Rumen Inoculum Collected from Cows at Slaughter or from a Continuous Fermenter and Preserved in Warm, Refrigerated, Chilled or Freeze-Dried Environments for In Vitro Tests
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Organization
2.2. Preparation of the Substrates for the In Vitro Tests
2.3. The Rumen Continuous Fermenter (RCF) System and the In Vitro Tests
2.4. Analysis
2.4.1. Inoculum Sample Preparation
2.4.2. Chemical Analysis
2.4.3. Microbial Analysis
2.4.4. Statistical Analyses
3. Results
4. Discussion
4.1. Type of Inoculum
4.2. Method of Inoculum Preservation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- López, S. In vitro and in situ techniques for estimating digestibility. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd ed.; CABI Publishing: Wallingford, UK, 2005; pp. 87–121. [Google Scholar]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef]
- Hristov, A.N.; Lee, C.; Hristova, R.; Huhtanen, P.; Firkins, J.L. A meta-analysis of variability in continuous-culture ruminal fermentation and digestibility data. J. Dairy Sci. 2012, 95, 5299–5307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carro, M.D.; Ranilla, M.J.; Martin-García, A.I.; Molina-Alcaide, E. Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen. Animal 2009, 3, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muetzel, S.; Lawrence, P.; Hoffmann, E.M.; Becker, K. Evaluation of a stratified continuous rumen incubation system. Anim. Feed Sci. Technol. 2009, 151, 32–43. [Google Scholar] [CrossRef]
- Soto, E.C.; Yánez-Ruiz, D.R.; Cantalapiedra-Hijar, G.; Vivas, A.; Molina-Alcaide, E. Changes in ruminal microbiota due to rumen content processing and incubation in single-flow continuous culture fermenters. Anim. Prod. Sci. 2012, 52, 813–822. [Google Scholar] [CrossRef]
- Soto, E.C.; Molina-Alcaide, E.; Khelil, H.; Yáñez-Ruiz, D.R. Ruminal microbiota developing in different in vitro simulation systems inoculated with goats’ rumen liquor. Anim. Feed Sci. Technol. 2013, 185, 9–18. [Google Scholar] [CrossRef]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Saro, C.; Carro, M.D. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities. J. Dairy Sci. 2010, 93, 3699–3712. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Palma-Hidalgo, J.M.; Nejjam, I.; Serrano, R.; Jiménez, E.; Martín-García, I.; Yáñez-Ruiz, D.R. In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum. J. Sci. Food Agric. 2018, 99, 163–172. [Google Scholar] [CrossRef]
- Chaudhry, A.S.; Mohamed, R.A.I. Fresh or frozen rumen contents from slaughtered cattle to estimate in vitro degradation of two contrasting feeds. Czech J. Anim. Sci. 2012, 57, 265–273. [Google Scholar] [CrossRef]
- Denek, N.; Can, A.; Avci, M. Frozen rumen fluid as microbial inoculum in the two-stage in vitro digestibility assay of ruminant feeds. S. Afr. J. Anim. Sci. 2010, 40, 251–256. [Google Scholar] [CrossRef]
- Prates, A.; de Oliveira, J.A.; Abecia, L.; Fondevila, M. Effects of preservation procedures of rumen inoculum on in vitro microbial diversity and fermentation. Anim. Feed Sci. Technol. 2010, 155, 186–193. [Google Scholar] [CrossRef]
