Effects of Mannanoligosaccharide Supplementation on the Growth Performance, Immunity, and Oxidative Status of Partridge Shank Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mannanoligosaccharide
2.2. Husbandry, Diets and Experimental Design
2.3. Sample Collection
2.4. Microflora Population Measurement
2.5. Determination of Mucosal Immune and Antioxidant Parameters
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Realtive Immune Organ Weights
3.3. Cecal Microflora Population
3.4. Intestinal Immunoglobulins Contents
3.5. Intestinal Oxidative Status
4. Discussion
4.1. Growth Performance
4.2. Relative Immune Organ Weights
4.3. Cecal Microflora Population
4.4. Intestinal Immunoglobulins
4.5. Intestinal Oxidative Status
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sohail, M.U.; Ijaz, A.; Yousaf, M.S.; Ashraf, K.; Zaneb, H.; Aleem, M.; Rehman, H. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 2010, 89, 1934–1938. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Ijaz, A.; Younus, M.; Shabbir, M.Z.; Kamran, Z.; Ahmad, S.; Anwar, H.; Yousaf, M.S.; Ashraf, K.; Shahzad, A.H.; et al. Effect of supplementation of mannan oligosaccharide and probiotic on growth performance, relative weights of viscera, and population of selected intestinal bacteria in cyclic heat-stressed broilers. J. Appl. Poult. Res. 2013, 22, 485–491. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, Y.M.; Kim, C.H.; Paik, I.K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 2011, 90, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.Y.; Jung, J.H.; Kim, I.H. Effect of mannan oligosaccharides and fructan on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. J. Anim. Sci. 2012, 90, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, M.; Jahanian, R. Dietary mannan-oligosaccharides supplementation could affect performance, immunocompetence, serum lipid metabolites, intestinal bacterial populations, and ileal nutrient digestibility in aged laying hens. Anim. Feed Sci. Technol. 2016, 213, 81–89. [Google Scholar] [CrossRef]
- Bozkurt, M.; Tokuşoğlu, Ö.; Küçükyilmaz, K.; Akşit, H.; Çabuk, M.; Uğur Çatli, A.; Seyrek, K.; Çinar, M. Effects of dietary mannan oligosaccharide and herbal essential oil blend supplementation on performance and oxidative stability of eggs and liver in laying hens. Ital. J. Anim. Sci. 2012, 11, 223–229. [Google Scholar] [CrossRef]
- Attia, Y.A.; Hamed, R.S.; Elhamid, A.E.A.; Alharthi, M.A.; Shahba, H.A.; Bovera, F. Performance, blood profile, carcass and meat traits and tissue morphology in growing rabbits fed mannanoligosaccharides and zinc-bacitracin continuously or intermittently. Anim. Sci. Pap. Rep. 2015, 33, 85–101. [Google Scholar]
- Zheng, C.; Li, F.; Hao, Z.; Liu, T. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal fermentation parameters, immunity and antioxidant capacity of sheep. J. Anim. Sci. 2018, 96, 284–292. [Google Scholar] [CrossRef]
- Liu, B.; Xu, L.; Ge, X.; Xie, J.; Xu, P.; Zhou, Q.; Pan, L.; Zhang, Y. Effects of mannan oligosaccharide on the physiological responses, HSP70 gene expression and disease resistance of Allogynogenetic crucian carp (Carassius auratus gibelio) under Aeromonas hydrophila infection. Fish Shellfish Immunol. 2013, 34, 1395–1403. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Abd-Allah, S.M.S. The Effect of single or combined dietary supplementation of mannan oligosacharide and probiotics on performance and slaughter characteristics of broilers. Int. J. Poult. Sci. 2011, 10, 854–862. [Google Scholar]
