Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods for Measuring Methane
2.1. Respiration Chamber
2.2. The SF6 Technique
2.3. Breath Sampling during Milking and Feeding
2.4. GreenFeed
2.5. Laser Methane Detector
3. Agreement between Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Myhre, G.; Shindell, D.; Bréon, F.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant enteric methane mitigation: A review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- Garnsworthy, P.C. The environmental impact of fertility in dairy cows: A modelling approach to predict methane and ammonia emissions. Anim. Feed Sci. Technol. 2004, 112, 211–223. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.A.N.; Crompton, L.A.; Reynolds, C.K. Ruminant Nutrition Regimes to Reduce Methane and Nitrogen Emissions—A Meta-Analysis of Current Databases. Final Project Report MDC 07/04/A. 2008. Available online: https://dairy.ahdb.org.uk/non_umbraco/download.aspx?media=5903 (accessed on 18 October 2019).
- Hammond, K.J.; Crompton, L.A.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.R.; O’Kiely, P.; Kebreab, E.; Eugenè, M.A.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.; Mackay, T. Introduction to Quantitative Genetics, 4th ed.; Longman: Harlow, UK, 1996; p. 480. [Google Scholar]
- Barnhart, H.X.; Kosinski, A.S.; Haber, M.J. Assessing Individual Agreement. J. Biopharm. Stat. 2007, 17, 697–719. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Adolph, S.C.; Hardin, J.S. Estimating phenotypic correlations: Correcting for bias due to intraindividual variability. Funct. Ecol. 2007, 21, 178–184. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storm, I.M.L.D.; Hellwing, A.L.F.; Nielson, N.I.; Madsen, J. Methods for Measuring and Estimating Methane Emission from ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef] [PubMed]
- de Haas, Y.; Pszczola, M.; Soyeurt, H.; Wall, E.; Lassen, J. Phenotypes to genetically reduce greenhouse gas emissions in dairying. J. Dairy Sci. 2017, 100, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.M.; Bryant, A.M.; Leng, R.A. Rates of production of methane in the rumen and large intestine of sheep. Br. J. Nutr. 1976, 36, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Blaxter, K.L.; Joyce, J.P. The accuracy and ease with which measurements of respiratory metabolism can be made with tracheostomized sheep. Br. J. Nutr. 1963, 17, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, T.D.; Coleman, M.D.; Innocenti, F.; Tompkins, J.; Connor, A.; Garnsworthy, P.C.; Moorby, J.M.; Reynolds, C.K.; Waterhouse, A.; Wills, D. Determination of the absolute accuracy of UK chamber facilities used in measuring methane emissions from livestock. Measurement 2015, 66, 272–279. [Google Scholar] [CrossRef]
- Donoghue, K.A.; Bird-Gardiner, T.; Arthur, P.F.; Herd, R.M.; Hegarty, R.F. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle. J. Anim. Sci. 2016, 94, 1438–1445. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Hickey, S.M.; Young, E.A.; Dodds, K.G.; MacLean, S.; Molano, G.; Sandoval, E.; Kjestrup, H.; Harland, R.; Hunt, C.; et al. Heritability estimates of methane emissions from sheep. Animal 2013, 7 (Suppl. 2), 316–321. [Google Scholar] [CrossRef] [Green Version]
- Hellwing, A.L.F.; Lund, P.; Weisbjerg, M.R.; Brask, M.; Hvelplund, T. Technical note: Test of a low-cost and animal-friendly system for measuring methane emissions from dairy cows. J. Dairy Sci. 2012, 95, 6077–6085. [Google Scholar] [CrossRef]
