Effect of Lipid-Encapsulated Acacia Tannin Extract on Feed Intake, Nutrient Digestibility and Methane Emission in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Micro-Encapsulation of Acacia Mearnsii Tannin Extract
2.2. Animals, Diets, and Experimental Design
2.3. Apparent Digestibility and N-Balance Measurement
2.4. Open-Circuit Respiratory Chamber and Methane Emission Measurement
2.5. Chemical Analyses
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cieslak, A.; Zmora, P.; Pers-Kamczyc, E.; Szumacher-Strabel, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed Sci. Technol. 2012, 176, 102–106. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X.; Tu, Y.; Wang, B.; Lou, C.; Ma, T.; Diao, Q. Effects of mulberry leaf flavonoid and resveratrol on methane emission and nutrient digestion in sheep. Anim. Nutr. 2015, 1, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.; Oh, J.; Firkins, J.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. SPECIAL TOPICS--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Hoehn, A.N.; Titgemeyer, E.C.; Nagaraja, T.G.; Drouillard, J.S.; Miesner, M.D.; Olson, K.C. Effects of high condensed-tannin substrate, prior dietary tannin exposure, antimicrobial inclusion, and animal species on fermentation parameters following a 48 h in vitro incubation. J. Anim. Sci. 2018, 96, 343–353. [Google Scholar] [CrossRef]
- Dentinho, M.T.P.; Belo, A.T.; Bessa, R.J.B. Digestion, ruminal fermentation and microbial nitrogen supply in sheep fed soybean meal treated with Cistus ladanifer L. tannins. Small Rumin. Res. 2014, 119, 57–64. [Google Scholar] [CrossRef]
- Henke, A.; Dickhoefer, U.; Westreicher-Kristen, E.; Knappstein, K.; Molkentin, J.; Hasler, M.; Susenbeth, A. Effect of dietary Quebracho tannin extract on feed intake, digestibility, excretion of urinary purine derivatives and milk production in dairy cows. Arch. Anim. Nutr. 2017, 71, 37–53. [Google Scholar] [CrossRef]
- Naumann, H.D.; Armstrong, S.A.; Lambert, B.D.; Muir, J.P.; Tedeschi, L.O.; Kothmann, M.M. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus. Vet. Parasitol. 2014, 199, 93–98. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Thantsha, M.S. Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition. Asian-Australas. J. Anim. Sci. 2019, 32, 977–987. [Google Scholar] [CrossRef]
- Hassen, A.; Theart, J.J.F.; Van Niekerk, W.A.; Adejoro, F.A.; Gemeda, B.S. In vitro methane and gas production characteristics of Eragrostis trichopophora substrate supplemented with different browse foliage. Anim. Prod. Sci. 2016, 56, 634–640. [Google Scholar] [CrossRef]
- Carulla, J.E.; Kreuzer, M.; Machmuller, A.; Hess, H.D. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 2005, 56, 961–970. [Google Scholar] [CrossRef]
- Field, J.A.; Kortekaas, S.; Lettinga, G. The tannin theory of methanogenic toxicity. Biol. Wastes. 1989, 29, 241–262. [Google Scholar] [CrossRef]
