N Balance Studies Emphasize the Superior Protein Quality of Pig Diets at High Inclusion Level of Algae Meal (Spirulina platensis) or Insect Meal (Hermetia illucens) when Adequate Amino Acid Supplementation Is Ensured
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Alternative Protein Sources
2.2. Stock and Husbandry
2.3. Diets and Feeding
2.4. Collection and Sampling
2.5. Chemical Analyses
2.6. Nitrogen Balance Data
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global agriculture towards 2050. In Proceedings of the How to Feed the World 2050, High Level Expert Forum, Rome, Italy, 12–13 October 2009. [Google Scholar]
- FAO. Animal Production and Health Meat-Meat Consumption. Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/ag/againfo/themes/en/meat/background (accessed on 4 July 2018).
- DBV. Erzeugung und Märkte. In Situationsbericht 2016/17; Deutscher Bauernverband: Berlin, Germany, 2016; pp. 144–193. [Google Scholar]
- Taelman, S.E.; De Meester, S.; Van Dijk, W.; Da Silva, V.; Dewulf, J. Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import. Resour. Conserv. Recycl. 2015, 101, 61–72. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Available online: https://www.animalsciencepublications.org/publications/af/pdfs/5/2/45 (accessed on 5 June 2017).
- Neumann, C.; Velten, S.; Liebert, F. Improving the dietary protein quality by amino acid fortification with a high inclusion level of micro algae (Spirulina platensis) or insect meal (Hermetia illucens) in meat type chicken diets. OJAS 2015, 8, 12–26. [Google Scholar] [CrossRef]
- Neumann, C.; Velten, S.; Liebert, F. The graded inclusion of algae (Spirulina platensis) or insect (Hermetia illucens) meal as a soybean meal substitute in meat type chicken diets impacts on growth, nutrient deposition and dietary protein quality depending on the extent of amino acid supplementation. OJAS 2018, 8, 163–183. [Google Scholar] [CrossRef]
- Velten, S.; Neumann, C.; Bleyer, M.; Gruber-Dujardin, E.; Hanuszewska, M.; Przybylska-Gornowicz, B.; Liebert, F. Effects of 50 percent substitution of soybean meal by alternative proteins from Hermetia illucens and Spirulina platensis in meat-type chicken diets with graded amino acid supply. OJAS 2018, 8, 119–136. [Google Scholar] [CrossRef]
- Velten, S.; Neumann, C.; Schäfer, J.; Liebert, F. Effects of the partial replacement of soybean meal by insect or algae meal in chicken diets with graded amino acid supply on parameters of gut microbiology and dietary protein quality. OJAS 2018, 8, 259–279. [Google Scholar] [CrossRef]
- Grinstead, G.S.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L. Effects of Spirulina platensis on growth performance of weanling pigs. Anim. Feed Sci. Technol. 2000, 83, 237–247. [Google Scholar] [CrossRef]
- Nedeva, R.; Jordanova, G.; Kistanova, E.; Shumkov, K.; Georgiev, B.; Abadgieva, D.; Kacheva, D.; Shimkus, A.; Shimkine, A. Effect of the addition of Spirulina platensis on the productivity and some blood parameters on growing pigs. Bulg. J. Agri. Sci. 2014, 20, 680–684. [Google Scholar]
- Février, C.; Sève, B. Essais d’incorporation de Spiruline (Spirulina maxima) dans le Aliments des Porcins. Ann. Nutr. Aliment. 1976, 29, 625–630. [Google Scholar]
- Hugh, W.I.; Dominy, W.; Duerr, E. Evaluation of Dehydrate Spirulina (Spirulina platensis) as a Protein Replacement in Swine Starter Diets; University of Hawaii Research and Extension Series: Honolulu, HI, USA, 1985. [Google Scholar]
- Newton, G.L.; Booram, C.V.; Barker, R.W.; Hale, O.M. Dried larvae meal as a supplement for swine. J. Anim. Sci. 1977, 44, 395–400. [Google Scholar] [CrossRef]
