Preparing for Life After Birth: Introducing the Concepts of Intrauterine and Extrauterine Sensory Entrainment in Mammalian Young
Abstract
:Simple Summary
Abstract
1. Prologue
2. Introduction
3. Neurological Maturity in Newborn Mammals and What Their Behaviour Reveals about Which Sensory Systems Are Functional at Birth
3.1. Newborn Mammals Exhibit Three General Levels of Neurological Maturity
3.2. Sensory Capabilities and Behaviour of Neurologically Mature Newborns
3.3. Sensory Capabilities and Behaviour of Neurologically Moderately Immature Newborns
3.4. Sensory Capabilities and Behaviour of Neurologically Exceptionally Immature Newborns
3.5. Comment
4. The Intrauterine Sensory Environment of the Embryo/Fetus
4.1. Cutaneous Senses
4.1.1. Tactile Stimulation
4.1.2. Thermal Stimulation
4.1.3. Nociceptive Stimulation
4.2. Gustatory Sense
4.3. Olfactory Sense
4.4. Vestibular Sense
4.5. Auditory Sense
4.6. Visual Sense
4.7. Interoceptors, Exteroceptors, and Genetic Preprogramming of Sensory Functions
5. A Brief Introduction to Aspects of Learning and Memory
6. Trans-natal Sensory Continuity and Potential for Misinterpreting the Concepts of Fetal “Learning” and “Memory”
6.1. Trans-natal Sensory Continuity
6.2. Potential Misinterpretation of the Concepts of Fetal “Learning” and “Memory”
6.3. The Underlying Mechanism of Trans-natal Sensory Continuity Needs to be Emphasised
7. Trans-natal Sensory Continuity, Intrauterine Sensory Entrainment, and Neuroplasticity
7.1. Trans-natal Sensory Continuity
7.2. Intrauterine Sensory Entrainment and Neuroplasticity
8. The Transition from “Intrauterine” to “Extrauterine” Sensory Entrainment
9. Concluding Comments
Funding
Acknowledgments
Conflicts of Interest
References
- Mellor, D.J.; Diesch, T.J. Birth and hatching: Key events in the onset of ‘awareness’ in lambs and chicks. N. Z. Vet. J. 2007, 55, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Marlier, L.; Schaal, B.; Soussignan, R. Neonatal responsiveness to the odor of amniotic and lacteal fluids: A test of perinatal chemosensory continuity. Child. Dev. 1998, 69, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.C. The Veterinary Book for Sheep Farmers; Old Pond Publishing: Sheffield, UK, 1990; pp. 243–349. [Google Scholar]
- Ekert Kabalin, A.; Balenović, T.; Valpotić, I.; Pavičić, Ž.; Valpotić, H. The influence of birth mass and age of suckling piglets on erythrocyte parameters. Vet. arhiv. 2008, 78, 307–319. [Google Scholar]
- James, D.K. Fetal learning: A critical review. Inf. Child. Dev. 2010, 19, 45–54. [Google Scholar] [CrossRef]
- Santoro, W., Jr.; Martinez, F.E.; Ricco, R.G.; Jorge, S.M. Colostrum ingested during the first day of life by exclusively breastfed healthy newborn infants. J. Pediatr. 2010, 156, 29–32. [Google Scholar] [CrossRef]
- Canine Tail Docking: Independent Report 2017; Ministry for Primary Industries: Wellington, New Zealand, 2017. Available online: https://www.mpi.govt.nz/dmsdocument/19013-canine-tail-docking-independent-report (accessed on 20 August 2019).
- Oumer, M.; Guday, E.; Teklu, A.; Muche, A. Anterior fontanelle size among term neonates on the first day of life born at University of Gondar Hospital, Northwest Ethiopia. PLoS ONE 2018, 13, e0202454. [Google Scholar] [CrossRef]
- Dawes, G.S. Foetal and neonatal physiology: A comparative study of the changes at birth; Year Book Medical Publishers University of Michigan: Michigan, MI, USA, 1968. [Google Scholar]
- Comline, R.S.; Cross, K.W.; Dawes, G.S.; Nathanielsz, P.W. Foetal and Neonatal Physiology. Proceedings of the Sir Joseph Barcroft Centenary Symposium, July 1972; Cambridge University Press: Cambridge, UK, 1973; pp. 1–641. [Google Scholar]
- Jones, C.T.; Nathanielsz, P.W. The Physiological Development of the Fetus and Newborn; Academic Press Inc. (London) Ltd.: London, UK, 1985; pp. 1–837. [Google Scholar]
- Mellor, D.J.; Cockburn, F. A comparison of energy metabolism in the newborn infant, piglet and lamb. Quart. J. Exp. Physiol. 1986, 71, 361–379. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Johnston, B.M.; Nathanielsz, P.W. (Eds.) Advances in Fetal Physiology: Reviews in Honour of G.C. Liggins. In Research in Perinatal Medicine VIII; Perinatology Press: New York, NY, USA, 1989; pp. 1–424. [Google Scholar]
- Mellor, D.J. Integration of perinatal events, pathophysiological changes and consequences for the newborn lamb. Br. Vet. J. 1988, 144, 552–569. [Google Scholar] [CrossRef]
- Mellor, D.J. Foetal maturation: Comparative aspects of normal and disturbed development. Equine Vet. J. Suppl. 1993, 14, 17–22. [Google Scholar]
- Mellor, D.J. Galloping colts, fetal feelings and reassuring regulations: Putting animal welfare science into practice. JVME 2010, 37, 94–102. [Google Scholar] [CrossRef]
- Aleman, M.; Weich, K.M.; Madigan, J.E. Survey of veterinarians using a novel physical compression squeeze procedure in the management of neonatal maladjustment syndrome in foals. Animals 2017, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Gonzàlez-Mariscal, G.; Poindron, P. Parental care in mammals: Immediate internal and sensory factors of control. Horm. Brain Behavou 2002, 1, 215–298. [Google Scholar]
- Mellor, D.J.; Gregory, N.G. Responsiveness, behavioural arousal and awareness in fetal and newborn lambs: Experimental, practical and therapeutic implications. N. Z. Vet. J. 2003, 51, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J.; Diesch, T.J.; Gunn, A.J.; Bennet, L. The importance of ‘awareness’ for understanding fetal pain. Brain Res. Rev. 2005, 49, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J.; Diesch, T.J. Onset of sentience: The potential for suffering in fetal and newborn farm animals. Appl. Anim. Behav. Sci. 2006, 2006 100, 48–57. [Google Scholar] [CrossRef]
- Diesch, T.J.; Mellor, D.J. Birth transitions: Pathophysiology, the onset of consciousness and possible implications for the neonatal maladjustment syndrome in the foal. Equine Vet. J. 2013, 45, 656–660. [Google Scholar] [CrossRef]
- Longo, L.D. The Rise of Fetal and Neonatal Physiology: Basic Science to Clinical Care. Published on behalf of the American Physiological Society by Springer Nature Switzerland, 2013; pp. 1–546. Available online: http://book.masaratcom.com/library/20130921152658_masarat_library_-1461479207.pdf (accessed on 3 September 2019).