- Bonos, E.M.; Christaki, E.V.; Floroupaneri, P.C. Performance and carcass characteristics of Japanese quail as affected by sex or mannan oligosaccharides and calcium propionate. S. Afr. J. Anim. Sci. 2010, 40, 173–184. [Google Scholar] [CrossRef]
- Zhang, A.W.; Lee, B.D.; Lee, S.K.; Lee, K.W.; An, G.H.; Song, K.B.; Lee, C.H. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poult. Sci. 2005, 84, 1015–1021. [Google Scholar] [CrossRef]
- McCleary, B.V. β-D-Mannanase. Methods Enzymol. 1988, 160, 596–610. [Google Scholar]
- Daskiran, M.; Teeter, R.G.; Fodge, D.; Hsiao, H.Y. An evaluation of endo-β-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poult. Sci. 2004, 83, 662–668. [Google Scholar] [CrossRef]
- Shimahara, H.; Suzuki, H.; Sugiyama, N.; Nisizawa, K. Partial purification of β-mannanase from the konjac tubers and their substrate specificity in relation to the structure of konjac glucomannan. Agric. Biol. Chem. 1975, 39, 301–312. [Google Scholar] [CrossRef]
- Araki, T. Purification and characterization of an endo-β-mannanase from Aeromonas sp. F-25. J. Fac. Agric Kyushu Univ. 1983, 27, 89–98. [Google Scholar]
- Hossain, M.Z.; Abe, J.; Hizukuri, S. Multiple forms of β- mannanase from Bacillus sp. KK01. Enzym. Microb. Tech. 1996, 18, 95–98. [Google Scholar] [CrossRef]
- Reese, E.T.; Shibata, Y. β-Mannanases of fungi. Can. J. Microbiol. 1965, 11, 167–183. [Google Scholar] [CrossRef]
- Yamaura, I.; Nozaki, Y.; Matsumoto, T.; Kato, T. Purification and some properties of endo-1, 4-β-D-mannanase from a mud snail, Pomacea insularus (de Ordigny). Biosci. Biotech. Biochem. 1993, 57, 1316–1319. [Google Scholar] [CrossRef]
- Dhawan, S.; Kaur, J. Microbial mannanases: An overview of production and applications. Crit. Rev. Biotechnol. 2007, 27, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.R.; Filho, E.X. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 2008, 79, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C.; Yu, Z.T.; He, Y.Y.; Yong, Q.; David, S.N. 416 Relative fermentation of oligosaccharides from human milk and plants by gut microbes. Eur. Food. Res. Technol. 2017, 243, 133–146. [Google Scholar] [CrossRef]
- Pérols, C.; Piffaut, B.; Scher, J.; Ramet, J.P.; Poncelet, D. The potential of enzyme entrapment in konjac cold-melting gel beads. Enzyme. Microb. Tech. 1997, 20, 57–60. [Google Scholar]
- Chua, M.; Chan, K.; Hocking, T.; Williams, P.A.; Perry, C.J.; Baldwin, T.C. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphphallus konjac K. Koch. Carbohydr. Polym. 2012, 87, 2202–2210. [Google Scholar] [CrossRef]
- Oyanagui, Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 1984, 142, 290–296. [Google Scholar] [CrossRef]
- Placer, Z.A.; Cushman, L.L.; Johnson, B.C. Estimation of production of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal. Biochem. 1966, 16, 359–364. [Google Scholar] [CrossRef]
- Sims, M.D.; Dawson, K.A.; Newman, K.E.; Spring, P.; Hoogell, D.M. Effects of dietary mannan oligosaccharide, bacitracin methylene disalicylate, or both on the live performance and intestinal microbiology of turkeys. Poult. Sci. 2004, 83, 1148–1154. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Hamid, A.E.A.M.; Ibrahim, S.; Al-Harthi, M.A.; Bovera, F.; Elnaggar, A.S. Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livest. Sci. 2014, 164, 87–95. [Google Scholar] [CrossRef]
- Geier, M.S.; Torok, V.A.; Allison, G. Indigestible carbohydrates alter the intestinal microbiota but do not influence the influence the performance of broiler chickens. J. Appl. Microbiol. 2009, 106, 1540–1548. [Google Scholar] [CrossRef]