- Dankwa, D.; Oddoye, E.O.K.; Mzamo, K.B. Preliminary studies on the complete replacement of fishmeal by house-fly-larvae-meal in weaner pig diets: Effects on growth rate, carcass characteristics, and some blood constituents. GJAS 2000, 33, 223–227. [Google Scholar] [CrossRef]
- Ji, Y.J.; Liu, H.N.; Kong, X.F.; Blachier, F.; Geng, M.M.; Liu, Y.Y.; Yin, Y.C. Use of insect powder as a source of dietary protein in early-weaned piglets. J. Anim. Sci. 2016, 94, 111–116. [Google Scholar] [CrossRef]
- Gesellschaft für Ernährungsphysiologie (GfE). Recommendations for the Supply of Energy and Nutrients to Pigs; DLG-Verlag: Frankfurt am Main, Germany, 2008; Chapter 10; p. 48. ISBN 978-3-7690-0707-7. [Google Scholar]
- National Research Council (NRC); Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Swine. Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- British Society of Animal Science (BSAS). Nutrient Requirements Standards for Pigs; Whittemore, C.T., Hazzledine, M.J., Close, W.H., Eds.; BSAS: Penicuik, UK, 2003. [Google Scholar]
- Naumann, C.; Bassler, R. Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 1976–2004. [Google Scholar]
- Samadi; Liebert, F. Lysine requirement of fast growing chickens—Effects of age, sex, level of protein deposition and dietary lysine efficiency. J. Poult. Sci. 2007, 44, 63–72. [Google Scholar] [CrossRef]
- Samadi; Liebert, F. Threonine requirement of slow-growing male chickens depends on age and dietary efficiency of threonine utilization. Poult. Sci. 2007, 86, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Liebert, F. Modelling of protein metabolism yields amino acid requirements dependent on dietary amino acid efficiency, growth response, genotype and age of growing chicken. Avian Biol. Res. 2008, 1, 101–110. [Google Scholar] [CrossRef]
- Liebert, F. Basics and applications of an exponential nitrogen utilization model (“Goettingen approach”) for assessing amino acid requirements in growing pigs and meat type chickens based on dietary amino acid efficiency. In Nutritional Modelling for Pigs and Poultry; Sakomura, N.K., Gous, R., Kyriazakis, I., Hauschild, L., Eds.; CABI Publishing: Wallingford, Oxfordshire, UK, 2015; pp. 73–87. [Google Scholar]
- Liebert, F. Further progress is needed in procedures for the biological evaluation of dietary protein quality in pig and poultry feeds. Archi. Anim. Breed. 2017, 60, 259–270. [Google Scholar] [CrossRef]
- Samadi; Wecke, C.; Pastor, A.; Liebert, F. Assessing lysine requirement of growing chicken by direct comparison between supplementation technique and “Goettingen approach”. OJAS 2017, 7, 56–69. [Google Scholar] [CrossRef]
- Gebhardt, G. Die Bewertung der Eiweißqualität von Nahrungs- und Futtermitteln mit Hilfe des N-Bilanzversuches. In Vergleichende Ernährungslehre des Menschen und seiner Haustiere; Hock, A., Ed.; Gustav Fischer Verlag: Jena, Germany, 1966; pp. 323–348. [Google Scholar]
- Wecke, C.; Liebert, F. Lysine requirement studies in modern genotype barrows dependent on age, protein deposition and dietary lysine efficiency. J. Anim. Physiol. Anim. Nutr. 2009, 93, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Wecke, C.; Liebert, F. Optimal dietary lysine to threonine ratio in pigs (30–110 kg BW) derived from observed dietary amino acid efficiency. J. Anim. Physiol. Anim. Nutr. 2010, 94, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.R.; Wecke, C.; Liebert, F. Does the naked neck meat type chicken yield lower methionine requirement data? Animals 2015, 5, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.R.; Wecke, C.; Sharifi, A.R.; Liebert, F. Evaluating the age dependent potential for