- Campbell, M.L.H.; Mellor, D.J.; Sandøe, P. How should the welfare of fetal and neurologically immature postnatal animals be protected? Anim. Welf. 2014, 23, 369–379. [Google Scholar] [CrossRef]
- Mellor, D.J.; Lentle, R.G. Survival implications of the development of behavioural responsiveness and awareness in different groups of mammalian young. N. Z. Vet. J. 2015, 63, 131–140. [Google Scholar] [CrossRef]
- Hall, W.G.; Oppenheim, R.W. Developmental Psychobiology: Prenatal, perinatal, and early postnatal aspects of behavioural development. Ann. Rev. Psychol. 1987, 38, 91–128. [Google Scholar] [CrossRef]
- Horner, K.C.; Serviere, J.; Granier-Deferre, C. Deoxyglucose demonstration of in-utero hearing in the guinea-pig foetus. Hearing Res. 1987, 26, 327–333. [Google Scholar] [CrossRef]
- Vince, M.A.; Lynch, J.J.; Mothershead, B.E.; Green, G.C.; Elwin, R.L. Interactions between Normal Ewes and Newly Born Lambs Deprived of Visual, Olfactory and Tactile Sensory Information. Appl. Anim. Behav. Sci. 1987, 19, 119–136. [Google Scholar] [CrossRef]
- Busnel, M.C.; Granier-Deferre, O.C.; Lecanuet, J.P. Fetal audition. neurobehavioral profile: An assessment of fetal state, arousal, and regulation competency. Ann. N.Y. Acad. Sci. 1992, 662, 118–134. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.M.; Fifer, W.P. Evidence of transnatal auditory learning. J. Perinatol. 2000, 20, S37–S44. [Google Scholar] [CrossRef] [PubMed]
- Schaal, B.; Marlier, L.; Soussignan, R. Human fetuses learn odours from their pregnant mother’s diet. Chem. Senses 2000, 25, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Coureaud, G.; Schaal, B.; Hudson, R.; Orgeur, P.; Coudert, P. Transnatal olfactory continuity in the rabbit: Behavioural evidence and short-term consequences of its disruption. Dev. Psychobiol. 2002, 40, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Lecanuet, J.-P.; Granier-Deferre, C.; DeCasper, A. Are we expecting too much from prenatal sensory experience? In Prenatal Development of Postnatal Functions; Hopkins, B., Johnson, S.P., Eds.; Praeger, Westport: Connecticut, CT, USA, 2005; pp. 31–49. [Google Scholar]
- Pallas, S.L. Pre- and postnatal sensory experience shapes functional architecture in the brain. In Prenatal Development of Postnatal Functions; Hopkins, B., Johnson, S.P., Eds.; Praeger, Westport: Connecticut, CT, USA, 2005; pp. 1–29. [Google Scholar]
- Schaal, B. From amnion to colostrum to milk; Odor bridging in early developmental transitions. In Prenatal Development of Postnatal Functions; Hopkins, B., Johnson, S.P., Eds.; Praeger, Westport: Connecticut, CT, USA, 2005; pp. 51–102. [Google Scholar]
- Jouhanneau, M.; Schaal, B.; Coureaud, G. Mammary pheromone-induced odour learning influences sucking behaviour and milk intake in the newborn rabbit. Anim. Behav. 2016, 111, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schaal, B.; Orgeur, P. Olfaction in utero: Can the rodent model be generalized? Q. J. Exp. Psych. B. 1992, 44, 245–278. [Google Scholar]
- Semke, E.; Distel, H.; Hudson, R. Specific enhancement of olfactory receptor sensitivity associated with foetal learning of food odors in the rabbit. Naturwissenschaften. 1995, 82, 148–149. [Google Scholar] [CrossRef]
- Hepper, P.G. Fetal memory: Does it exist? What does it do? Acta. Paediatr. Suppl. 1996, 416, 16–20. [Google Scholar] [CrossRef]
- Kisilevsky, B.S.; Hains, S.M.J.; Lee, K.; Xie, X.; Huang, H.; Ye, H.H.; Zhang, K.; Wang, Z. Effects of experience on fetal voice recognition. Psychol. Sci. 2003, 14, 220–224. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Mennella, J.A. Early flavor learning and its impact on later feeding behavior. J. Pediatr. Gastroenterol. Nutr. 2009, 48, S25–S30. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gonzalez, N.L.; Suarez, M.N.; Perez-Pinero, B.; Armas, H.; Domenech, E.; Bartha, J.L. Persistence of fetal memory into neonatal life. Acta. Obstetr. Gynecol. 2006, 85, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Granier-Deferre, C.; Bassereau, S.; Ribeiro, A.; Jacquet, A.-Y.; DeCasper, A.J. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE 2011, 6, e17304. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Kisilevsky, B.S. Fetuses respond to father’s voice but prefer mother’s voice after birth. Dev. Psychobiol. 2014, 56, 1–11. [Google Scholar] [CrossRef]
- Browne, J.V. Chemosensory development in the fetus and newborn. Newborn Infant Nurs. Rev. 2008, 8, 180–186. Available online: https://pdfs.semanticscholar.org/92aa/747377a2ffa1de4c40f90f4b45e6526db13f.pdf (accessed on 14 August 2019). [CrossRef]
- Fetal Awareness: Review of Research and Recommendations for Practice; Report of a Working Party; Royal College of Obstetricians and Gynaecologists, RCOG Press: London, UK, 2010; Available online: https://www.rcog.org.uk/globalassets/documents/guidelines/rcogfetalawarenesswpr0610.pdf (accessed on 17 October 2019).