- Zeigler, L.D.; Schlegel, M.L.; Edwards, M.S. Development of a rumen fluid preservation technique and application to an in vitro dry matter digestibility assay. In Proceedings of the Fifth Conference on Zoo and Wildlife Nutrition, Chester, PA, USA, 5–8 October 2003; Ward, A., Brooks, M., Maslanka, M., Eds.; AZA Nutrition Advisory Group: Minneapolis, MN, USA, 2003. [Google Scholar]
- Mason, F.; Zanfi, C.; Spanghero, M. Testing a stratified continuous rumen fermenter system. Anim. Feed Sci. Technol. 2015, 201, 104–109. [Google Scholar] [CrossRef]
- Luchini, N.D.; Broderick, G.A.; Combs, D.K. Preservation of ruminal microorganisms for in vitro determination of ruminal protein degradation. J. Anim. Sci. 1996, 74, 1134–1143. [Google Scholar] [CrossRef]
- Slyter, L.L.; Bryant, M.P.; Wolin, M.J. Effect of pH on population and fermentation in a continuously cultured rumen ecosystem. J. Appl. Microbiol. 1966, 14, 573–578. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ross, D.A.; Gutierrez-Botero, M.; van Amburgh, M.E. Development of an in-vitro intestinal digestibility assay for ruminant feeds. In Proceedings of the Cornell Nutrition Conference, Syracuse, NY, USA, 22–24 October 2013; pp. 190–202. [Google Scholar]
- Tagliapietra, F.; Cattani, M.; Bailoni, L.; Schiavon, S. In vitro rumen fermentation: Effect of headspace pressure on the gas production kinetics of cornmeal and meadow hay. Anim. Feed. Sci. Technol. 2010, 158, 197–201. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Martillotti, F.; Puppo, S. Liquid chromatographic determination of organic acids in silages and rumen fluids. Ann. dell’Istituto Sper. Zootec. 1985, 18, 1–10. [Google Scholar]
- Kong, Y.; Teather, R.; Forster, R. Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol. Ecol. 2010, 74, 612–622. [Google Scholar] [CrossRef]
- Spanghero, M.; Berzaghi, P.; Fortina, R.; Masoero, F.; Rapetti, L.; Zanfi, C.; Tassone, S.; Gallo, A.; Colombini, S.; Ferlito, J.C. Technical note: Precision and accuracy of in vitro digestion of neutral detergent fiber and predicted net energy of lactation content of fibrous feeds. J. Dairy Sci. 2010, 93, 4855–4859. [Google Scholar] [CrossRef] [Green Version]
- Spanghero, M. (Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy). Unpublished work. 2019. [Google Scholar]
- Rumen Microbial Genomics Network. A Report in Support of the Rumen Microbial Genomics (RMG) Network Describing Standard Guidelines and Protocols for Data Acquisition, Analysis and Storage. Available online: http://www.rmgnetwork.org/user/file/37/RMG%20Network%20Report%20standard%20guidelines.pdf (accessed on 14 October 2019).
- Spanghero, M.; Mason, F.; Zanfi, C.; Nikulina, A. Effect of diets differing in protein concentration (low vs medium) and nitrogen source (urea vs soybean meal) on in vitro rumen fermentation and on performance of finishing Italian Simmental bulls. Livest. Sci. 2017, 196, 14–21. [Google Scholar] [CrossRef]
- Koike, S.; Pan, J.; Kobayashi, Y.; Tanaka, K. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 2003, 86, 1429–1435. [Google Scholar] [CrossRef]