- Johnson, K.A.; Huyler, M.; Westberg, H.H.; Lamb, B.; Zimmerman, P.R. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Berndt, A.; Boland, T.M.; Deighton, M.H.; Gere, J.I.; Grainger, C.; Hegarty, R.S.; Iwaasa, A.D.; Koolaard, J.P.; Lassey, K.R.; Luo, D.; et al. Guidelines for Use of Sulphur Hexafluoride (SF6) Tracer Technique to Measure Enteric Methane Emissions from Ruminants; Lambert, M.G., Ed.; New Zealand Agricultural Greenhouse Gas Research Centre: Palmerston North, New Zealand, 2014; p. 166. [Google Scholar]
- Deighton, M.H.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Boland, T.M.; Wales, W.J.; Moat, P.J. A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2014, 197, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Grainger, C.; Clarke, T.; McGinn, S.M.; Auldist, M.J.; Beauchemin, K.A.; Hannah, M.C.; Waghorn, G.C.; Clark, H.; Eckard, R.J. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J. Dairy Sci. 2007, 90, 2755–2766. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, C.; Yan, T.; Wills, D.A.; Murray, S.; Gordon, A.W. Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. J. Dairy Sci. 2012, 95, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Breider, I.S.; Wall, E.; Garnsworthy, P.C.; Pryce, J.E. Genetic relationships between methane emission and milk yield, live weight and dry matter intake. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Abstract No. 134, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Lassen, J.; Løvendahl, P.; Madsen, J. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J. Dairy Sci. 2012, 95, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Potterton, S.L.; Craigon, J.; Saunders, N.; Wilcox, R.H.; Hunter, M.; Goodman, J.R.; Garnsworthy, P.C. Variation in enteric methane emissions among cows on commercial dairy farms. Animal 2014, 8, 1540–1546. [Google Scholar] [CrossRef]
- Pszczola, M.; Rzewuska, K.; Mucha, S.T. Heritability of methane emissions from dairy cows over a lactation measured on commercial farms. J. Anim. Sci. 2017, 95, 4813–4819. [Google Scholar] [CrossRef]
- Difford, G.F.; Olijhoek, D.W.; Hellwing, A.L.F.; Lund, P.; Bjerring, M.A.; de Haas, Y.; Lassen, J.; Løvendahl, P. Ranking cows’ methane emissions under commercial conditions with sniffers versus respiration chambers. Acta. Agric. Scand. A Anim. Sci. 2018, 68, 25–32. [Google Scholar] [CrossRef]
- Negussie, E.; Lehtinen, J.; Mäntysaari, P.; Bayat, A.R.; Liinamo, A.-E.; Mäntysaari, E.A.; Lidauer, M.H. Non-invasive individual methane measurement in dairy cows. Animal 2017, 11, 890–899. [Google Scholar] [CrossRef]
- Madsen, J.; Bjerg, B.S.; Hvelplund, T.; Weisbjerg, M.R.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of methane production in ruminants. Livest. Sci. 2010, 129, 223–227. [Google Scholar] [CrossRef]
- Bell, M.J.; Saunders, N.; Wilcox, R.H.; Homer, E.M.; Goodman, J.R.; Craigon, J.; Garnsworthy, P.C. Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide. J. Dairy Sci. 2014, 97, 6536–6546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Difford, G.F.; Lassen, J.; Løvendahl, P. Interchangeability between methane measurements in dairy cows assessed by comparing precision and agreement of two non-invasive infrared methods. Comput. Electron. Agric. 2016, 124, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Lassen, J.; Løvendahl, P. Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J. Dairy Sci. 2016, 99, 1959–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breider, I.S.; Wall, E.; Garnsworthy, P.C. Heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows. J. Dairy Sci. 2019, 102, 7277–7281. [Google Scholar] [CrossRef]