- Tavendale, M.M.H.; Meagher, L.L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123, 403–419. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Fernández, H.T.; Catanese, F.; Puthod, G.; Distel, R.A.; Villalba, J.J. Depression of rumen ammonia and blood urea by quebracho tannin-containing supplements fed after high-nitrogen diets with no evidence of self-regulation of tannin intake by sheep. Small Rumin. Res. 2012, 105, 126–134. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Dschaak, C.M.; Williams, C.M.; Holt, M.S.; Eun, J.S.; Young, A.J.; Min, B.R. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci. 2011, 94, 2508–2519. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; A review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Thantsha, M.S. Preparation of acacia tannin loaded lipid microparticles by solid-in-oil-in-water and melt dispersion methods, their characterization and evaluation of their effect on ruminal gas production In Vitro. PLoS ONE 2018, 13, e0206241. [Google Scholar] [CrossRef]
- Wood, T.A.; Wallace, R.J.; Rowe, A.; Price, J.; Yanez-Ruiz, D.R.; Murray, P.; Newbold, C.J. Encapsulated fumaric acid as a feed ingredient to decrease ruminal methane emissions. Anim. Feed Sci. Technol. 2009, 152, 62–71. [Google Scholar] [CrossRef]
- Mamvura, C.I.; Cho, S.; Mbiriri, D.T.; Lee, H.G.; Choi, N.J. Effect of encapsulating nitrate in sesame gum on in vitro rumen fermentation parameters. Asian-Australas. J. Anim. Sci. 2014, 27, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H. Quantification of Tannins in Tree and Shrub Foliage; Spring: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Grainger, C.; Clarke, T.; Auldist, M.J.; Beauchemin, K.A.; McGinn, S.M.; Waghorn, G.C.; Eckard, R.J. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 2009, 89, 241–251. [Google Scholar] [CrossRef]
- Storm, I.M.L.D.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media 1. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Martinez, T.F.; McAllister, T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007, 85, 1990–1996. [Google Scholar] [CrossRef]
- Animut, G.; Puchala, R.; Goetsch, A.L.; Patra, A.K.; Sahlu, T.; Varel, V.H.; Wells, J. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 2008, 144, 212–227. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Oba, M.; Castillo, A.R.; Koenig, K.M.; Iwaasa, A.D.; Beauchemin, K.A. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. J. Anim. Sci. 2018, 96, 5276–5286. [Google Scholar] [CrossRef]
- Archimède, H.; Rira, M.; Barde, D.J.; Labirin, F.; Marie-Magdeleine, C.; Calif, B.; Periacarpin, F.; Fleury, J.; Rochette, Y.; Morgavi, D.P.; et al. Potential of tannin-rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep. J. Anim. Physiol. Anim. Nutr. (Berl) 2016, 100, 1149–1158. [Google Scholar] [CrossRef]
- Landau, S.; Silanikove, N.; Nitsan, Z.; Barkai, D.; Baram, H.; Provenza, F.D.; Perevolotsky, A. Short-term changes in eating patterns explain the effects of condensed tannins on feed intake in heifers. Appl. Anim. Behav. Sci. 2000, 69, 199–213. [Google Scholar] [CrossRef]
- Lamy, E.; Da Costa, G.; Santos, R.; Capelae Silva, F.; Potes, J.; Pereira, A.; Coelho, A.V.; Sales Baptista, E. Effect of condensed tannin ingestion in sheep and goat parotid saliva proteome. J. Anim. Physiol. Anim. Nutr. (Berl) 2011, 95, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Phesatcha, K.; Wanapat, M. Tropical legume supplementation influences microbial protein synthesis and rumen ecology. J. Anim. Physiol. Anim. Nutr. (Berl) 2017, 101, 552–562. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Smith, A.H.; Zoetendal, E.; Mackie, R.I. Bacterial Mechanisms to Overcome Inhibitory Effects of Dietary Tannins. Microb. Ecol. 2005, 50, 197–205. [Google Scholar] [CrossRef]