- Gottlieb, G. Ontogenesis of sensory function in birds and mammals. In The Biopsychology of Development; Tobach, E., Aronson, L.R., Shaw, E., Eds.; Academic Press: New York, NY, USA, 1971; pp. 67–128. [Google Scholar]
- Bradley, R.M.; Mistretta, C.M. Fetal sensory receptors. Physiol. Rev. 1975, 55, 352–382. [Google Scholar] [CrossRef]
- Lecanuet, J.-P.; Schaal, B. Fetal sensory competencies. Eur. J. Obstet. Gyneco. Reprod. Biol. 1996, 68, 1–23. [Google Scholar] [CrossRef]
- Nelson, J.; Gemmell, R. Implications of marsupial births for an understanding of behavioural development. Int. J. Comp. Psychol. 2004, 17, 53–70. [Google Scholar]
- Diesch, T.J.; Mellor, D.J.; Johnson, C.B.; Lentle, R.G. Responsiveness to painful stimuli in anaesthetised newborn and young animals of varying neurological maturity (wallaby joeys, rat pups and lambs). AATEX J. 2008, 14, 549–552. [Google Scholar]
- Arteaga, L.; Bautista, A.; González, D.; Hudson, R. Smell, suck, survive: Chemical signals and suckling in the rabbit, cat, and dog. Chem. Signals Vertebr. 2013, 12, 51–59. [Google Scholar]
- Dwyer, C.M.; Lawrence, A.B. A review of the behavioural and physiological adaptation of hill and lowland breeds of sheep that favour lamb survival. Appl. Anim. Behav. Sci. 2005, 92, 235–260. [Google Scholar] [CrossRef]
- Vince, M.A.; Ward, T.M. The responsiveness of newly born clun-forest lambs to odour sources in the ewe. Behaviour. 1984, 89, 117–127. [Google Scholar]
- Nowak, R. Senses involved in discrimination of merino ewes at close contact and from a distance by their newborn lambs. Anim. Behav. 1991, 42, 357–366. [Google Scholar] [CrossRef]
- Lynch, J.J.; Hinch, G.N.; Adams, D.B. The Behaviour of Sheep: Biological Principles and Implications for Production; CSIRO: Melbourne, Australia, 1992; pp. 153–177. [Google Scholar]
- Nowak, R.; Porter, R.H.; Levy, F.; Orgeur, P.; Schaal, B. Role of mother-young interactions in the survival of offspring in domestic animals. Rev. Reprod. 2000, 5, 153–163. [Google Scholar] [CrossRef]
- Mora-Medina, P.; Orihuela-Trujillo, A.; Arch-Tirado, E.; Roldan-Santiago, P.; Terrazas, A.; Mota-Rojas, D. Sensory factors involved in mother-young bonding in sheep: A review. Vet. Med. 2016, 61, 295–611. [Google Scholar] [CrossRef]
- Lévy, F.; Keller, M. Olfactory mediation of maternal behavior in selected mammalian species. Behav. Brain Res. 2009, 200, 336–345. [Google Scholar] [CrossRef]
- Morrow-Tesch, J.; McGlone, J.J. Sensory systems and nipple attachment behaviour in neonatal pigs. Physiol. Behav. 1990, 47, 1–4. [Google Scholar] [CrossRef]
- Rohde Parfet, K.A.; Gonyou, H.W. Attraction of newborn piglets to auditory, visual, olfactory and tactile stimuli. J. Anim. Sci. 1991, 69, 125–133. [Google Scholar] [CrossRef]
- Guiraudie-Capraz, G.; Slomianny, M.-C.; Pageat, P.; Malosse, C.; Cain, A.-H.; Orgeur, P.; Patricia Nagnan-Le Meillour, P. Biochemical and chemical supports for a transnatal olfactory continuity through sow maternal fluids. Chem. Senses 2005 30, 241–251. [CrossRef]
- Mount, L.E. The metabolic rate of the new-born pig in relation to environmental temperature and to age. J. Physiol. 1959, 147, 333–345. [Google Scholar] [CrossRef]
- Mount, L.E. The influence of huddling and body size on the metabolic rate of the young pig. J. Agri. Sci. 1960, 55, 101–105. [Google Scholar] [CrossRef]
- Lejeune, F.; Audeoud, F.; Marcus, L.; Streri, A.; Debillon, T.; Gentaz, E. The Manual Habituation and Discrimination of Shapes in Preterm Human Infants from 33 to 34+6 Post-Conceptional Age. PLoS ONE 2010, 5, e9108. [Google Scholar] [CrossRef] [PubMed]
- André, V.; Henry, S.; Lemasson, A.; Hausberger, M.; Durier, V. The human newborn’s umwelt: Unexplored pathways and perspectives. Psychon. Bull. Rev. 2018, 25, 350–369. [Google Scholar] [CrossRef] [PubMed]
- Stanford School of Medicine Newborn Senses, 2019. Available online: https://www.stanfordchildrens.org/en/topic/default?id=newborn-senses-90-P02631 (accessed on 7 August 2019).
- Lai, C.H.; Chan, Y.S. Development of the vestibular system. Neuroembryol. 2002, 1, 61–71. [Google Scholar] [CrossRef]
- Gavin, M.L. Movement, coordination, and your newborn. Kids Health, 2019. Available online: https://kidshealth.org/en/parents/movenewborn.html (accessed on 7 August 2019).
- Makin, J.W.; Porter, R.H. Attractiveness of lactating females’ breast odors to neonates. Child. Dev. 1989, 60, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Doucet, S.; Soussignan, R.; Sagot, P.; Schaal, B. The secretion of areolar (Montgomery’s) glands from lactating women elicits selective, unconditional responses in neonates. PLoS ONE 2009, 4, e7579. [Google Scholar] [CrossRef] [PubMed]
- Schaal, B.; Coureaud, G.; Doucet, S.; Delaunay-El Allam, M.; Moncomble, A.-S.; Montigny, D.; Patris, B.; Holley, H. Mammary olfactory signalisation in females and odor processing in neonates: Ways evolved by rabbits and humans. Behav. Brain Res. 2009, 200, 346–358. [Google Scholar] [CrossRef]
- Mennella, J.A.; Jagnow, C.P.; Beauchamp, G.K. Prenatal and postnatal flavor learning by human infants. Pediatrics. 2001, 107, E88. [Google Scholar] [CrossRef]
- Ockleford, E.M.; Vince, M.A.; Layton, C.; Reader, M.R. Responses of neonates to parents’ and others’ voices. Early Hum. Dev. 1988, 18, 27–36. [Google Scholar] [CrossRef]
- Fifer, W.P.; Moon, C.M. The role of mother’s voice in the organization of brain function in the newborn. Acta. Paediatr. Suppl. 1994, 397, 86–93. [Google Scholar] [CrossRef]
- Rosenblatt, J.S. The basis of synchrony in the behavioral interactions between the mother and her offspring in the laboratory rat. In Determinants of Infant Behavior III; Foss, B.M., Ed.; Methuen: London, UK, 1965; pp. 3–45. [Google Scholar]
- Rosenblatt, J.S. Stages in the early behavioral development of altricial young of selected species of non-primate mammals. In Growing Points in Ethology; Bateson, P.P.G., Hinde, R.A., Eds.; Cambridge University Press: New York, NY, USA, 1976; pp. 345–383. [Google Scholar]