- Hammond, J.K.; Humphries, D.J.; Crompton, L.A.; Green, C.; Reynolds, C.K. Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim. Feed Sci. Technol. 2015, 203, 41–52. [Google Scholar] [CrossRef]
- Velazco, J.I.; Cottle, D.J.; Hegarty, R.S. Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea. Anim. Prod. Sci. 2014, 54, 1737–1740. [Google Scholar] [CrossRef]
- Hammond, K.J.; Jones, A.K.; Humphries, D.J.; Crompton, L.A.; Reynolds, C.K. Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques. J. Dairy Sci. 2016, 99, 7904–7917. [Google Scholar] [CrossRef]
- Chagunda, M.G.G.; Ross, D.; Roberts, D.J. On the use of a laser methane detector in dairy cows. Comput. Electron. Agric. 2009, 68, 157–160. [Google Scholar] [CrossRef]
- Ricci, P.; Chagunda, M.G.G.; Rooke, J.; Houdijk, J.G.M.; Duthie, C.-A.; Hyslop, J.; Roehe, R.; Waterhouse, A. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers. J. Anim. Sci. 2014, 92, 5239–5250. [Google Scholar] [CrossRef]
- Sorg, D.; Mühlbach, S.; Rosner, F.; Kuhla, B.; Derno, M.; Meese, S.; Schwarm, A.; Kreuzerc, M.; Swalve, H. The agreement between two next-generation laser methane detectors and respiration chamber facilities in recording methane concentrations in the spent air produced by dairy cows. Comput. Electron. Agric. 2017, 143, 262–272. [Google Scholar] [CrossRef]
- Mühlbach, S.; Sorg, D.; Rosner, F.; Kecman, J.; Swalve, H.H. Genetic analyses for CH4 concentrations in the breath of dairy cows measured on-farm with the Laser Methane Detector. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Abstract No. 186, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Bakdash, J.Z.; Marusich, L.R. Repeated measures correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Torbeck, L.D. Coefficient of accuracy and concordance correlation coefficient: New statistics for methods comparison. J. Pharm. Sci. Technol. 1998, 52, 55–59. [Google Scholar]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.; Harper, M.T.; Weeks, H.; Branco, A.F.; Price, W.J.; Moate, P.J.; Deighton, M.H.; et al. Short communication: Comparison of the GreenFeed system with the sulfur hexafluoride tracer technique for measuring enteric methane emissions from dairy cows. J. Dairy Sci. 2016, 5461–5465. [Google Scholar] [CrossRef] [PubMed]
- Sorg, D.; Difford, G.F.; Mühlbach, S.; Kuhla, B.; Swalve, H.H.; Lassen, J.; Strabel, T.; Pszczola, M. Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows. Comput. Electron. Agric. 2018, 153, 285–294. [Google Scholar] [CrossRef]
Method | Purchase Cost 2 | Running Costs 2 | Labour 2 | Repeatability | Behaviour Alteration 3 | Throughput |
---|---|---|---|---|---|---|
Respiration chamber | High | High | High | High | High | Low |
SF6 technique | Medium | High | High | Medium | Medium | Medium |
Breath sampling during milking and feeding | Low 4 | Low | Low | Medium | None | High |
GreenFeed | Medium | Medium | Low | Medium | Low | Medium |
Laser methane detector | Low | Low | High | Low | Low-Medium | Medium |
Alternate Methods 1 Versus Respiration Chambers | ||||||||
