Effect of Silver Nanoparticle Administration on Productive Performance, Blood Parameters, Antioxidative Status, and Silver Residues in Growing Rabbits under Hot Climate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Husbandry, Diets, and Experimental Design
2.2. Synthesis of Nanosilver Colloid
2.3. Growth Performance and Carcass Characteristics
2.4. Blood Collection, Hematology, and Biochemical Assay
2.5. Determination of Antioxidant Status
2.6. Determination of Silver Residues in Blood Plasma and Meat
2.7. Statistical Analysis
- Yijk = the observation taken on the kth individual;
- µ = overall mean;
- Di = the fixed effect of the ith silver nanoparticles injected dose;
- Bj = the fixed effect of the jth breed;
- (DB)ij = interaction between silver nanoparticles injected dose and breed;
- eijk = random error assumed to be independent normally distributed with mean = 0 and variance = σ2.
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics and Relative Weight Organs
3.3. Blood Hematological and Plasma Biochemical Constituents
3.4. Antioxidative Properties and Lipid Peroxidation
3.5. Silver Residues in Blood Plasma and Meat
4. Discussion
4.1. Growth Performance
4.2. Carcass Characteristics
4.3. Blood Hematological and Plasma Biochemical Constituents
4.4. Antioxidative Properties and Lipid Peroxidation
4.5. Silver Residues in Blood Plasma and Meat
Author Contributions
Funding
Conflicts of Interest
References
- Hassanpour, H.; Mirshokraei, P.; Khalili Sadrabad, E.; Esmailian Dehkordi, A.; Layeghi, S.; Afzali, A.; Mohebbi, A. In vitro effect of nanosilver on gene expression of superoxide dismutases and nitric oxide synthases in chicken sertoli cells. Animal 2015, 9, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Nabinejad, A.R.; Noaman, V.; Khayam Nekouei, S.M. Evaluation of silver residues accumulation in tissues of Broilers treated with nanosilver using MNSR (A Clinical Trial). Arch. Razi Inst. 2016, 71, 51–55. [Google Scholar]
- Ognik, K.; Cholewińska, E.; Czech, A.; Kozłowski, K.; Wlazło, L.; Nowakowicz-Dębek, B.; Szlązak, R.; Tutaj, K. Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech J. Anim. Sci. 2016, 61, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Abd AL-Rhman, R.M.; Shaim, R.; Ibraheem, S.R.; AL-Ogaidi, I. The effect of silver nanoparticles on cellular and humoral immunity of mice in vivo and in vitro. Iraqi J. Biotechnol. 2016, 15, 21–29. [Google Scholar]
- Castellini, C.; Ruggeri, S.; Mattioli, S.; Bernardini, G.; Macchioni, L.; Moretti, E.; Collodel, G. Long-term effects of silver nanoparticles on reproductive activity of rabbit buck. Syst. Biol. Reprod. Med. 2014, 60, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Pineda, L.; Chwalibog, A.; Sawosz, E.; Lauridsen, C.; Engberg, R.; Elnif, J.; Hotowy, A.; Sawosz, F.; Gao, Y.; Ali, A.; et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch. Anim. Nutr. 2012, 66, 416–429. [Google Scholar] [CrossRef]
- Vadalasetty, K.P.; Lauridsen, C.; Engberg, R.M.; Vadalasetty, R.; Kutwin, M.; Chwalibog, A.; Sawosz, E. Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Vet. Res. 2018, 14. [Google Scholar] [CrossRef]
- Sawosz, E.; Binek, M.; Grodzik, M.; Zielinska, M.; Sysa, P.; Szmidt, M.; Niemiec, T.; Chwalibog, A. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Anim. Nutr. 2007, 61, 441–451. [Google Scholar] [CrossRef]
- Ema, M.; Okuda, H.; Gamo, M.; Honda, K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod. Toxicol. 2017, 67, 149–164. [Google Scholar] [CrossRef]
- Ahmadi, F.; Rahimi, F. The effect of different levels of nanosilver on the performance and retention of silver in edible tissues of broilers. World Appl. Sci. J. 2011, 12, 1–4. [Google Scholar]