- Rosenblatt, J.S. The sensorimotor and motivational bases of early behavioral development of selected altricial mammals. In Ontogeny of Learning and Memory; Spear, N.E., Campbell, B.A., Eds.; Lawrence Erlbaum: Cambridge, UK, 1979; pp. 1–38. [Google Scholar]
- Larson, M.A.; Stein, B.E. The use of tactile and olfactory cues in neonatal orientation and localisation of the nipple. Dev. Psychobiol. 1984, 17, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.; Distel, H. Olfactory guidance of nipple-search behaviour in newborn rabbits. In Ontogeny of Olfaction; Breipohl, W., Ed.; Springer-Verlag: Berlin, Germany, 1986; pp. 243–254. [Google Scholar]
- Fitzgerald, M. The development of nociceptive circuits. Nature Rev. Neurosci. 2005, 6, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Serra, J.; Nowak, R. Olfactory preference for own mother and litter in 1-day-old rabbits and its impairment by thermotaxis. Dev. Psychobiol. 2008, 50, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Nizhnikov, M.E.; Petrov, E.S.; Varlinskaya, E.I.; Spear, N.E. Newborn rats’ first suckling experience: Taste differentiation and suckling plasticity. Physiol. Behav. 2002, 76, 181–196. [Google Scholar] [CrossRef]
- Smith, K.K. Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution. 1997, 51, 1663–1678. [Google Scholar] [CrossRef]
- Reynolds, M.L.; Cavanagh, M.E.; Dziegielewska, K.M.; Hinds, L.A.; Saunders, N.R.; Tyndale-Biscoe, C.H. Postnatal development of the telencephalon of the Tammar wallaby (Macropus eugenii). Anat. Embryol. 1985, 173, 81–94. [Google Scholar] [CrossRef]
- McManus, J.J. Didelphis virginiana. Mamm. Species 1974, 40, 1–6. [Google Scholar] [CrossRef]
- Tyndale-Biscoe, C.H.; Janssens, P.A. Introduction. In The Developing Marsupial: Models for Biomedical Research; Tyndale-Biscoe, C.H., Janssens, P.A., Eds.; Springer-Verlag: Heidelberg, Germany, 1988; pp. 1–7. [Google Scholar]
- Darlington, R.B.; Dunlop, S.A.; Finlay, B.L. Neural development in metatherian and eutherian mammals: Variation and constraint. J. Comp. Neurol. 1999, 411, 359–368. [Google Scholar] [CrossRef]
- Gemmell, R.T.; Nelson, J. Ultrastructure of the olfactory system of three newborn marsupial species. Anat. Rec. 1988, 221, 655–662. [Google Scholar] [CrossRef]
- Gemmell, R.T.; Nelson, J. Vestibular system of the newborn marsupial cat Dasyurus hallucatus. Anat. Rec. 1989, 225, 203–208. [Google Scholar] [CrossRef]
- Veitch, C.; Nelson, J.; Gemmell, R.T. Birth in the brushtail possum, Trichosurus vulpecula (Marsupiala: Phalangeridae). Aust. J. Zool. 2000, 48, 691–700. [Google Scholar] [CrossRef]
- Gemmell, R.T.; Peters, B.; Nelson, J. Ultrastructural identification of Merkel cells around the mouth of the newborn marsupial. Anat. Embryol. 1988, 177, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Waite, P.M.E.; Marotte, L.R.; Leamey, C.A. Timecourse of development of the wallaby trigeminal pathway. 1. Periphery to brain-stem. J. Comp. Neurol. 1994, 350, 75–95. [Google Scholar] [PubMed]
- Malan, A.I.; Malan, A.P.; Curson, H.H. The influence of age on (a) amount and (b) nature and composition of the allantoic and amniotic fluids in the merino ewe. Onderstepoort J. vet. Sci. Anim. Ind. 1937, 9, 205–221. [Google Scholar]
- Cloete, J.H.L. Prenatal growth in the merino sheep. Onderetepoort. J. vet. Sci. Anim. Ind. 1939, 13, 417–558. [Google Scholar]
- Mellor, D.J. Vascular anastomosis and fusion of foetal membranes in multiple pregnancy in sheep. Res., Vet., Sci. 1969, 10, 361–367. [Google Scholar] [CrossRef]
- Wintour, E.M.; Barnes, A.; Brown, E.; Haroy, K.J.; Horacek, I.; McDougall, J.G.; Scroggins, B.A. Regulation of amniotic fluid volume and composition in the ovine fetus. Obstet. Gynecol. 1978, 52, 689–693. [Google Scholar]
- Wood, C. Weightlessness: Its implication for the human fetus. J. Obstet. Gynaecol. Brit. Commonw. 1970, 77, 333–336. [Google Scholar] [CrossRef]
- Adamsons, K.J.; Towell, M.E. Thermal homeostasis in the fetus and newborn. Anesthesiology. 1965, 26, 531–548. [Google Scholar] [CrossRef]
- Dawes, G.S. Breathing and rapid-eye-movement sleep before birth. In Foetal and Neonatal Physiology. Proceedings of the Sir Joseph Barcroft Centenary Symposium; Comline, R.S., Cross, K.W., Dawes, G.S., Nathanielsz, P.W., Eds.; Cambridge University Press: Cambridge, UK, 1973; pp. 49–62. [Google Scholar]
- Power, G.G. Biology of temperature: The mammalian fetus. J. Dev. Physiol. 1989, 12, 295–304. [Google Scholar]
- Gunn, T.R.; Johnston, B.M.; Iwamoto, H.S.; Fraser, M.; Nicholls, M.G.; Gluckman, P.D. Haemodynamic and catecholamine responses to hypothermia in the fetal sheep in utero. J. Dev. Physiol. 1985, 7, 241–249. [Google Scholar]
- Gunn, T.R.; Butler, J.; Gluckman, P.D. Metabolic and hormonal responses to cooling the fetal sheep in utero. J. Dev. Physiol. 1986, 8, 55–66. [Google Scholar]
- Gunn, T.R.; Ball, K.T.; Gluckman, P.D. Reversible umbilical cord occlusion: Effects on thermogenesis in utero. Pediatr. Res. 1991, 30, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Gunn, T.R.; Johnston, B.M. The effect of cooling on breathing and shivering in unanaesthetised fetal lambs in utero. J. Physiol. 1993, 343, 495–506. [Google Scholar] [CrossRef]
- Eales, F.A.; Small, J. Summit metabolism in newborn lambs. Res. Vet. Sci. 1980, 29, 211–218. [Google Scholar] [CrossRef]
- Mellor, D.J.; Stafford, K.J. Animal welfare implications of neonatal mortality and morbidity in farm animals. Vet. J. 2004, 168, 118–133. [Google Scholar] [CrossRef]
- Derbyshire, S.W.G. Fetal pain: Do we know enough to do the right thing? Reprod. Health Matters 2008, 16, 117–126. [Google Scholar] [CrossRef]
- Royal College of Obstetricians and Gynaecologists. Fetal Awareness: Report of a Working Party; Copies available at RCOG, 27 Sussex Place, Regent’s Park, London NW1 4RG, UK; RCOG Press: London, UK, 1997. [Google Scholar]
- Mellor, D.J.; Murray, L. Effects of tail docking and castration on behaviour and plasma cortisol concentrations in young lambs. Res. Vet. Sci. 1989, 46, 387–391. [Google Scholar] [CrossRef]
- Sutherland, M.H.; Bryer, P.J.; Krebs, N.; McGlone, J.J. Tail docking of pigs: Acute physiological and behavioural responses. Animal. 2008, 2, 292–297. [Google Scholar] [CrossRef]