---|---|---|---|---|---|---|---|---|
Method | N Cows | N Obs | Mean S.E. | Rep S.E. | Between-Cow CV 2 | Total CV | Correlation 3 (S.E.) | CCC 4 (S.E.) |
SF6 | 33 | 97 | 471 (14.3) | 0.44 (0.13) | 11.6 | 17.4 | 0.87 (0.08) | 0.30 (0.17) |
Respiration Chambers | 33 | 97 | 437 (10.7) | 0.36 (0.08) | 8.4 | 14.0 | ||
GreenFeed | 27 | 63 | 433 (8.7) | 0.64 (0.08) | 12.8 | 15.9 | 0.81 (0.10) | 0.41 (0.12) |
Respiration Chambers | 27 | 63 | 459 (6.5) | 0.51 (0.09) | 8.1 | 11.3 | ||
NDIR Peaks | 12 | 12 | 376 (12.1) | N/A | N/A | 11.1 | 0.89 (0.07) | 0.88 (0.10) |
Respiration Chambers | 12 | 12 | 377 (10.7) | N/A | N/A | 9.4 | ||
NDIR CO2 t1 | 20 | 60 | 573 (16.8) | 0.58 (0.11) | 10.1 | 13.1 | 0.72 (0.11) | 0.38 (0.21) |
Respiration Chambers | 20 | 60 | 521 (13.7) | 0.61 (0.12) | 9.1 | 11.7 | ||
PAIR CO2 t2 | 21 | 21 | 555 (21.3) | N/A | N/A | 11.3 | 0.80 (0.08) | 0.70 (N/A) |
Respiration Chambers | 21 | 21 | 585 (14.1) | N/A | N/A | 17.1 | ||
Alternate methods 1 versus Alternate methods | ||||||||
SF6 | 48 | 144 | 405 (22.5) | N/A | N/A | 38.5 | 0.40 (0.18) | 0.34 (N/A) |
GreenFeed | 48 | 144 | 373 (13.9) | N/A | N/A | 25.8 | ||
LMD | 11 | 88 | 432 (24.8) | 0.21 (0.11) | 19.4 | 42.7 | 0.77 (0.23) | 0.18 (0.23) |
GreenFeed | 11 | 88 | 423 (18.5) | 0.49 (0.12) | 11.4 | 16.8 | ||
NDIR CO2 t1 | 27 | 63 | 586 (19.4) | 0.59 (0.13) | 13.2 | 17.2 | 0.64 (0.18) | 0.14 (0.19) |
GreenFeed | 27 | 63 | 453 (9.8) | 0.75 (0.08) | 9.7 | 11.2 | ||
NDIR CO2 t1 | 39 | 118 | 365 (8.3) | 0.66 (0.11) | 13.9 | 17.1 | 0.60 (0.11) | 0.18 (0.19) |
LMD | 39 | 118 | 363 (10.3) | 0.14 (0.09) | 7.5 | 19.6 | ||
FTIR CO2 t2 | 34 | 68 | 315 (12.3) | 0.77 (0.13) | 21.3 | 24.3 | 0.57 (0.25) | 0.20 (0.22) |
LMD | 34 | 68 | 299 (6.1) | 0.27 (0.15) | 7.5 | 14.5 | ||
NDIR CO2 t1 | 45 | 90 | 383 (8.7) | 0.85 (0.04) | 14.0 | 15.2 | 0.58 (0.15) | 0.14 (0.19) |
NDIR Peaks | 45 | 90 | 393 (8.1) | 0.59 (0.09) | 10.7 | 13.9 | ||
FTIR CO2 t1 | 43 | 103 | 392 (8.1) | 0.81 (0.05) | 14.1 | 15.3 | 0.97 (0.02) | 0.79 (0.12) |
NDIR CO2 t1 | 43 | 103 | 382 (8.9) | 0.86 (0.04) | 12.2 | 13.6 | ||
FTIR CO2 t1 | 45 | 90 | 392 (7.9) | 0.81 (0.05) | 12.2 | 13.6 | 0.53 (0.17) | 0.15 (0.19) |
NDIR Peaks | 45 | 90 | 382 (8.2) | 0.60 (0.09) | 10.8 | 14.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garnsworthy, P.C.; Difford, G.F.; Bell, M.J.; Bayat, A.R.; Huhtanen, P.; Kuhla, B.; Lassen, J.; Peiren, N.; Pszczola, M.; Sorg, D.; et al. Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle. Animals 2019, 9, 837. https://doi.org/10.3390/ani9100837
Garnsworthy PC, Difford GF, Bell MJ, Bayat AR, Huhtanen P, Kuhla B, Lassen J, Peiren N, Pszczola M, Sorg D, et al. Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle. Animals. 2019; 9(10):837. https://doi.org/10.3390/ani9100837
Chicago/Turabian StyleGarnsworthy, Philip C., Gareth F. Difford, Matthew J. Bell, Ali R. Bayat, Pekka Huhtanen, Björn Kuhla, Jan Lassen, Nico Peiren, Marcin Pszczola, Diana. Sorg, and et al. 2019. "Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle" Animals 9, no. 10: 837. https://doi.org/10.3390/ani9100837
APA StyleGarnsworthy, P. C., Difford, G. F., Bell, M. J., Bayat, A. R., Huhtanen, P., Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Sorg, D., Visker, M. H. P. W., & Yan, T. (2019). Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle. Animals, 9(10), 837. https://doi.org/10.3390/ani9100837