protein deposition in naked neck meat type chicken. Animals 2015, 5, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Pastor, A.; Wecke, C.; Liebert, F. Assessing the age-dependent optimal dietary branched-chain amino acid ratio in growing chicken by application of a nonlinear modeling procedure. Poult. Sci. 2013, 92, 3184–3195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paula Dorigam, J.C.; Sakomura, N.K.; Soares, L.; Fernandes, J.B.K.; Suender, A.; Liebert, F. Modelling of lysine requirement in broiler breeder hens based on daily nitrogen retention and efficiency of dietary lysine utilization. Anim. Feed Sci. Technol. 2017, 226, 29–38. [Google Scholar] [CrossRef]
- Wecke, C.; Liebert, F. Improving the reliability of optimal in-feed amino acid ratios based on individual amino acid efficiency data from N balance studies in growing chicken. Animals 2013, 3, 558–573. [Google Scholar] [CrossRef] [PubMed]
- Wecke, C.; Pastor, A.; Liebert, F. Validation of the lysine requirement as reference amino acid for ideal in-feed amino acid ratios in modern fast growing meat-type chickens. OJAS 2016, 6, 185–194. [Google Scholar] [CrossRef]
- Liebert, F.; Gebhardt, G. Untersuchungen zum N-Umsatz wachsender Broiler in Abhängigkeit von differenzierten Zulagen an DL-Methionin und Tanninsäure zu unterschiedlichen Ackerbohnensorten. Arch. Anim. Nutr. 1980, 30, 363–371. [Google Scholar] [CrossRef]
- Liebert, F.; Gebhardt, G. Ergebnisse zur Wirksamkeit und zum Bedarf an ausgewählten Aminosäuren beim wachsenden weiblichen Schwein. 1. Mitteilung: Lysin. Arch. Anim. Nutr. 1986, 36, 1077–1086. [Google Scholar]
- Thong, H.T.; Liebert, F. Potential for protein deposition and threonine requirement of modern genotype barrows fed graded levels of protein with threonine as limiting amino acid. J. Anim. Physiol. Anim. Nutr. 2004, 88, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Samadi; Liebert, F. Estimation of nitrogen maintenance requirements and potential for nitrogen deposition in fast-growing chickens depending on age and sex. Poult. Sci. 2006, 85, 1421–1429. [Google Scholar] [CrossRef]
- Samadi; Liebert, F. Modeling threonine requirement depending on age, protein deposition, dietary threonine efficiency and sex of fast growing chickens. Poult. Sci. 2006, 85, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Block, R.J.; Mitchell, H. The correlation of amino acid composition of proteins with their nutritive value. Nutr. Abstr. Rev. 1946, 16, 249–278. [Google Scholar]
- Dixon, W.J.; Massey, F.J., Jr. Introduction to Statistical Analysis; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Yap, T.N.; Wu, J.F.; Pond, W.G.; Krook, L. Feasibility of feeding Spirulina maxima, Arthrospira platensis or Chlorella sp. to pigs weaned to a dry diet at 4 to 8 days of age. Nutr. Rep. Int. 1982, 25, 543–552. [Google Scholar]
- Jin, X.H.; Heo, P.S.; Hong, J.S.; Kim, N.J.; Kim, Y.Y. Supplementation of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Martinavičius, V. Influence of blue-green algae on pigs physiological processes and productivity. In Summary of Doctoral Dissertation Biomedical Sciences, Zootechny; Lithuanian Veterinary Academy: Kaunas, Lithuania, 2008. [Google Scholar]
- Vantomme, P. Way forward to bring insects in the human food chain. J. Insects Food Feed 2015, 1, 121–129. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2017/893 (2017) Official Journal of the European Union of 24 May 2017 Amending Annex I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein. Available online: http://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=2320148 (accessed on 25 September 2018).