- Stafford, K.J.; Mellor, D.J. Painful husbandry procedures in livestock and poultry. In Improving Animal Welfare: A Practical Approach, 2nd ed.; Grandin, T., Ed.; CABI: Wallingford, UK, 2015; pp. 96–124. [Google Scholar]
- Lagercrantz, H. The birth of consciousness. Early Hum. Dev. 2009, 85, S57–S58. [Google Scholar] [CrossRef]
- Bradley, R.M.; Mistretta, C.M. The gustatory sense in foetal sheep during the last third of gestation. J. Physiol. 1973, 231, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.M.; Mistretta, C.M. Swallowing in fetal sheep. Science. 1973, 179, 1016–1017. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.M.; Mistretta, C.M. The sense of taste and swallowing activity in foetal sheep. In Foetal and Neonatal Physiology. Proceedings of the Sir Joseph Barcroft Centenary Symposium; Comline, R.S., Cross, K.W., Dawes, G.S., Nathanielsz, P.W., Eds.; Cambridge Univ. Press: Cambridge, UK, 1973; pp. 77–81. [Google Scholar]
- Alexander, D.P.; Nixon, D.A.; Widdas, W.F.; Wohlzogen, F.X. Renal function in the sheep foetus. J. Physiol. 1958, 140, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.A. Deglutition by normal and anencephalic fetuses. Obstet. Gynecol. 1965, 25, 289–297. [Google Scholar] [PubMed]
- Adams, F.; Desilets, D.T.; Towers, B. Physiology of the fetal larynx and lung. Ann. Otol. Rhinol. Lar. 1967, 76, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Adams, F.; Desilets, D.T.; Towers, B. Control of flow of fetal lung fluid at the laryngeal outlet. Resp. Physiol. 1967, 2, 302–309. [Google Scholar] [CrossRef]
- Berton, J.P. Effets de la ligature de la trachea chez le foetus de mouton ‘a la fin du I’ et au 2’ tiers de la gestation accumulation de liquide dans les ramifications bronchiques primitives et anarsaque foeto-placentaire. Bull. Ass. Anat., Paris 1969, 145, 74–96. [Google Scholar]
- Mellor, D.J.; Slater, J.S. Daily changes in amniotic and allantoic fluid during the last three months of pregnancy in conscious, unstressed ewes with catheters in their foetal fluid sacs. J. Physiol. 1971, 217, 573–604. [Google Scholar] [CrossRef]
- Mellor, D.J.; Slater, J.S. Daily changes in foetal urine and relationships with amniotic and allantoic fluid and maternal plasma during the last two months of pregnancy in conscious, unstressed ewes with chronically implanted catheters. J. Physiol. 1972, 227, 503–525. [Google Scholar] [CrossRef] [Green Version]
- Mellor, D.J.; Slater, J.S. The composition of maternal plasma and foetal urine after feeding and drinking in chronically catheterized ewes during the last two months of pregnancy. J. Physiol. 1973, 234, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Mellor, D.J.; Slater, J.S. Some aspects of the physiology of sheep foetal fluids. Br. Vet. J. 1974, 130, 238–248. [Google Scholar] [CrossRef]
- Rankin, J.H.; Gresham, E.L.; Battaglia, F.C.; Makaoski, E.L.; Meschia, G. Measurement of fetal renal inulin clearance in a chronic sheep preparation. J. Appl. Physiol. 1972, 32, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Robillard, J.E.; Thayer, K.; Kulvinskas, C.; Smith, F.G. Spontaneous activity of the fetal bladder. Am. J. Obstet. Gynecol. 1974, 118, 548–551. [Google Scholar] [CrossRef]
- Pearson, R.A.; Mellor, D.J. The composition of ruminal and abomasal fluid from catheterised fetal sheep during the last 50 days of pregnancy. Res. Vet. Sci. 1976, 21, 100–101. [Google Scholar] [CrossRef]
- Pearson, R.A.; Mellor, D.J. Changes in fetal fluid composition during the last 60 days of pregnancy in catheterised goats. J. Reprod. Fert. 1977, 50, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Shermeta, D.W.; Oesch, I. Characteristics of fetal lung fluid production. J. Pediatr. Surg. 1981, 16, 943–946. [Google Scholar] [CrossRef]
- Ross, M.; Nijland, M. Fetal swallowing: Relation to amniotic fluid regulation. Clin. Obstet. Gynecol. 1997, 40, 352–365. [Google Scholar] [CrossRef]
- Bradley, R.M. Electrophysiological investigations of intravascular taste using perfused rat tongue. Am. J. Physiol. 1973, 224, 300–304. [Google Scholar] [CrossRef]
- Mistretta, C.M.; Bradley, R.M. Taste responses in sheep medulla: Changes during development. Science 1978, 202, 535–537. [Google Scholar] [CrossRef]
- Bradley, R.M.; Cheal, M.L.; Kim, Y.H. Quantitative analysis of developing epiglottal taste buds in sheep. J. Anat. 1980, 130, 25–32. [Google Scholar]
- Ganchrow, J.R.; Mennella, J.A. The ontogeny of human flavor perception. In Handbook of Olfaction and Gustation; Doty, R.L., Ed.; Michael Dekker: New York, NY, USA, 2003; pp. 823–846. [Google Scholar]
- Ferrell, F. Taste bud morphology in the fetal and neonatal dog. Neurosci. Biobehav. Rev. 1984, 8, 175–183. [Google Scholar] [CrossRef]
- Stedman, H.M.; Mistretta, C.M.; Bradley, R.M. Quantitative study of cat epiglottal taste buds during development. J. Anat. 1983, 136, 821–827. [Google Scholar] [PubMed]
- Schaeffer, J.P. The lateral wall of the cavum nasi in man with special references to various developmental stages. J. Morphol. 1910, 21, 613–702. [Google Scholar] [CrossRef]
- Schaal, B.; Orgeur, P.; Arnould, C. Olfactory preferences in newborn lambs: Possible influence of prenatal experience. Behaviour. 1995, 132, 351–365. [Google Scholar]
- Schaal, B.; Marlier, L.; Soussignan, R. Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behav. Neurosci. 1998, 112, 1438–1449. [Google Scholar] [CrossRef]
- Marlier, L.; Schaal, B.; Gaugler, C.; Messer, J. Olfaction in premature human newborns: Detection and discrimination abilities two months before gestational term. In Chemical signals in vertebrates 9; Marchlewska-Koj, A., Lepri, J.J., Müller-Schwarze, D., Eds.; Kluwer Academic: New York, NY, USA, 2001; pp. 205–209. [Google Scholar]
- Schaal, B.; Orgeur, P.; Lecanuet, J.P.; Locatelli, A.; Granier-Deferre, C.; Poindron, P. Chimioréception nasale in utero: Expériences préliminaires chez le fœtus ovin. Comptes Rendus l’Academie Sci. Serie III, Paris 1991, 113, 319–325. [Google Scholar]
- Vestibular System. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Vestibular_system (accessed on 15 August 2019).