- Orlowski, P.R.; Krzyzowska, M.; Winnicka, A.; Sawosz, E. Toxicity of silver nanoparticles in monocytes and keratinocytes: Potential to induce inflammatory reactions. Cent. Eur. J. Immunol. 2012, 37, 123–130. [Google Scholar]
- Sardari, R.R.R.; Zarchi, S.R.; Talebi, A.; Nasri, S.; Imani, S.; Khoradmehr, A.; Sheshde, A.R. Toxicological effects of silver nanoparticles in rats. Afr. J. Microbiol. Res. 2012, 6, 5587–5593. [Google Scholar]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Fathi, M.; Abdelsalam, M.; Al-Homidan, I.; Ebeid, T.; El-Zarei, M.; Abou-Emera, O. Effect of probiotic supplementation and genotype on growth performance, carcass traits, hematological parameters and immunity of growing rabbits under hot environmental conditions. Anim. Sci. J. 2017, 88, 1644–1650. [Google Scholar] [CrossRef]
- SAS Institute. JMP Version 11 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Hang, D.T.; Tra, T.T.T. Effect on rabbit reproduction of adding silver-nano suspension to the drinking water. Livest. Res. Rural. Dev. 2013, 25, 1–7. [Google Scholar]
- Andi, M.A.; Mohsen, H.; Farhad, A. Effects of Feed Type With/Without Nanosil on Cumulative Performance, Relative Organ Weight and Some Blood Parameters of Broilers. Glob. Vet. 2011, 7, 605–609. [Google Scholar]
- Hassan, A.M. Effect of nano silver on performance and some physiological parameters of broiler chicks under south Sinai condition. Int. J. Innov. Appl. Res. 2018, 6, 1–8. [Google Scholar]
- Singh, M.; Singh, S.; Prasad, S.; Gambhir, I.S. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct. 2008, 3, 115–122. [Google Scholar]
- Saleh, A.A.; El-Magd, M.A. Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environ. Sci. Pollut. Res. 2018, 25, 27031–27038. [Google Scholar] [CrossRef]
- Ahmadi, F.; Kurdestani, A.H. The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Glob. Vet. 2010, 5, 366–370. [Google Scholar]
- Chauke, N.; Siebrits, F.K. Evaluation of silver nanoparticles as a possible coccidiostat in broiler production. S. Afr. J. Anim. Sci. 2012, 42, 493–497. [Google Scholar] [CrossRef]
- Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; et al. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 2010, 7, 20–30. [Google Scholar] [CrossRef]
- Abd, F.G. Silver nanoparticles effect on some immunological parameters in rabbits. IOSR J. Pharm. Biol. Sci. 2014, 9, 10–12. [Google Scholar]
- Pla, M.; Hernhndez, P.; Blasco, A. Carcass composition and meat characteristics of two rabbit breeds of different degrees of maturity. Meat Sci. 1996, 44, 85–92. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Elzo, M.A.; Jia, X.; Chen, S.; Lai, S. Comparison of carcass and meat quality traits among three rabbit breeds. Korean J. Food Sci. Anim. Resour. 2016, 36, 84–89. [Google Scholar] [CrossRef]
- Metzger, S.Z.; Odermatt, M.; Szendrõ, Z.S.; Mohaupt, M.; Romvári, R.; Makai, A.; Biró-Németh, E.; Sipos, L.; Radnai, I.; Horn, P. A study of the carcass traits of different rabbit genotypes. World Rabbit Sci. 2006, 14, 107–114. [Google Scholar] [CrossRef]
- Ghosh, N.; Mandal, L. Carcass and meat quality traits of rabbits (Oryctolagus cuniculus) under warm-humid condition of West Bengal, India. Livest. Res. Rural Dev. 2008, 20, 9. [Google Scholar]
- Syrvatka, V.; Rozgoni, I.; Slyvchuk, Y.; Milovanova, G.; Hevkan, I.; Matyukha, I. Effects of silver nanoparticles in solution and liposomal form on some blood parameters in female rabbits during fertilization and early embryonic development. J. Microbiol. Biotechnol. Food Sci. 2014, 3, 274–278. [Google Scholar]