- Stewart, E.K.; Beauchemin, K.A.; Dai, X.; MacAdam, J.W.; Christensen, R.G.; Villalba, J.J. Effect of tannin-containing hays on enteric methane emissions and nitrogen partitioning in beef cattle. J. Anim. Sci. 2019, 97, 3286–3299. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Eckard, R.J.; Grainger, C.; de Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Beauchemin, K.; McAllister, T.A.; McGinn, S.M. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–18. [Google Scholar] [CrossRef]
- Calabrò, S.; Guglielmelli, A.; Iannaccone, F.; Danieli, P.; Tudisco, R.; Ruggiero, C.; Piccolo, G.; Cutrignelli, M.I.; Infascelli, F. Fermentation kinetics of sainfoin hay with and without PEG. Anim. Physiol. Anim. Nutr. 2012, 96, 842–849. [Google Scholar]
- Molina-Botero, I.C.; Arroyave-Jaramillo, J.; Valencia-Salazar, S.; Barahona-Rosales, R.; Aguilar-Pérez, C.F.; Ayala Burgos, A.; Arango, J.; Ku-Vera, J.C. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim. Feed Sci. Technol. 2019, 251, 1–11. [Google Scholar] [CrossRef]
- Bodas, R.; Prieto, N.; Garcia-Gonzalez, R.; Andres, S.; Giraldez, F.J.; Lopez, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Díaz Carrasco, J.M.; Cabral, C.; Redondo, L.M.; Pin Viso, N.D.; Colombatto, D.; Farber, M.D.; Fernández Miyakawa, M.E. Impact of Chestnut and Quebracho Tannins on Rumen Microbiota of Bovines. Biomed Res. Int. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar] [CrossRef]
Ingredients 1 (g/kg of DM) | Control Diet | Silvafeed | Tannin | Encapsulated-Tannin |
---|---|---|---|---|
Eragrostis curvula hay | 300 | 297 | 287.9 | 285 |
Alfalfa hay | 200 | 198 | 192 | 190 |
Hominy chop | 140 | 138.6 | 134 | 133 |
Wheat bran | 90 | 89.2 | 86.4 | 85.5 |
Maize germ meal | 190 | 188 | 182 | 181 |
Urea | 10 | 9.9 | 9.60 | 9.50 |
Molasses | 60 | 59.4 | 57.6 | 57.0 |
Mineral and vitamin premix 2 | 5 | 4.95 | 4.80 | 4.75 |
Calcium carbonate | 5 | 4.95 | 4.80 | 4.75 |
Silvafeed | 0 | 10 | 0 | 0 |
Tannin | 0 | 0 | 40 | 0 |
Encapsulated-tannin extract | 0 | 0 | 0 | 50.0 |
Total | 1000 | 1000 | 1000 | 1000 |
Analysed chemical composition | ||||
Dry matter, (g/kg) | 908 | 910 | 910 | 909 |
Organic matter, g/kg DM | 922 | 921 | 939 | 930 |
CP, g/kg DM | 162 | 152 | 146 | 150 |
NDF, g/kg DM | 374 | 387 | 391 | 395 |
ADF, g/kg DM | 211 | 211 | 220 | 219 |
Parameter 1 | Control | Silvafeed | ATE 2 | Encapsulated ATE | SEM 3 | p-Values 4 | |
---|---|---|---|---|---|---|---|
Diet | ATE vs E-ATE | ||||||
DMI, g/d | 1479 | 1386 | 1341 | 1359 | 71.6 | 0.57 | 0.86 |
DMI, g/kg BW0.75/d | 57.3 | 53.8 | 51.9 | 52.7 | 2.61 | 0.53 | 0.84 |
OM, g/d | 1358 | 1287 | 1228 | 1279 | 2.46 | 0.49 | 0.60 |
OM, g/kg BW0.75/d | 52.6 | 49.9 | 47.6 | 49.6 | 2.42 | 0.27 | 0.57 |
CP, g/d | 244 | 208 | 203 | 195 | 11.0 | 0.19 | 0.62 |
NDF, g/d | 543 | 538 | 517 | 547 | 27.9 | 0.55 | 0.48 |
ADF, g/d | 307 | 304 | 284 | 307 | 15.4 | 0.50 | 0.32 |
Apparent nutrient digestibility, % | |||||||
DM | 63.2 a | 64.3 a | 50.4 b | 59.1 a | 1.52 | 0.01 | 0.01 |
Organic matter | 64.2 a | 65.6 a | 51.2 b | 60.8 a | 1.53 | 0.01 | 0.01 |