- Elliott, G.B.; Elliott, K.A. Some pathological, radiological and clinical implications of the precocious development of the human ear. Laryngoscope. 1964, 74, 1160–1171. [Google Scholar] [CrossRef]
- Timor-Tritsch, I.E. The effect of external stimuli on fetal behaviour. Eur. J. Obstet. Gynecol. Reprod. Biol. 1986, 21, 321–329. [Google Scholar] [CrossRef]
- Lecanuet, J.-P.; Jacquet, A.Y. Fetal responsiveness to maternal passive swinging in low heartrate variability state: Effect of stimulation direction and duration. Dev. Psychobiol. 2002, 40, 57–67. [Google Scholar] [CrossRef]
- Jamon, M. The development of vestibular system and related functions in mammals: Impact of gravity. Front. Integr. Neurosci. 2014, 8, 11. [Google Scholar] [CrossRef]
- Scibetta, J.J.; Rosen, M.G. Response evoked by sound in the fetal guinea-pig. Obstet. Gynecol. 1969, 33, 830–836. [Google Scholar] [PubMed]
- Vince, M.A. postnatal effects of prenatal sound stimulation in the guinea pig. Anim. Behav. 1979, 27, 908–918. [Google Scholar] [CrossRef]
- Hill, K.G.; Cone-Wesson, B.; Liu, G.B. Development of auditory function in the tammar wallaby Macropus eugenii. Hearing Res. 1998, 117, 97–106. [Google Scholar] [CrossRef]
- Bench, R.J.; Anderson, J.H.; Hoare, M. Measurement system for fetal audiometry. J. Acoust. Soc. Am. 1970, 47, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.N.; Toner, J.N.; Vince, M.A.; Weller, C. Recording the fetal lamb’s sound environment using an implantable radiohydrophone. J. Physiol. 1983, 343, 6–7. [Google Scholar]
- Gerhardt, K.J. Characteristics of the fetal sheep sound environment. Semin. Perinatol. 1989, 13, 362–370. [Google Scholar]
- Gerhardt, K.J.; Abrams, R.M. The sound environment of the fetal sheep in utero. Fed. Proc. 1987, 46, 356–358. [Google Scholar]
- Krueger, C.; Garvan, C. Emergence and retention of learning in early fetal development. Infant Behav. Dev. 2014, 37, 162–173. Available online: https://www.academia.edu/16783691/Emergence_and_retention_of_learning_in_early_fetal_development (accessed on 16 August 2019). [CrossRef]
- Vince, M.A.; Armitage, S.E. Sound stimulation available to the sheep foetus. Reprod. Nutr. Dev. 1980, 20, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Vince, M.A.; Armitage, S.E.; Baldwin, B.A.; Toner, Y.; Moore, B.C.J. The sound environment of the fetal sheep. Behaviour. 1982, 81, 296–315. [Google Scholar]
- Vince, M.A.; Billing, A.E.; Baldwin, B.A.; Toner, J.N.; Weller, C. Maternal vocalisations and other sounds in the fetal lamb’s sound environment. Early Hum. Dev. 1985, 11, 801–806. [Google Scholar] [CrossRef]
- Sèbe, F.; Aubin, T.; Boué, A.; Poindron, P. Mother–young vocal communication and acoustic recognition promote preferential nursing in sheep. J. Exp. Biol. 2008, 211, 3554–3562. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.M.; Fifer, W.P. Newborns prefer a prenatal version of mother’s voice. Infant Behav. Dev. 1990, 13, 530. [Google Scholar]
- Fifer, W.P.; Moon, C. Psychobiology of newborn auditory preferences. Semin. Perinatol. 1989, 13, 430–433. [Google Scholar] [PubMed]
- Graven, S.N.; Browne, J.V. Visual development in the human fetus, infant, and young child. Newborn Infant Nurs. Rev. 2008, 8, 194–201. [Google Scholar] [CrossRef]
- Dunlop, S.A.; Coleman, L.-A.; Harman, A.M.; Beazley, L.D. Development of the marsupial primary visual pathway. In The Developing Marsupial: Models for Biomedical Research; Tyndale-Biscoe, C.H., Janssens, P.A., Eds.; Springer- Verlag: Heidelberg, Germany, 1988; pp. 117–131. [Google Scholar]
- Snead, O.C.; Stephens, H.I. Ontogeny of cortical and subcortical electroencephalographic events in unrestrained neonatal and infant rats. Exp. Neurol. 1983, 82, 249–269. [Google Scholar] [CrossRef]
- Pearce, A.R.; James, A.C.; Mark, R.F. Development of functional connections between thalamic fibres and the visual cortex of the wallaby revealed by current source density analysis in vivo. J. Comp. Neurol. 2000, 418, 441–456. [Google Scholar] [CrossRef]
- Denton, D.A. The Primordial Emotions: The Dawning of Consciousness; Oxford University Press: London, UK, 2006. [Google Scholar]
- Denton, D.A.; McKinley, M.J.; Farrell, M.; Egan, G.F. The role of primordial emotions in the evolutionary origin of consciousness. Conscious. Cogn. 2009, 18, 500–514. [Google Scholar] [CrossRef]
- Varendi, H.; Porter, R.H.; Winberg, I. Attractiveness of amniotic fluid odor: Evidence of prenatal olfactory learning? Acta Prediatr. 1996, 85, 1223–1227. [Google Scholar] [CrossRef]
- Behavioural Neuroscience, Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Behavioral_neuroscience (accessed on 28 July 2019).
- Learning. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Learning (accessed on 29 July 2019).