- Munyaka, P.M.; Echeverry, H.; Yitbarek, A.; Camelo-Jaimes, G.; Sharif, S.; Guenter, W.; House, J.D.; Rodriguez-Lecompte, J.C. Local and systemic innate immunity in broiler chickens supplemented with yeast-derived carbohydrates. Poult. Sci. 2012, 91, 2164–2172. [Google Scholar] [CrossRef] [PubMed]
- Churchil, R.R.; Mohan, B.; Viswanathan, K. Effect of supplementation of broiler rations with live yeast culture. Cheiron 2000, 29, 23–27. [Google Scholar]
- Gao, J.; Zhang, H.J.; Yu, S.H.; Wu, S.G.; Yoon, I.; Quigley, J.; Gao, Y.P.; Qi, G.H. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci. 2008, 87, 1377–1384. [Google Scholar] [CrossRef]
- Paramithiotis, E.; Ratcliffe, M.J. Survivors of bursal B cell production and emigration. Poult. Sci. 1994, 73, 991–997. [Google Scholar] [CrossRef]
- Lanning, D.K.; Rhee, K.J.; Knight, K.L. Intestinal bacteria and development of the B-lymphocyte repertoire. Trends. Immunol. 2005, 26, 419–425. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Y.P.; Cheng, Y.F.; Yang, W.L.; Wen, C.; Zhou, Y.M. Effect of yeast cell wall powder with different particle sizes on the growth performance, serum metabolites, immunity and oxidative status of broilers. Anim. Feed Sci. Technol 2015, 212, 81–89. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Zhang, Z.; Sun, C.; Chen, L.; He, H.; Zhou, B.; Zhang, Y. Purification and functional characterization of endo-β-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Appl. Microbiol. Biotechnol. 2009, 83, 865–873. [Google Scholar] [CrossRef]
- Wang, M.F.; You, S.P.; Zhang, S.S.; Qi, W.; Liu, Z.H.; Wu, W.N.; Su, R.X.; He, Z.M. Purification, characterization, and production of β-mannanase from Bacillus subtilis TJ-102 and its application in gluco-mannooligosaccharides preparation. Eur. Food Res. Technol. 2013, 237, 399–408. [Google Scholar] [CrossRef]
- Newman, K. Mannan-oligosaccharides: Natural polymers with significant impact on the gastrointestinal microflora and the immune system. In Proceedings of the Alltech’s Tenth Annual Symposium; Nottingham University Press: Nottingham, UK, 1994; pp. 167–174. [Google Scholar]
- Spring, P.; Wenk, C.; Dawson, K.A.; Newman, K.E. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poult. Sci. 2000, 79, 205–211. [Google Scholar] [CrossRef]
- Muthusamy, N.; Haldar, S.; Ghosh, T.K.; Bedford, M.R. Effects of hydrolyzed Saccharomyces cerevisia yeast and yeast cell wall components on live performance, intestinal histo-morphology and humoral immune response of broilers. Br. Poult. Sci. 2011, 52, 694–703. [Google Scholar] [CrossRef]
- Ulmer-Franco, A.M.; Cherian, G.; Quezada, N.; Fasenko, G.M.; McMullen, L.M. Hatching egg and newly hatched chick yolk sac total IgY content at 3 broiler breeder flock ages. Poult. Sci. 2012, 91, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 2013, 4, 185. [Google Scholar] [CrossRef] [PubMed]
- Savage, T.F.; Zalkrzewska, E.; Andeason, J.R. Effects of feeding mannan oligosaccharides on immunoglobulins, plasma IgG and bile IgA of worlstad MW male turkeys. Poult. Sci. 1997, 76, 139. [Google Scholar]
- Yu, B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994, 74, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Mccord, J.M. Superoxide: Superoxide dismutase and oxygen toxicity. Rev. Biochem. Toxicol. 1979, 1, 109–124. [Google Scholar]
- Sumida, S.; Tanaka, K.; Kitao, H.; Nakadomo, F. Exercise-induced lipidperoxidation and leakage of enzymes before and after vitamin E supplementation. Int. J. Biochem. 1989, 21, 835–838. [Google Scholar]