- Raheem, H.Q. Study effect of silver nanoparticles on some blood parameters in rabbits. Biochem. Cell. Arch. 2018, 18, 267–269. [Google Scholar]
- Sarhan, O.M.M.; Hussein, R.M. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int. J. Nanomed. 2014, 9, 1505–1517. [Google Scholar]
- Atmaca, N.; Yildirim, E.; Guner, B.; Kabakci, R.; Bilmen, F.S. Effect of resveratrol on hematological and biochemical alterations in rats exposed to fluoride. BioMed Res. Int. 2014. [Google Scholar] [CrossRef]
- Ahmadi, F. Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak. Vet. J. 2012, 32, 325–328. [Google Scholar]
- El-Sheikh, T.M.; Mona Ghaly, M.; Selem, T.S.T. Comparative studies on some productive capabilities among imported, endogenous and native rabbit breeds under Egyptian environmental conditions. Ser. Zooteh. 2011, 56, 364–369. [Google Scholar]
- Ansar, S.; Alshehri, S.M.; Abudawood, M.; Hamed, S.S.; Ahamad, T. Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int. J. Nanomed. 2017, 12, 7789–7797. [Google Scholar] [CrossRef]
- Srivastava, M.; Singh, S.; Self, W.T. Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environ. Health Perspect. 2012, 120, 56–61. [Google Scholar] [CrossRef]
- Fondevila, M. Potential Use of Silver Nanoparticles as an Additive in Animal Feeding. In Silver Nanoparticles; Pozo Perez, D., Ed.; Springer International Publishing: Houston, TX, USA, 2010; ISBN 978-953-307-028-5. Available online: http://www.intechopen.com/books/silver-nanoparticles (accessed on 15 July 2019).[Green Version]
- Borel, T.; Sabliov, C.M. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu. Rev. Food Sci. Technol. 2014, 5, 197–213. [Google Scholar] [CrossRef]
- Chen, X.; Schluesener, H.J. Nanosilver: A Nanoproduct in Medical Application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef]
- Kulak, E.; Ognik, K.; Stępniowska, A.; Sembratowicz, I. The effect of administration of silver nanoparticles on silver accumulation in tissues and immune and antioxidant status of chickens. J. Anim. Feed Sci. 2018, 27, 44–54. [Google Scholar] [CrossRef]
- Wang, B.; He, X.; Zhang, Z.; Zhao, Y.; Feng, W. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Acc. Chem. Res. 2013, 46, 761–769. [Google Scholar] [CrossRef]
- Varner, K.E.; El-Badawy, A.; Feldhake, D.; Venkatapathy, R. State of the Science, Literature Review: Everything Nanosilver and More; EPA/600/R-10/084; US Environmental Protection Agency: Washington, DC, USA, 2010.
Effect | Initial Body Weight (g) | Final Body Weight (g) | ADG (g) | Feed Intake (g) | FCR (g/g) | |
---|---|---|---|---|---|---|
AgNPs (D) | Control | 958.2 | 1704.4 b | 26.6 | 1620.7 | 2.39 |
0.5 mg/kg | 1020.7 | 1893.9 a | 28.8 | 1748.0 | 2.20 | |
1.0 mg/kg | 995.3 | 1724.8 b | 24.4 | 1593.9 | 2.41 | |
Breed (B) | NZW | 984.6 | 1861.0 a | 30.2 a | 1697.1 | 2.08 b |
Jabali | 1020.1 | 1687.7 b | 22.9 b | 1561.2 | 2.94 a | |
SEM | 31.2 | 34.0 | 1.08 | 59.5 | 0.11 | |
p-Value | D | 0.51 | 0.02 | 0.25 | 0.23 | 0.66 |
B | 0.69 | 0.01 | <0.01 | 0.29 | <0.01 | |
D × B | 0.52 | 0.32 | 0.35 | 0.28 | 0.86 |
Effect | Body Weight (g) | Dressing Out (%) | Fore Part (%) | Mid-Part (%) | Hind Part (%) | Liver (%) | Heart (%) | Kidney (%) | Spleen (%) | |
---|---|---|---|---|---|---|---|---|---|---|
AgNPs (D) | Control | 1823.05 | 49.29 | 15.07 | 14.28 | 20.39 | 3.32 | 0.28 | 0.42 | 0.11 |
0.5 mg/kg | 1835.71 | 48.85 | 14.90 | 13.45 | 20.50 | 3.49 | 0.31 | 0.41 | 0.10 | |
1.0 mg/kg | 1813.18 | 48.59 | 15.26 | 13.45 | 19.89 | 3.25 | 0.29 | 0.38 | 0.09 | |
Breed (B) | NZW | 1893.35 a | 49.06 | 14.98 | 13.87 | 20.43 | 3.40 | 0.30 | 0.39 | 0.09 b |