Nutrient Content | Spirulina Meal (SM) | Hermetia Meal (HM) | ||
---|---|---|---|---|
Moisture (%) | 3.4 | 5.5 | ||
Crude protein | 58.8 | 60.8 | ||
Crude ash | 6.1 | 7.5 | ||
Crude lipids | 4.3 | 14.1 | ||
Crude fiber | 0.5 * | 10.9 | ||
AA Contents | mgAA/gDM | gAA/16gN | mgAA/gDM | gAA/16gN |
Lys | 22.97 | 3.91 | 32.97 | 5.42 |
Met | 10.61 | 1.81 | 7.53 | 1.24 |
Cys | 4.53 | 0.77 | 4.89 | 0.80 |
Thr | 25.77 | 4.39 | 21.70 | 3.57 |
Arg | 39.92 | 6.79 | 25.05 | 4.12 |
Val | 34.50 | 5.87 | 32.58 | 5.36 |
Leu | 47.23 | 8.04 | 37.95 | 6.24 |
IIe | 29.81 | 5.07 | 23.47 | 3.86 |
His | 7.51 | 1.28 | 16.58 | 2.73 |
Ingredients/Diets | Piglets (25 kg) | Growing Pigs (60 kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
HM (A) | SM (A) | HM (AA) | SM (AA) | HM (A) | SM (A) | HM (AA) | SM 1(AA) | SM 2(AA) | |
Ingredients (g/kg as-fed) | |||||||||
Wheat | 339.2 | 347.4 | 336.2 | 345.2 | 400.7 | 405.7 | 399.1 | 404.5 | 404.0 |
Barley | 339.2 | 347.4 | 336.2 | 345.2 | 400.7 | 405.7 | 399.1 | 404.5 | 404.0 |
Spirulina meal | - | 210.0 | - | 210.0 | - | 130.0 | - | 130.0 | 130.0 |
Hermetia meal | 210.0 | - | 210.0 | - | 130.0 | - | 130.0 | - | - |
Soybean oil | 80.0 | 62.0 | 80.0 | 62.0 | 46.0 | 35.0 | 46.0 | 35.0 | 35.0 |
Premix 1 | 15.0 | 15.0 | 15.0 | 15.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
CaCO3 | 10.0 | 10.0 | 10.0 | 10.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 |
NaCl | 1.0 | 1.0 | 1.0 | 1.0 | - | - | - | - | - |
Titanium dioxide | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
L-Lysine∙HCl | 2.7 | 4.3 | 6.1 | 7.6 | 1.7 | 2.7 | 4.2 | 5.1 | 5.1 |
DL-Methionine | - | - | 1.4 | 0.7 | - | - | 0.2 | - | - |
L-Threonine | - | - | 1.1 | 0.3 | - | - | 0.4 | - | - |
L-Histidine | - | - | - | - | - | - | - | - | 1.0 |
Crude nutrients (g/kgDM) | |||||||||
Crude protein | 210.7 | 221.8 | 227.3 | 222.1 | 182.8 | 189.0 | 178.7 | 181.2 | 186.7 |
Crude fat | 133.7 | 100.1 | 139.6 | 99.1 | 91.8 | 69.7 | 95.0 | 68.4 | 65.4 |
Crude fiber | 52.7 | 29.1 | 48.1 | 30.6 | 45.1 | 38.9 | 52.3 | 39.6 | 30.2 |
Crude ash | 52.7 | 51.1 | 53.2 | 50.3 | 44.2 | 42.1 | 45.2 | 43.0 | 42.4 |
N-free extract | 550.2 | 597.9 | 531.8 | 597.9 | 636.1 | 660.3 | 628.8 | 667.8 | 675.3 |
ME (MJ/kgDM) 2 | 17.1 | 17.0 | 17.1 | 17.0 | 16.4 | 16.3 | 16.4 | 16.3 | 16.3 |
Lys | Met + Cys | Thr | Val | Leu | IIe | His 3 | |
---|---|---|---|---|---|---|---|
Recommendation 2 | 12.70 (100) | 6.35 (100) | 7.62 (100) | 7.87 (100) | 12.70 (100) | 6.22 (100) | 4.32 (100) |
HM (A) | 10.94 (86) | 5.14 (81) | 6.52 (86) | 9.46 (120) | 11.95 (94) | 6.88 (111) | 4.84 (112) |
SM (A) | 10.15 (80) | 5.70 (90) | 7.31 (96) | 9.81 (125) | 13.77 (108) | 8.12 (131) | 3.02 (70) |
HM (AA) | 13.57 (107) | 6.49 (102) | 7.58 (100) | 9.43 (120) | 11.91 (94) | 6.86 (110) | 4.82 (112) |