- Liu, J.; Xu, Q.; Zhang, J.; Zhou, X.; Lyu, F.; Zhao, P.; Ding, Y. Preparation, composition analysis and antioxidant activities of konjac oligo-glucomannan. Carbohydr. Polym. 2015, 130, 398–404. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Khalaifah, H.; Ibrahim, M.S.; Al-Hamid, A.E.A.; Al-Harthi, M.A.; El-Naggar, A. Blood hematological and biochemical constituents, antioxidant enzymes, immunity and lymphoid organs of broiler chicks supplemented with propolis, bee pollen and mannan oligosaccharides continuously or intermittently. Poult. Sci. 2017, 96, 4182–4192. [Google Scholar] [CrossRef]
- Zdunczyk, Z.; Juskiewicz, J.; Jankowski, J.; Biedrzycka, E.; Koncicki, A. Metabolic response of the gastrointestinal tract of turkeys to diets with different levels of mannan-oligosaccharide. Poult. Sci. 2005, 84, 903–909. [Google Scholar] [CrossRef]
- Solis de los Santos, F.; Donoghue, A.M.; Farnell, M.B.; Huff, G.R.; Huff, W.E.; Donoghue, D.J. Gastrointestinal maturation is accelerated in turkey poults supplemented with a mannan-oligosaccharide yeast extract (Alphamune). Poult. Sci. 2007, 86, 921–930. [Google Scholar] [CrossRef]
- Safari, O.; Shahsavani, D.; Paolucci, M.; Atash, M.M.S. Single or combined effects of fructo- and mannan oligosaccharide supplements on the growth performance, nutrient digestibility, immune responses and stress resistance of juvenile narrow clawed crayfish, Astacus Leptodactylus Eschscholtz, 1823. Aquaculture 2014, 432, 192–203. [Google Scholar] [CrossRef]
Items | 1–21 Days | 22–42 Days |
---|---|---|
Ingredients | ||
Corn | 576.1 | 622.7 |
Soybean meal | 310 | 230 |
Corn gluten meal | 32.9 | 60 |
Soybean oil | 31.1 | 40 |
Limestone | 12 | 14 |
Dicalcium phosphate | 20 | 16 |
L-Lysine·HCL | 3.4 | 3.5 |
DL-Methionine | 1.5 | 0.8 |
Sodium chlodire | 3 | 3 |
Premix 1 | 10 | 10 |
Calculated nutrient levels 2 | ||
Apparent metabolizable energy (MJ/kg) | 12.56 | 13.19 |
Crude protein | 211 | 196 |
Calcium | 10.00 | 9.50 |
Available phosphorus | 4.60 | 3.90 |
Lysine | 12.00 | 10.50 |
Methionine | 5.00 | 4.20 |
Methionine + cysteine | 8.50 | 7.60 |
Analyzed composition 3 | ||
Crude protein | 208 | 192 |
Ash | 57.2 | 56.5 |
Items | Control | 0.5 g/kg MOS | 1 g/kg MOS | 1.5 g/kg MOS | SEM | p-Value | |
---|---|---|---|---|---|---|---|
L | Q | ||||||
ADG (g/days) | |||||||
1–21days | 17.31 | 16.50 | 16.72 | 16.92 | 0.151 | 0.489 | 0.102 |
22–42days | 43.81 | 43.43 | 43.63 | 43.37 | 0.340 | 0.732 | 0.939 |
1–42days | 32.68 | 32.12 | 32.33 | 32.26 | 0.221 | 0.617 | 0.601 |
ADFI (g/days) | |||||||
1–21days | 27.04 | 25.89 | 26.72 | 25.74 | 0.246 | 0.156 | 0.860 |
22–42days | 101.42 | 93.65 | 102.35 | 98.52 | 0.944 | 0.999 | 0.158 |
1–42days | 69.55 | 64.78 | 69.99 | 67.41 | 0.580 | 0.753 | 0.204 |
FCR (g:g) | |||||||
1–21days | 1.56 | 1.57 | 1.60 | 1.52 | 0.011 | 0.246 | 0.052 |
22–42days | 2.31 | 2.16 | 2.35 | 2.27 | 0.020 | 0.605 | 0.191 |
1–42days | 2.13 | 2.02 | 2.17 | 2.09 | 0.015 | 0.646 | 0.438 |
Items | Control | 0.5 g/kg MOS | 1 g/kg MOS | 1.5 g/kg MOS | SEM | p-Value | |
---|---|---|---|---|---|---|---|
L | Q | ||||||
Thymus | |||||||
Days 21 | 1.10 | 1.07 | 1.06 | 1.10 | 0.06 | 0.976 | 0.785 |
Days 42 | 2.48 | 3.78 | 3.27 | 2.51 | 0.26 | 0.856 | 0.055 |
Spleen | |||||||
Days 21 | 0.83 | 0.74 | 0.73 | 0.91 | 0.04 | 0.546 | 0.132 |
Days 42 | 4.13 | 3.14 | 5.13 | 4.62 | 0.30 | 0.180 | 0.677 |
Bursa of Fabricius | |||||||
Days 21 | 0.98 | 1.69 | 1.34 | 1.42 | 0.07 | 0.110 | 0.031 |