- Domjan, M.; Cusato, B.; Villarreal, R. Pavlovian feed-forward mechanisms in the control of social behaviour. Behav. Brain Sci. 2000, 23, 235–282. [Google Scholar] [CrossRef]
- Staddon, J.E.R.; Cerutti, D.T. Operant conditioning. Annu. Rev. Psychol. 2003, 54, 115–144. [Google Scholar] [CrossRef] [PubMed]
- Operant Conditioning. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Operant_conditioning (accessed on 30 July 2019).
- Habituation. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Habituation (accessed on 31 July 2019).
- Sensitization. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Sensitization (accessed on 31 July 2019).
- Cherry, K. What is operant conditioning and how does it work? How reinforcement and punishment modify behavior. Verywell Mind, 2019. Available online: https://www.verywellmind.com/operant-conditioning-a2-2794863 (accessed on 30 July 2019).
- Kent, J.P. Experiments on the relationship between the hen and chick (Gallus gallus): The role of the auditory mode in recognition and the effects of maternal separation. Behaviour. 1987, 102, 1–14. [Google Scholar] [CrossRef]
- Pittet, F.; Coignard, M.; Houdelier, C.; Richard-Yris, M.-A.; Lumineau, S. Age Affects the Expression of Maternal Care and Subsequent Behavioural Development of Offspring in a Precocial Bird. PloS One 2012, 7, e36835. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J. Positive welfare states and promoting environment-focused and animal-to-animal interactive behaviours. N. Z. Vet. J. 2015, 63, 9–16. [Google Scholar] [CrossRef]
- Goldman, J.G. What is classical conditioning? (Why does it matter?). Scientific American, January 2012. Available online: https://blogs.scientificamerican.com/thoughtful-animal/what-is-classical-conditioning-and-why-does-it-matter/(accessed on 29 July 2019).
- Pearson, R.A.; Mellor, D.J. Some behavioural and physiological changes in pregnant goats and sheep during adaptation to laboratory conditions. Res. Vet. Sci. 1976, 20, 215–217. [Google Scholar] [CrossRef]
- Hargreaves, A.L.; Hutson, G.D. The effect of gentling on heart rate, flight distance and aversion of sheep to a handling procedure. Appl. Anim. Behav. Sci. 1990, 26, 243–252. [Google Scholar] [CrossRef]
- Mellor, D.J. Taming and training of pregnant sheep and goats and of newborn lambs, kids and calves before experimentation. ATLA 2004, 32, 143–146. [Google Scholar] [CrossRef]
- Nicklaus, S. Relationships between early flavor exposure, and food acceptability and neophobia. In Flavor: From Food to Behaviors, Wellbeing and Health; Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 293–311. Available online: https://hal.archives-ouvertes.fr/hal-01512164/document (accessed on 3 September 2019).[Green Version]
- DiPietro, J.A. Psychological and psychophysiological considerations regarding the maternal–fetal relationship. Infant Child. Dev. 2010, 19, 27–38. [Google Scholar] [CrossRef]
- Bear, R.J.; Mellor, D.J. Kangaroo mother care (1): Alleviation of physiological problems in premature infants. JPE 2017, 26, 117–124. [Google Scholar] [CrossRef]
- Bear, R.J.; Mellor, D.J. Kangaroo mother care (2): Potential beneficial impacts on brain development in premature infants. JPE 2017, 26, 177–184. [Google Scholar] [CrossRef]
- Chiara, M.; Portas, C.M.; Krakow, K.; Allen, P.; Josephs, O.; Armony, J.L.; Frith, C.D. Auditory processing across the sleep-wake cycle: Simultaneous EEG and fMRI monitoring in humans. Neuron. 2000, 28, 991–999. [Google Scholar]
- Implicit Learning. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Implicit_learning (accessed on 19 August 2019).
- Anand, K.J.S.; Hickey, P.R. Pain and its effects in the human neonate and fetus. N. Engl. J. Med. 1987, 317, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Lord Rawlinson of Ewell. Human Sentience Before Birth; House of Lords Report by the Commission of Inquiry into Fetal Sentience; House of Lords: London UK, 1996.
- Kightley, R. Fetal consciousness and the midwife. Br. J. Midwif. 2005, 13, N11. [Google Scholar] [CrossRef]
- O’Keane, V.; Scott, J. From “obstetric complications” to a maternal-fetal origin hypothesis of mood disorder. Br. J. Psych. 2005, 186, 367–368. [Google Scholar] [CrossRef]
- Chamberlain, D.B. Windows to the Womb: Revealing the Conscious. Baby from Conception to Birth; North Atlantic Books: Berkeley, CA, USA, 2013. [Google Scholar]
- Dawes, G.S.; Fox, H.E.; Leduc, B.M.; Liggins, G.C.; Richards, R.T. Respiratory movements and rapid eye movement sleep in the foetal lamb. J. Physiol. 1972, 220, 119–143. [Google Scholar] [CrossRef] [Green Version]
- Ruckebusch, Y. Development of sleep and wakefulness in the foetal lamb. Electroencephalog. Clin. Neurophysiol. 1972, 32, 119–128. [Google Scholar] [CrossRef]
- Szeto, H.H.; Hinman, D.J. Prenatal development of sleep-wake patterns in sheep. Sleep. 1985, 8, 347–355. [Google Scholar] [CrossRef]
- Nijhuis, J.G. Behavioural states: Concomitants, clinical implications and assessment of the condition of the nervous system. Eur. J. Obstet. Gynecol. Reprod. Biol. 1985, 21, 301–308. [Google Scholar] [CrossRef]
- Nijhuis, J.G. Fetal behavior. Neurobiol. Aging 2003, 24, S41–S46; discussion S47–S49, S51–S52. [Google Scholar] [CrossRef]
- de Vries, J.I.; Visser, G.H.; Prechtl, H.F. The emergence of fetal behaviour: III. Individual differences and consistencies. Early Hum. Dev. 1988, 16, 85–103. [Google Scholar] [CrossRef]
- Pilai, M.; James, D. Behavioural states in normal mature human fetuses. Arch. Dis. Child. 1990, 65, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Gingras, J.L.; O’Donnell, K.J. State control in the substance-exposed fetus: I. The fetal neurobehavioral profile: An assessment of fetal state, arousal, and regulation competency. Ann. N.Y. Acad. Sci. 1998, 846, 262–276. [Google Scholar] [CrossRef] [PubMed]
- de Vries, J.I.P.; Hopkins, B. Fetal movements and postures: What do they mean for postnatal development. In Prenatal Development of Postnatal Functions; Hopkins, B., Johnson, S.P., Eds.; Praeger: Connecticut, CT, USA, 2005; pp. 177–219. [Google Scholar]
- Kolb, B.; Clarke, M.; Ghali, L. Brain plasticity and behaviour in the developing brain. J. Can. Child. Adolesc. Psychiatry. 2011, 20, 265–276. [Google Scholar]
- Neuroplasticity. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Neuroplasticity (accessed on 5 September 2019).