SM (AA) | 12.71 (100) | 6.37 (100) | 7.59 (100) | 9.97 (127) | 13.74 (108) | 8.10 (130) | 3.01 (70) |
Lys | Met + Cys | Thr | Val | Leu | IIe | His 3 | |
---|---|---|---|---|---|---|---|
Recommendation 2 | 9.40 (100) | 4.79 (100) | 5.64 (100) | 6.11 (100) | 9.87 (100) | 4.61 (100) | 3.29 (100) |
HM (A) | 8.03 (85) | 4.66 (97) | 5.25 (93) | 7.49 (123) | 9.81 (99) | 5.47 (119) | 3.83 (116) |
SM (A) | 7.55 (80) | 5.01 (105) | 5.73 (102) | 7.70 (126) | 10.94 (111) | 6.24 (135) | 2.71 (82) |
HM (AA) | 9.97 (106) | 4.85 (101) | 5.63 (100) | 7.47 (122) | 9.79 (99) | 5.46 (118) | 3.83 (116) |
SM1(AA) | 9.41 (100) | 5.00 (104) | 5.73 (102) | 7.69 (126) | 10.93 (111) | 6.23 (135) | 2.71 (82) |
SM2(AA) | 9.41 (100) | 5.00 (104) | 5.72 (102) | 7.68 (126) | 10.92 (111) | 6.23 (135) | 3.68 (112) |
Diets | HM (A) | SM (A) | HM (AA) | SM (AA) | SEM | p |
---|---|---|---|---|---|---|
n | 7 1 | 8 | 8 | 8 | ||
Mean BW (kg) | 25.7 ± 2.5 | 25.5 ± 3.1 | 26.5 ± 2.2 | 25.1 ± 2.0 | 0.433 | 0.736 |
DM intake (g/d) | 944 ± 103 | 928 ± 87 | 935 ± 86 | 832 ± 168 | 21.536 | 0.224 |
N intake (mg/BWkg0.67/d) | 3675 ± 179 | 3666 ± 274 | 3645 ± 226 | 3361 ± 579 | 65.224 | 0.257 |
N excretion feces (mg/BWkg0.67/d) | 717 ab ± 60 | 841 b ± 132 | 620 a ± 94 | 745 ab ± 123 | 23.388 | 0.004 |
N excretion urine (mg/BWkg0.67/d) | 1087 b ± 118 | 958 ab ± 121 | 843 a ± 155 | 839 a ± 172 | 30.553 | 0.007 |
N excretion total (mg/BWkg0.67/d) | 1805 b ± 108 | 1799 b ± 157 | 1463 a ± 146 | 1584 ab ± 289 | 41.916 | 0.040 |
N balance (mg/BWkg0.67/d) | 1870 ± 121 | 1867 ± 199 | 2182 ± 325 | 1777 ± 420 | 57.647 | 0.053 |
Apparent N digestibility (%) | 80.5 ab ± 1.8 | 77.1 a ± 2.7 | 82.9 b ± 3.2 | 77.7 a ± 2.7 | 0.625 | 0.001 |
Model parameter b (×106) 2 | 184 a ± 8 | 184 a ± 14 | 225 b ± 30 | 191 ab ± 27 | 4.884 | 0.003 |
NPUstd (%) 3 | 63.6 a ± 2.1 | 63.7 a ± 3.4 | 72.8 b ± 6.7 | 65.2 ab ± 6.6 | 1.124 | 0.004 |
AA efficiency | ||||||
bc−1Lys (×106) | 32 ab ± 1 | 35 b ± 3 | 33 ab ± 4 | 30 a ± 4 | 0.685 | 0.032 |
bc−1Met (×106) | 137 b ± 6 | 112 a ± 8 | 112 a ± 15 | 97 a ± 14 | 3.194 | <0.001 |
bc−1Thr (×106) | 54 b ± 3 | 49 ab ± 4 | 58 b ± 8 | 50 ab ± 7 | 1.206 | 0.026 |
bc−1Leu (×106) | 30 b ± 1 | 26 a ± 2 | 37 c ± 5 | 27 ab ± 4 | 0.982 | <0.001 |
bc−1His (×106) | 73 a ± 3 | 118 c ± 9 | 91 b ± 12 | 125 c ± 18 | 4.275 | <0.001 |
Diets | HM (A) | SM (A) | HM (AA) | SM1(AA) | SM2(AA) | SEM | p |
---|---|---|---|---|---|---|---|
n | 8 | 8 | 8 | 4 | 3 1 | ||
Mean BW (kg) | 60.5 ± 4.8 | 58.4 ± 3.8 | 61.8 ± 3.2 | 56.3 ± 3.8 | 60.6 ± 4.5 | 0.744 | 0.206 |
DM intake (g/d) | 2064 ab ± 186 | 2106 b ± 172 | 2109 b ± 188 | 1864 a ± 23 | 2229 b ± 79 | 32.464 | 0.073 |
N intake (mg/BWkg0.67/d) | 3769 ab ± 252 | 3957 ab ± 255 | 3850 ab ± 238 | 3642 a ± 151 | 4179 b ± 56 | 46.477 | 0.036 |
