.11 | 0.39±0.10 |
A31 | 2-Pentylfuran | 993 | 994d | 1.00±0.38 | 1.01±0.14 | 4.81±0.56 | 3.90±1.58 | 5.87±1.19 | 4.98±0.92 | 7.14±1.19 | 6.00±0.82 |
Total furans | 1.00 | 1.01 | 5.07 | 4.24 | 6.15 | 5.26 | 7.42 | 6.38 | |||
Acids | |||||||||||
A32 | 4-Methyl pentanoic acid | 770 | NA | 0.35±0.24 | 0.36±0.20 | 0.69±0.14 | 0.37±0.17 | 0.73±0.26 | 0.47±0.20 | 0.40±0.08 | 0.30±0.01 |
Terpenes | |||||||||||
A33 | 1-R-α-pinene | 929 | 932d | ND | ND | 0.25±0.01 | 0.16±0.05 | 0.34±0.04 | 0.28±0.04 | 0.30±0.06 | 0.26±0.03 |
A34 | Limonene (L) | 1040 | 1041d | 0.08±0.06 | 0.43±0.17 | 0.56±0.04 | 0.34±0.08 | 1.12±0.19 | 0.94±0.22 | 0.77±0.07 | 0.78±0.07 |
Total terpenes | 0.08 | 0.43 | 0.81 | 0.50 | 1.46 | 1.22 | 1.08 | 1.04 | |||
Alkenes | |||||||||||
A35 | 3-Dodecene(E) | 914 | NA | 1.51±0.22 | 1.43±0.20 | 1.99±0.16 | 1.84±0.08 | 1.91±017 | 2.23±0.24 | 2.10±0.22 | 1.76±0.39 |
Other compounds | |||||||||||
A36 | 3-Hydroxytoluene | 953 | NA | ND | ND | 2.68±0.47 | 2.48±0.65 | 3.15±0.26 | 2.16±0.41 | 3.15±0.22 | 3.12±0.39 |
A37 | Indole | 1120 | 1136c | 0.23±0.09 | 0.14±0.04 | 0.33±0.03 | 0.22±0.05 | 0.39±0.02 | 0.33±0.01 | 0.34±0.04 | 0.29±0.03 |
Total other compounds | 0.23 | 0.14 | 3.01 | 2.70 | 3.54 | 2.48 | 3.49 | 3.41 | |||
Total volatiles | 52.50 | 58.34 | 104.36 | 118.42 | 116.16 | 148.02 | 85.73 | 104.84 |
3.2. Volatile Compounds
3.3. Associations between Sensory Attributes and Volatile Compounds
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Mintel. Pet Food–US–March 2013. Available online: http://store.mintel.com/pet-food-us-march-2013 (accessed on 16 April 2014).
- Mathew, J.M.; Hoseney, R.C.; Faubion, J.M. Effects of corn sample, mill type, and particle size on corn curl and pet food extrudates. Cereal Chem. 1999, 76, 621–624. [Google Scholar] [CrossRef]
- Rokey, G.J.; Baldwin, D. Extrusion temperature: A critical control point in pet food processing. AllAboutFeed.net. Available online: http://www.allaboutfeed.net/Processing/Extruding--Expanding/2013/9/Extrusion-temperature-A-critical-control-point-in-pet-food-processing-1359454W (accessed on 16 April 2014).
- Tran, Q.D.; Hendriks, W.H.; van der Poel, A.F.B. Effects of extrusion processing on nutrients in dry pet food. J. Sci. Food Agr. 2008, 88, 1487–1493. [Google Scholar] [CrossRef]
- Felix, A.P.; Carvalho, M.P.; Alarca, L.G.; Brito, C.B.M.; Oliveira, S.G.; Maiorka, A. Effects of the inclusion of carbohydrases and different soybean meals in the diet on palatability, digestibility, and faecal characteristics in dogs. Anim. Feed Sci. Technol. 2012, 174, 182–189. [Google Scholar] [CrossRef]
- Carciofi, A.C.; Domingues de-Oliveira, L.; Valerio, A.G.; Borges, L.L.; de Carvalho, F.M.; Brunetto, M.A.; Vasconcellos, R.S. Comparison of micronized whole soybeans to common protein sources in dry dog and cat diets. Anim. Feed Sci. Technol. 2009, 151, 251–260. [Google Scholar] [CrossRef]
- Sa, F.C.; Vasconcellos, R.S.; Brunetto, M.A.; Filho, F.O.R.; Gomes, M.O.S.; Carciofi, A.C. Enzyme used in kibble diets formulated with wheat bran for dogs: Effects on processing and digestibility. J. Anim. Physiol. Anim. Nutr. 2013, 97, 51–59. [Google Scholar] [CrossRef]
- Gibson, M.; Alavi, S. Pet food processing—Understanding transformations in starch during extrusion and baking. Cereal Foods World 2013, 58, 232–236. [Google Scholar] [CrossRef]
- Lin, S.; Hsieh, F.; Heymann, H.; Huff, H.E. Effects of lipids and processing conditions on the sensory characteristics of extruded dry pet food. J. Food Qual. 1998, 21, 265–284. [Google Scholar] [CrossRef]
- Di Donfrancesco, B.; Koppel, K.; Chambers, E., IV. An initial lexicon for sensory properties of dry dog food. J. Sens. Stud. 2012, 27, 498–510. [Google Scholar] [CrossRef]
- Pickering, G.J. Optimizing the sensory characteristics and acceptance of canned cat food: Use of a human taste panel. J. Anim. Physiol. Anim. Nutr. 2009, 93, 52–60. [Google Scholar] [CrossRef]
- Pickering, G.J. Optimisation of dried cat food using a human taste panel: Methodology and characterization of flavor. Food Aust. 2009, 61, 30–36. [Google Scholar]
- Koppel, K.; Adhikari, K.; Di Donfrancesco, B. Volatile compounds in dry dog foods and their influence on sensory aromatic profile. Molecules 2013, 18, 2646–2662. [Google Scholar] [CrossRef]