Days 42 | 1.57 | 1.71 | 1.31 | 1.62 | 0.14 | 0.854 | 0.768 |
Items | Control | 0.5 g/kg MOS | 1 g/kg MOS | 1.5 g/kg MOS | SEM | p-Value | |
---|---|---|---|---|---|---|---|
L | Q | ||||||
Escherichia coli | |||||||
Days 21 | 7.98 | 8.04 | 7.97 | 8.45 | 0.15 | 0.360 | 0.514 |
Days 42 | 6.89 | 6.94 | 6.68 | 6.04 | 0.20 | 0.946 | 0.820 |
Salmonella | |||||||
Days 21 | 8.41 | 7.73 | 7.10 | 7.44 | 0.18 | 0.028 | 0.126 |
Days 42 | 6.16 | 6.35 | 6.11 | 6.52 | 0.18 | 0.652 | 0.777 |
Lactobacillus | |||||||
Days 21 | 8.41 | 8.18 | 8.51 | 8.06 | 0.08 | 0.326 | 0.501 |
Days 42 | 7.45 | 7.98 | 7.81 | 7.62 | 0.10 | 0.764 | 0.105 |
Items | Control | 0.5 g/kg MOS | 1 g/kg MOS | 1.5 g/kg MOS | SEM | p-Value | |
---|---|---|---|---|---|---|---|
L | Q | ||||||
Jejunum | |||||||
sIgA | |||||||
Days 21 | 7.37 | 7.62 | 8.43 | 8.31 | 0.24 | 0.110 | 0.708 |
Days 42 | 8.78 | 10.15 | 9.12 | 7.93 | 0.29 | 0.227 | 0.039 |
IgM | |||||||
Days 21 | 7.64 | 7.71 | 8.96 | 9.06 | 0.27 | 0.024 | 0.966 |
Days 42 | 11.41 | 12.14 | 11.06 | 9.38 | 0.42 | 0.053 | 0.140 |
IgG | |||||||
Days 21 | 108.17 | 138.09 | 143.99 | 168.33 | 7.46 | 0.004 | 0.823 |
Days 42 | 145.96 | 191.79 | 179.32 | 142.54 | 7.54 | 0.702 | 0.005 |
Ileum | |||||||
sIgA | |||||||
Days 21 | 8.25 | 9.35 | 10.41 | 8.34 | 0.33 | 0.914 | 0.022 |
Days 42 | 9.92 | 11.55 | 10.19 | 9.27 | 0.03 | 0.163 | 0.022 |
IgM | |||||||
Days 21 | 9.11 | 10.24 | 11.58 | 8.82 | 0.35 | 0.843 | 0.002 |
Days 42 | 10.91 | 14.87 | 12.90 | 10.81 | 0.49 | 0.505 | 0.001 |
IgG | |||||||
Days 21 | 133.93 | 145.24 | 175.10 | 122.59 | 7.14 | 0.940 | 0.018 |
Days 42 | 185.97 | 229.32 | 196.24 | 174.00 | 7.36 | 0.243 | 0.019 |
Items | Control | 0.5 g/kg MOS | 1 g/kg MOS | 1.5 g/kg MOS | SEM | p-Value | |
---|---|---|---|---|---|---|---|
L | Q | ||||||
Jejunum | |||||||
T-SOD (U/mL) | |||||||
Days 21 | 1112 | 1179 | 1147 | 1195 | 26.42 | 0.345 | 0.175 |
Days 42 | 1180 | 1158 | 1155 | 1283 | 29.67 | 0.260 | 0.219 |
MDA (nmol/ mL) | |||||||
Days 21 | 6.99 | 3.76 | 3.53 | 3.92 | 0.44 | 0.004 | 0.024 |
Days 42 | 7.42 | 9.40 | 7.07 | 6.04 | 0.46 | 0.112 | 0.095 |
Ileum | |||||||
T-SOD (U/mL) | |||||||
Days 21 | 1040 | 1038 | 1185 | 1219 | 29.58 | 0.081 | 0.430 |
Days 42 | 1069 | 1071 | 1043 | 1162 | 19.89 | 0.698 | 0.196 |
MDA (nmol/ mL) | |||||||
Days 21 | 6.34 | 6.25 | 8.20 | 5.28 | 0.49 | 0.770 | 0.146 |
Days 42 | 7.10 | 13.56 | 10.50 | 6.51 | 0.73 | 0.244 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Tao, Y.; Lai, C.; Huang, C.; Zhou, Y.; Yong, Q. Effects of Mannanoligosaccharide Supplementation on the Growth Performance, Immunity, and Oxidative Status of Partridge Shank Chickens. Animals 2019, 9, 817. https://doi.org/10.3390/ani9100817
Zhou M, Tao Y, Lai C, Huang C, Zhou Y, Yong Q. Effects of Mannanoligosaccharide Supplementation on the Growth Performance, Immunity, and Oxidative Status of Partridge Shank Chickens. Animals. 2019; 9(10):817. https://doi.org/10.3390/ani9100817
Chicago/Turabian StyleZhou, Minyu, Yuheng Tao, Chenhuan Lai, Caoxing Huang, Yanmin Zhou, and Qiang Yong. 2019. "Effects of Mannanoligosaccharide Supplementation on the Growth Performance, Immunity, and Oxidative Status of Partridge Shank Chickens" Animals 9, no. 10: 817. https://doi.org/10.3390/ani9100817
APA StyleZhou, M., Tao, Y., Lai, C., Huang, C., Zhou, Y., & Yong, Q. (2019). Effects of Mannanoligosaccharide Supplementation on the Growth Performance, Immunity, and Oxidative Status of Partridge Shank Chickens. Animals, 9(10), 817. https://doi.org/10.3390/ani9100817