Jabali | 1697.29 b | 48.44 | 15.33 | 13.14 | 20.08 | 3.30 | 0.29 | 0.42 | 0.12 a | |
SEM | 52.88 | 0.66 | 0.22 | 0.36 | 0.26 | 0.09 | 0.01 | 0.01 | 0.01 | |
p-Value | D | 0.58 | 0.66 | 0.83 | 0.29 | 0.40 | 0.63 | 0.44 | 0.49 | 0.59 |
B | 0.04 | 0.60 | 0.84 | 0.62 | 0.43 | 0.97 | 0.74 | 0.06 | 0.03 | |
D × B | 0.05 | 0.07 | 0.07 | 0.04 | 0.35 | 0.15 | 0.62 | 0.09 | 0.85 |
Effect | HGB (gm/dL) | RBC (106/µL) | HCT (%) | PLT (106/mL) | Total Protein (g/dL) | Albumin (g/dL) | Globulin (g/dL) | Cholesterol mg/dL | Triglycerides mg/dL | |
---|---|---|---|---|---|---|---|---|---|---|
AgNPs (D) | Control | 12.22 | 5.38 | 34.33 b | 298.89 a | 6.38 | 3.37 | 3.01 | 94.0 | 137.3 |
0.5 mg/kg | 13.06 | 5.67 | 36.54 ab | 237.69 b | 6.44 | 3.47 | 2.97 | 87.2 | 130.2 | |
1.0 mg/kg | 13.33 | 5.76 | 37.63 a | 221.60 b | 6.21 | 3.51 | 2.69 | 110.1 | 122.1 | |
Breed (B) | NZW | 13.01 | 5.64 | 36.67 | 225.78 b | 6.39 | 3.51 a | 2.88 | 90.0 b | 120.7 b |
Jabali | 12.89 | 5.64 | 36.01 | 286.23 a | 6.24 | 3.37 b | 2.87 | 110.7 a | 144.4 a | |
SEM | 0.25 | 0.08 | 0.51 | 11.11 | 0.11 | 0.05 | 0.10 | 6.3 | 5.5 | |
p-Value | D | 0.67 | 0.56 | 0.04 | 0.02 | 0.68 | 0.25 | 0.61 | 0.10 | 0.70 |
B | 0.96 | 0.95 | 0.86 | 0.04 | 0.38 | 0.05 | 0.92 | 0.05 | 0.05 | |
D×B | 0.25 | 0.44 | 0.18 | 0.48 | 0.75 | 0.38 | 0.80 | 0.19 | 0.59 |
Effect | TAC (m mol/L) | GSH-Px (U/mL) | MDA (n mol/mL) | |
---|---|---|---|---|
AgNPs (D) | Control | 0.94 | 35.66 | 3.76 |
0.5 mg /kg | 0.88 | 35.83 | 3.86 | |
1.0 mg /kg | 0.93 | 33.19 | 3.76 | |
Breed (B) | NZW | 0.92 | 33.59 | 3.61 |
Jabali | 0.91 | 37.41 | 4.17 | |
SEM | 0.02 | 2.82 | 0.21 | |
p-Value | D | 0.36 | 0.78 | 0.99 |
B | 0.97 | 0.38 | 0.31 | |
D × B | 0.86 | 0.61 | 0.85 |
Effect | Meat (µg kg−1) | Blood (µg mL−1) | |
---|---|---|---|
AgNPs (D) | Control | Non-detected | Non-detected |
0.5 mg/kg | 7.73 b | 74.99 | |
1.0 mg/kg | 47.97 a | 118.13 | |
Breed (B) | NZW | 34.78 a | 101.49 a |
Jabali | 10.69 b | 20.01 b | |
SEM | 2.25 | 15.71 | |
p-Value | D | <0.01 | 0.08 |
B | 0.01 | 0.01 | |
D × B | 0.01 | 0.13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelsalam, M.; Al-Homidan, I.; Ebeid, T.; Abou-Emera, O.; Mostafa, M.; Abd El-Razik, M.; Shehab-El-Deen, M.; Abdel Ghani, S.; Fathi, M. Effect of Silver Nanoparticle Administration on Productive Performance, Blood Parameters, Antioxidative Status, and Silver Residues in Growing Rabbits under Hot Climate. Animals 2019, 9, 845. https://doi.org/10.3390/ani9100845
Abdelsalam M, Al-Homidan I, Ebeid T, Abou-Emera O, Mostafa M, Abd El-Razik M, Shehab-El-Deen M, Abdel Ghani S, Fathi M. Effect of Silver Nanoparticle Administration on Productive Performance, Blood Parameters, Antioxidative Status, and Silver Residues in Growing Rabbits under Hot Climate. Animals. 2019; 9(10):845. https://doi.org/10.3390/ani9100845
Chicago/Turabian StyleAbdelsalam, Magdy, Ibrahim Al-Homidan, Tarek Ebeid, Osama Abou-Emera, Mohamed Mostafa, Mohamed Abd El-Razik, Mohamed Shehab-El-Deen, Sherif Abdel Ghani, and Moataz Fathi. 2019. "Effect of Silver Nanoparticle Administration on Productive Performance, Blood Parameters, Antioxidative Status, and Silver Residues in Growing Rabbits under Hot Climate" Animals 9, no. 10: 845. https://doi.org/10.3390/ani9100845
APA StyleAbdelsalam, M., Al-Homidan, I., Ebeid, T., Abou-Emera, O., Mostafa, M., Abd El-Razik, M., Shehab-El-Deen, M., Abdel Ghani, S., & Fathi, M. (2019). Effect of Silver Nanoparticle Administration on Productive Performance, Blood Parameters, Antioxidative Status, and Silver Residues in Growing Rabbits under Hot Climate. Animals, 9(10), 845. https://doi.org/10.3390/ani9100845