N excretion feces (mg/BWkg0.67/d) | 604 a ± 79 | 810 b ± 49 | 586 a ± 69 | 756 b ± 96 | 801 b ± 51 | 21.749 | <0.001 |
N excretion urine (mg/BWkg0.67/d) | 1447 b ± 199 | 1301 b ± 144 | 1210 ab ± 231 | 971 a ± 111 | 967 a ± 50 | 43.150 | <0.001 |
N excretion total (mg/BWkg0.67/d) | 2052 ab ± 241 | 2110 b ± 176 | 1796 ab ± 239 | 1726 a ± 189 | 1767 ab ± 1.5 | 45.170 | 0.007 |
N balance (mg/BWkg0.67/d) | 1718 a ± 241 | 1847 a ± 135 | 2054 ab ± 272 | 1915 a ± 126 | 2411 b ± 55 | 50.149 | <0.001 |
Apparent N digestibility (%) | 84.0 b ± 1.5 | 79.1 a ± 1.2 | 84.8 b ± 1.5 | 79.3 a ± 1.9 | 80.8 a ± 1.0 | 0.496 | <0.001 |
Model parameter b (×106) 2 | 307 a ± 55 | 324 a ± 27 | 424 a ± 116 | 375 a ± 44 | 558 b ± 36 | 18.166 | <0.001 |
NPUstd (%) 3 | 55.7 a ± 5.6 | 57.7 a ± 2.5 | 64.1 ab ± 6.6 | 61.8 a ± 3.4 | 71.8 b ± 1.3 | 1.200 | <0.001 |
AA efficiency | |||||||
bc−1Lys (×106) | 60 a ± 11 | 68 a ± 6 | 68 a ± 19 | 64 a ± 8 | 96 b ± 6 | 2.667 | 0.004 |
bc−1Met (×106) | 221 a ± 40 | 200 a ± 16 | 285 ab ± 78 | 235 a ± 28 | 353 b ± 59 | 11.728 | <0.001 |
bc−1Thr (×106) | 92 a ± 17 | 90 a ± 7 | 127 ab ± 35 | 105 a ± 12 | 158 b ± 10 | 5.328 | <0.001 |
bc−1Leu (×106) | 49 ab ± 9 | 47 a ± 4 | 69 bc ± 19 | 55 ab ± 7 | 83 c ± 5 | 2.900 | <0.001 |
bc−1His (×106) | 126 a ± 23 | 189 b ± 16 | 177 ab ± 49 | 222 bc ± 26 | 245 c ± 16 | 8.564 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, C.; Velten, S.; Liebert, F. N Balance Studies Emphasize the Superior Protein Quality of Pig Diets at High Inclusion Level of Algae Meal (Spirulina platensis) or Insect Meal (Hermetia illucens) when Adequate Amino Acid Supplementation Is Ensured. Animals 2018, 8, 172. https://doi.org/10.3390/ani8100172
Neumann C, Velten S, Liebert F. N Balance Studies Emphasize the Superior Protein Quality of Pig Diets at High Inclusion Level of Algae Meal (Spirulina platensis) or Insect Meal (Hermetia illucens) when Adequate Amino Acid Supplementation Is Ensured. Animals. 2018; 8(10):172. https://doi.org/10.3390/ani8100172
Chicago/Turabian StyleNeumann, Carmen, Susanne Velten, and Frank Liebert. 2018. "N Balance Studies Emphasize the Superior Protein Quality of Pig Diets at High Inclusion Level of Algae Meal (Spirulina platensis) or Insect Meal (Hermetia illucens) when Adequate Amino Acid Supplementation Is Ensured" Animals 8, no. 10: 172. https://doi.org/10.3390/ani8100172
APA StyleNeumann, C., Velten, S., & Liebert, F. (2018). N Balance Studies Emphasize the Superior Protein Quality of Pig Diets at High Inclusion Level of Algae Meal (Spirulina platensis) or Insect Meal (Hermetia illucens) when Adequate Amino Acid Supplementation Is Ensured. Animals, 8(10), 172. https://doi.org/10.3390/ani8100172