- Robinson, P.H.; Campbell Mathews, M.; Fadel, J.G. Influence of storage time and temperature on in vitro digestion of neutral detergent fibre at 48 h, and comparison to 48 h in sacco neutral detergent fibre digestion. Anim. Feed Sci. Technol. 1999, 80, 257–266. [Google Scholar] [CrossRef]
- Hervás, G.; Frutos, P.; Javier Giráldez, F.; Mora, M.J.; Fernández, B.; Mantecón, A.R. Effect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim. Feed Sci. Technol. 2005, 123, 107–118. [Google Scholar] [CrossRef]
- Luchini, N.D.; Broderick, G.A.; Combs, D.K. In vitro determination of ruminal protein degradation using freeze-stored ruminal microorganisms. J. Anim. Sci. 1996, 74, 2488–2499. [Google Scholar] [CrossRef] [PubMed]
Feeds | DM | Ash | CP | EE | NDF | ADF |
---|---|---|---|---|---|---|
% | % DM | % DM | % DM | % DM | % DM | |
Corn silage 1 | 91.88 | 4.16 | 7.67 | 3.10 | 36.79 | 20.74 |
Wheat bran | 89.71 | 5.98 | 16.74 | 3.47 | 47.80 | 13.40 |
Meadow hay | 95.54 | 11.30 | 7.34 | 1.45 | 58.38 | 34.82 |
Distillers | 89.15 | 5.87 | 34.32 | 7.79 | 42.87 | 11.86 |
Soya meal, extr. | 88.88 | 6.95 | 46.09 | 1.19 | 21.11 | 8.88 |
Barley | 89.79 | 3.08 | 10.65 | 1.55 | 31.89 | 8.30 |
Items | Type of Inoculum (TI) | Type of Conservation 1 (TC) | TI 2 | TC 2 | TI × TC 2 | RMSE 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
From Rumen | From Fermenter | Warm (W) | Refrigerated (R) | Chilled (C) | Freeze—Dried (FD) | |||||
Samples, n | 8 | 8 | 4 | 4 | 4 | 4 | ||||
Total VFA (mMol) | 122.1 | 34.9 | 76.4 | 74.1 | 100.3 | 63.4 | ** | ns | ns | 25.98 |
VFA composition (% of total VFA) | ||||||||||
Acetic (A) | 63.3 | 57.8 | 67.3 A | 66.0 A | 65.7 A | 43.4 B | * | ** | ns | 3.72 |
Propionic (P) | 12.5 | 20.2 | 18.2 A | 18.5 A | 16.9 A | 11.9 B | ** | ** | ns | 1.84 |
Isobutyric | 10.9 | 9.6 | 0.4 B | 0.4 B | 4.2 B | 36.0 A | ns | ** | ns | 5.77 |
Butyric | 10.5 | 8.0 | 10.1 | 10.8 | 9.5 | 6.5 | ns | ns | ns | 2.35 |
Isovaleric | 1.4 | 2.7 | 2.1 A | 2.4 A | 2.3 A | 1.2 B | ** | ** | ns | 0.34 |
Valeric | 1.1 | 1.8 | 1.6 | 1.6 | 1.5 | 1.2 | * | ns | ns | 0.40 |
A:P | 5.7 | 2.9 | 3.9 | 3.8 | 4.0 | 5.4 | ** | ns | ns | 1.27 |
pH | 6.4 | 6.7 | 6.5 | 6.5 | 6.5 | 6.8 | ns | ns | ns | 0.51 |
NH3 (mg/dL) | 26.1 | 15.4 | 21.8 B | 22.3 B | 32.6 A | 6.4 C | ** | ** | * | 3.28 |
Relative abundance (% of total bacteria) | ||||||||||
Genus Prevotella | 45.1 | 19.7 | 25.8 | 31.7 | 34.6 | 37.5 | ** | ns | ns | 8.90 |
Fibrobacter succinogenes | 0.39 | 2.04 | 2.36 A | 2.10 A | 0.39 B | 0.01 B | ** | ** | * | 0.63 |
Ruminococcus albus group | 0.017 | 0.003 | 0.013 | 0.010 | 0.011 | 0.006 | ** | ns | ns | 0.0056 |
Items | Type of Inoculum (TI) | Type of Conservation 1 (TC) | TI 2 | TC 2 | TI × TC 2 | RMSE 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
From Rumen | From Fermenter | Warm (W) | Refrigerated (R) | Chilled (C) | Freeze-Dried (FD) | |||||
NDFd (%) | ||||||||||
Corn silage | 37.5 | 30.1 | 39.0 A | 40.0 A | 22.5 B | - | * | ** | ns | 6.34 |
Wheat bran | 45.9 | 38.2 | 46.7 A | 46.2 A | 39.3 B | 36.0 B | ** | ** | ns | 3.40 |
Meadow hay | 44.5 | 40.7 | 51.8 A | 47.9 A,B | 39.0 B,C | 31.8 C | ns | ** | ns | 5.36 |
Distillers | 52.5 | 41.3 | 49.4 | 51.7 | 47.9 | 38.5 | * | ns | ns | 6.85 |