- Agbisit, R.; Alavi, S.; Cheng, E.; Herald, T.J.; Trater, A.M. Relationships between microstructure and mechanical properties of cellular corn starch extrudates. J. Texture Stud. 2007, 38, 199–219. [Google Scholar] [CrossRef]
- Gibson, L.G.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Lee, J.; Chambers, D.H.; Chambers, E., IV. A comparison of the flavor of green teas from around the world. J. Sci. Food Agr. 2013. Available online: http://onlinelibrary.wiley.com/doi/10.1002/jsfa.6413/pdf (accessed on 16 April 2014). [CrossRef]
- Cherdchu, P.; Chambers, E., IV; Suwonsichon, T. Sensory lexicon development using trained panelists in Thailand and the United States: Soy sauce. J. Sens. Stud. 2013, 28, 248–255. [Google Scholar] [CrossRef]
- Vázquez Araújo, L.; Chambers, E., IV; Adhikari, K.; Hough, G.; Carbonell-Barrachina, Á.A. Influence of various traditional seasonings on beef flavor: United States, Spanish, and Argentinian practices. Meat Sci. 2013, 93, 61–66. [Google Scholar] [CrossRef]
- Ledeker, C.; Chambers, D.; Chambers, E., IV; Adhikari, K. Changes in the Sensory Characteristics of Mango Cultivars during the Production of Mango Purée and Sorbet. J. Food Sci. 2012, 77, S348–S355. [Google Scholar] [CrossRef]
- Ceva-Antunes, P.M.N.; Bizzo, H.R.; Silva, A.S.; Carvalho, C.P.S.; Antunes, O.A.C. Analysis of volatile compounds of siriguela (Spondias purpurea L.) by solid phase microextraction (SPME). LWT - Food Sci. Technol. 2006, 39, 436–442. [Google Scholar]
- Adhikari, K.; Dooley, L.; Chambers, E., IV; Bhumiratana, N. Sensory characteristics of commercial lactose-free milks manufactured in the United States. LWT - Food Sci. Technol. 2010, 43, 113–118. [Google Scholar] [CrossRef]
- Meeker, D.L.; Hamilton, C.R. Essential rendering. All about the animal by-products industry. 2006. Available online: http://assets.nationalrenderers.org/essential_rendering_book.pdf (accessed on 16 April 2014).
- Cheng, E.M.; Alavi, S.; Pearson, T.; Agbisit, R. Mechanical-acoustic and sensory evaluations of cornstarch-whey protein isolate extrudates. J. Texture Stud. 2007, 38, 473–498. [Google Scholar] [CrossRef]
- Dzanis, D.A. Petfood types, quality assessment and feeding management. In Petfood Technology; Kwamme, J.L., Phillips, T.D., Eds.; Watt Publishing: Morris, IL, USA, 2003; pp. 68–73. [Google Scholar]
- Cowell, C.S.; Stout, N.P.; Brinkman, M.F.; Moser, E.A.; Crane, S.W. Making commercial petfoods. In Small Animal Clinical Nutrition, 4th ed.; Mark Morris Institute: Topeka, KS, USA, 2000; pp. 127–146. [Google Scholar]
- Houpt, K.A.; Smith, S.L. Taste preferences and their relation to obesity in dogs and cats. Can. Vet. J. 1981, 22, 77–81. [Google Scholar]
- Goodner, K.L. Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds. LWT - Food Sci. Technol. 2008, 41, 951–958. [Google Scholar] [CrossRef]
- The Flavornet. Available online: http://www.flavornet.org (accessed on 16 April 2014).
- The Pherobase. Available online: http://www.pherobase.com (accessed on 16 April 2014).
- Eyres, G.; Dufour, J.-P.; Hallifax, G.; Sotheeswaran, S.; Marriott, P.J. Identification of character-impact odorants in coriander and wild coriander leaves using gas chromatography-olfactometry (GCO) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). J. Sep. Sci. 2005, 28, 1061–1074. [Google Scholar] [CrossRef]
- Greenberg, M.J. Characterization of poultry byproduct meal flavor volatiles. J. Agr. Food Chem. 1981, 29, 831–834. [Google Scholar] [CrossRef]
- Mottram, M. Meat Flavour. In Understanding Natural Flavors; Piggott, J.R., Paterson, A., Eds.; Chapman & Hall: London, UK, 1994; pp. 140–163. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Koppel, K.; Gibson, M.; Alavi, S.; Aldrich, G. The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics. Animals 2014, 4, 254-271. https://doi.org/10.3390/ani4020254
Koppel K, Gibson M, Alavi S, Aldrich G. The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics. Animals. 2014; 4(2):254-271. https://doi.org/10.3390/ani4020254
Chicago/Turabian StyleKoppel, Kadri, Michael Gibson, Sajid Alavi, and Greg Aldrich. 2014. "The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics" Animals 4, no. 2: 254-271. https://doi.org/10.3390/ani4020254
APA StyleKoppel, K., Gibson, M., Alavi, S., & Aldrich, G. (2014). The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics. Animals, 4(2), 254-271. https://doi.org/10.3390/ani4020254