- Mateos-Aparicio, P.; Rodríguez-Moreno, A. The Impact of Studying Brain Plasticity. Front. Cell. Neurosci. 2019, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Hepper, P.G.; Wells, D.L. Perinatal olfactory learning in the domestic dog. Chem. Senses 2006, 31, 207–212. [Google Scholar] [CrossRef]
- Mickley, G.A.; Kenmuir, C.L.; Dengler-Crish, C.M.; McMullen, C.; McConnell, A.; Valentine, E. Repeated Exposures to Gustatory Stimuli Produce Habituation or Positive Contrast Effects in Perinatal Rats. Dev. Psychobiol. 2004, 44, 176–188. [Google Scholar] [CrossRef]
- Saint-Dizier, H.; Lévy, F.; Ferreira, G. Influence of the Mother in the Development of Flavored-Food Preference in Lambs. Dev. Psychobiol. 2007, 49, 98–106. [Google Scholar] [CrossRef]
- Gruest, N.; Richer, P.; Hars, P. Emergence of Long-Term Memory for Conditioned Aversion in the Rat Fetus. Dev. Psychobiol. 2004, 44, 189–198. [Google Scholar] [CrossRef]
Imprinting or Exposure Learning | Classical Conditioning | Operant Conditioning | Habituation or Desensitisation |
---|---|---|---|
This is any kind of phase-sensitive learning that occurs at a particular age or life stage, is rapidly acquired, and is apparently independent of the consequences of behaviour. Expressed generically, an animal or person learns the characteristics of some stimulus which is then said to be imprinted on the subject. Once imprinted, exposure to the stimulus elicits particular behaviours that are likely associated with consciously perceived subjective experiences. A well-known form is “filial imprinting”. This occurs where a young animal narrows its social preferences to an object (typically a parent) as a result of exposure to that object. This is obvious in the hatchlings of birds such as waders, water fowl, and gamebirds, which imprint on their parents, then follow them around [170] and when separated make “distress calls” [177,178]. Similar behaviours are observable in newborn mammals such as lambs, kids, calves, fawns, and foals, which need to remain near their mobile mothers [14,18,107,179]. Thus, imprinting is a learning mechanism that likely contributes to rapid mother–young bonding as occurs in neurologically mature hatchlings (not discussed here) and newborn mammals (Section 3). | Also known as Pavlovian conditioning, this form of associative learning typically involves repeatedly pairing an unconditioned stimulus, which evokes a specific response, with another previous neutral stimulus, which does not evoke that response [171,180]. When the stimuli are presented separately after conditioning has taken place, the response occurs both to the unconditioned stimulus and to the other unrelated (now conditioned) stimulus. In Pavlov’s historic study, initially a dog presented with meat salivated but did not do so when a bell rang. After conditioning, which involved repeatedly inducing the dog to salivate by presenting meat and then ringing a bell, both stimuli, presented separately, caused the dog to salivate. Classical conditioning involves automatic or reflexive responses, and thus the underlying mechanisms operate below the level of consciousness [180]. Although the operation and linking of these mechanisms is involuntary, the subjective elements of the resulting behavioural responses are experienced consciously. For example, Pavlovian conditioning has been implicated as contributing to the establishment and maintenance of a range of social behaviours, including sexual behaviour, mother–young bonding, maternal suckling and lactation, and social grooming, where their attendant subjective elements are undoubtedly experienced consciously [171]. | This method of learning occurs through animals consciously associating “rewarding” (i.e., “reinforcing”) or “punishing” outcomes with particular behaviours. Thus, pleasant or unpleasant consequences inform choices about which behaviours are preferred or avoided, the former usually being retained and the latter rejected or modified [172,173]. Accordingly, investigations of such learning focus on behaviours that can be changed because of their specific experiential outcomes. Application of the principle that “reinforcement” and “punishment” can influence conscious behavioural choices extends well beyond the laboratory setting as such learning often also plays a powerful role in everyday learning [176]. Detailed accounts of various operant conditioning methodologies, their wide applications, and observed neurobiological correlates are available elsewhere [172,173,176]. | This is an example of non-associative learning in which there is a progressive diminution of a behavioural response with repetition of a stimulus, such that, following an initial response to the stimulus, the frequency and/or strength of the subsequent responses diminish with repeated stimulation [170,174]. As noted above, the response may be detected by overt behavioural changes and/or internal physiological reactions. For example, pregnant ewes brought from outdoor field conditions into unfamiliar housing and placed individually in adjacent pens, when handled initially, invariably exhibited aggressive, escape, and/or excitable behaviour [181]. However, after 6–8 weeks of daily gentle handling for 5–10 minutes this behaviour was replaced by calm, relaxed, and even positive responses when staff approached. These overt signs of habituation were paralleled by a progressive decline in the cortisol stress and heartrate responses to handling from high initial values to no detectable change [181]. Subsequently, in another laboratory, gentling of wethers was also shown to reduce their heart rate, flight distance, and aversion responses to handling [182]. Regarding the first case, undertaken as a pre-study taming and training protocol for pregnant ewes [181,183], initially the hands-on close proximity of the staff was obviously aversiveness, but as habituation progressed the animals often came forward to greet staff when they entered the pen and then nuzzled them during the physical contact. This suggests that habituation learning predominated at first [174]. However, elements of operant conditioning might also have contributed in those animals that eventually elicited further gentle stroking by nuzzling the staff, stroking which arguably then represented a form of positive reinforcement [173]. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellor, D.J. Preparing for Life After Birth: Introducing the Concepts of Intrauterine and Extrauterine Sensory Entrainment in Mammalian Young. Animals 2019, 9, 826. https://doi.org/10.3390/ani9100826
Mellor DJ. Preparing for Life After Birth: Introducing the Concepts of Intrauterine and Extrauterine Sensory Entrainment in Mammalian Young. Animals. 2019; 9(10):826. https://doi.org/10.3390/ani9100826
Chicago/Turabian StyleMellor, David J. 2019. "Preparing for Life After Birth: Introducing the Concepts of Intrauterine and Extrauterine Sensory Entrainment in Mammalian Young" Animals 9, no. 10: 826. https://doi.org/10.3390/ani9100826
APA StyleMellor, D. J. (2019). Preparing for Life After Birth: Introducing the Concepts of Intrauterine and Extrauterine Sensory Entrainment in Mammalian Young. Animals, 9(10), 826. https://doi.org/10.3390/ani9100826