Soya meal, extr. | 81.4 | 78.5 | 92.2 A | 93.7 A | 85.5 A | 48.5 B | ns | ** | ns | 6.26 |
Barley | 59.4 | 54.3 | 58.0 | 58.8 | 55.7 | 55.1 | ns | ns | ns | 5.39 |
RDP (%) | ||||||||||
Corn silage | 66.8 | 66.2 | 57.0 b | 49.8 b | 66.0 b | 93.3 a | ns | * | ns | 15.21 |
Wheat bran | 59.9 | 61.9 | 58.1 | 58.9 | 60.4 | 66.2 | ns | ns | ns | 10.20 |
Meadow hay | 39.0 | 45.6 | 32.5 b | 27.8 b | 44.3 b | 64.7 a | ns | * | ns | 11.35 |
Distillers | 33.8 | 34.5 | 34.8 | 37.5 | 33.8 | 30.6 | ns | ns | ns | 5.00 |
Soya meal, extr. | 45.1 | 53.4 | 52.8 A | 56.8 A | 47.8 A,B | 39.7 B | * | * | ns | 5.10 |
Barley | 59.0 | 57.4 | 51.8 | 49.7 | 60.4 | 71.0 | ns | ns | ns | 17.38 |
GP (mL) | ||||||||||
Corn silage | 223 | 193 | 242 A | 234 A | 184 B | 172 B | ** | ** | ** | 26.13 |
Wheat bran | 183 | 146 | 176 A,B | 188 A | 157 B,C | 136 C | ** | ** | ** | 18.40 |
Meadow hay | 162 | 119 | 177 A | 198 A | 124 B | 64 C | ** | ** | ns | 24.81 |
Distillers | 193 | 153 | 197 A | 207 A | 156 B | 131 B | ** | ** | ** | 50.44 |
Soya meal, extr. | 178 | 134 | 176 B | 213 A | 136 C | 100 D | * | * | ns | 23.31 |
Barley | 266 | 226 | 263 A,B | 264 A | 231 A,B | 226 B | ** | * | ns | 27.85 |
Type of Inoculum (TI) | Type of Conservation (TC) | |||||||
---|---|---|---|---|---|---|---|---|
Rumen vs. Fermenter | Warm vs. Refrigerated | Warm vs. Chilled | Warm vs. Freeze-Dried | |||||
r | p1 | r | p1 | r | p1 | r | p1 | |
NDFd 2 | 0.960 | ** | 0.985 | ** | 0.905 | ** | 0.554 | ns |
RDP 3 | 0.837 | ** | 0.892 | ** | 0.345 | ns | 0.431 | ns |
GP 4 | 0.939 | ** | 0.921 | ** | 0.797 | ** | 0.850 | ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanghero, M.; Chiaravalli, M.; Colombini, S.; Fabro, C.; Froldi, F.; Mason, F.; Moschini, M.; Sarnataro, C.; Schiavon, S.; Tagliapietra, F. Rumen Inoculum Collected from Cows at Slaughter or from a Continuous Fermenter and Preserved in Warm, Refrigerated, Chilled or Freeze-Dried Environments for In Vitro Tests. Animals 2019, 9, 815. https://doi.org/10.3390/ani9100815
Spanghero M, Chiaravalli M, Colombini S, Fabro C, Froldi F, Mason F, Moschini M, Sarnataro C, Schiavon S, Tagliapietra F. Rumen Inoculum Collected from Cows at Slaughter or from a Continuous Fermenter and Preserved in Warm, Refrigerated, Chilled or Freeze-Dried Environments for In Vitro Tests. Animals. 2019; 9(10):815. https://doi.org/10.3390/ani9100815
Chicago/Turabian StyleSpanghero, Mauro, Maria Chiaravalli, Stefania Colombini, Carla Fabro, Federico Froldi, Federico Mason, Maurizio Moschini, Chiara Sarnataro, Stefano Schiavon, and Franco Tagliapietra. 2019. "Rumen Inoculum Collected from Cows at Slaughter or from a Continuous Fermenter and Preserved in Warm, Refrigerated, Chilled or Freeze-Dried Environments for In Vitro Tests" Animals 9, no. 10: 815. https://doi.org/10.3390/ani9100815
APA StyleSpanghero, M., Chiaravalli, M., Colombini, S., Fabro, C., Froldi, F., Mason, F., Moschini, M., Sarnataro, C., Schiavon, S., & Tagliapietra, F. (2019). Rumen Inoculum Collected from Cows at Slaughter or from a Continuous Fermenter and Preserved in Warm, Refrigerated, Chilled or Freeze-Dried Environments for In Vitro Tests. Animals, 9(10), 815. https://doi.org/10.3390/ani9100815