Crude protein | 77.1 a | 73.3 a | 61.2 c | 68.3 b | 1.30 | 0.01 | 0.01 |
NDF | 38.6 a | 45.0 a | 24.0 b | 43.0 a | 2.53 | 0.01 | ˂0.01 |
ADF | 37.7 a | 43.8 a | 21.8 b | 34.6 ab | 2.99 | 0.01 | 0.06 |
Parameter | Control | Silvafeed | ATE 1 | Encapsulated ATE | SEM 2 | p-Values 3 | |
---|---|---|---|---|---|---|---|
Diet | ATE vs E-ATE | ||||||
N-excretion, g/d | 28.8 | 24.0 | 22.9 | 22.8 | 1.90 | 0.48 | 0.97 |
Faecal-N, g/d | 8.99 b | 8.90 b | 12.7 a | 9.91 b | 0.76 | 0.04 | 0.04 |
Urinary-N, g/d | 19.8 a | 15.1 ab | 10.3 b | 12.9 b | 1.47 | 0.02 | 0.25 |
Retained-N, g/d | 10.2 | 9.3 | 9.6 | 8.4 | 1.43 | 0.84 | 0.57 |
N partitioning (% of N-intake) | |||||||
Faecal-N proportion, g/kg N-intake | 230 c | 267 c | 388 a | 317 b | 13.0 | 0.01 | 0.01 |
Urinary-N proportion, g/kg N-intake | 512 | 455 | 314 | 413 | 40.7 | 0.22 | 0.14 |
Retained-N proportion, g/kg N-intake | 259 | 279 | 298 | 270 | 41.7 | 0.98 | 0.66 |
Parameter | Control | Silvafeed | ATE 2 | Encapsulated ATE | SEM 3 | p-Values 4 | |
---|---|---|---|---|---|---|---|
Diet | ATE vs E-ATE | ||||||
pH | 6.53 | 6.56 | 6.66 | 6.56 | 0.04 | 0.37 | 0.90 |
NH3-N, mg/dL | 19.4 | 17.3 | 13.5 | 14.3 | 2.17 | 0.09 | 0.80 |
Total volatile fatty acid (VFA), mmol/L | 96.4 | 104.8 | 83.6 | 91.3 | 7.51 | 0.33 | 0.50 |
VFA molar proportion, mol/100 mol | |||||||
Acetate | 57.2 | 56.0 | 54.5 | 55.8 | 2.20 | 0.58 | 0.69 |
Propionate | 19.4 | 24.9 | 27.9 | 21.2 | 1.43 | 0.07 | 0.02 |
Butyrate | 19.6 | 15.3 | 13.0 | 18.5 | 2.30 | 0.62 | 0.14 |
Branched-chain VFA 1 | 2.48 | 2.32 | 2.84 | 2.90 | 0.40 | 0.68 | 0.18 |
Valerate | 1.42 | 1.76 | 1.98 | 1.92 | 0.13 | 0.24 | 0.75 |
Acetate: propionate ratio | 2.98 a | 2.32 bc | 1.99 c | 2.69 ab | 0.19 | 0.04 | 0.04 |
Parameter | Control | Silvafeed | ATE 1 | Encapsulated-ATE | SEM 2 | p-Values 3 | |
---|---|---|---|---|---|---|---|
Diet | ATE vs E-ATE | ||||||
CH4, g/d | 35.5 a | 28.5 ab | 24.2 b | 26.7 b | 2.07 | 0.04 | 0.43 |
CH4, g/kg BW0.75/d | 1.37 a | 1.10 b | 0.94 b | 1.05 b | 0.08 | 0.03 | 0.37 |
CH4, g/kg DM intake | 24.6 a | 21.7 ab | 17.2 c | 20.0 bc | 1.14 | 0.02 | 0.13 |
CH4, g/kg NDF-intake | 65.8 a | 54.8 b | 44.4 c | 51.3 bc | 2.93 | 0.01 | 0.15 |
CH4, g/kg DM-digested | 38.7 | 32.3 | 36.3 | 33.6 | 3.39 | 0.58 | 0.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adejoro, F.A.; Hassen, A.; Akanmu, A.M. Effect of Lipid-Encapsulated Acacia Tannin Extract on Feed Intake, Nutrient Digestibility and Methane Emission in Sheep. Animals 2019, 9, 863. https://doi.org/10.3390/ani9110863
Adejoro FA, Hassen A, Akanmu AM. Effect of Lipid-Encapsulated Acacia Tannin Extract on Feed Intake, Nutrient Digestibility and Methane Emission in Sheep. Animals. 2019; 9(11):863. https://doi.org/10.3390/ani9110863
Chicago/Turabian StyleAdejoro, Festus Adeyemi, Abubeker Hassen, and Abiodun Mayowa Akanmu. 2019. "Effect of Lipid-Encapsulated Acacia Tannin Extract on Feed Intake, Nutrient Digestibility and Methane Emission in Sheep" Animals 9, no. 11: 863. https://doi.org/10.3390/ani9110863
APA StyleAdejoro, F. A., Hassen, A., & Akanmu, A. M. (2019). Effect of Lipid-Encapsulated Acacia Tannin Extract on Feed Intake, Nutrient Digestibility and Methane Emission in Sheep. Animals, 9(11), 863. https://doi.org/10.3390/ani9110863