Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia
Abstract
:Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement of Gross Milk Composition
2.2. Measurement of Amino Acid Content
2.3. Measurement of Fatty Acid Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. Gross Composition of Bactrian Camel Milk
3.2. Amino Acid Composition (%) of Bactrian Camel Milk
3.3. Fatty Acid Composition (%) of Bactrian Camel Milk
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethic Statement
References
- Mohamed, H.E.; Mousa, H.M.; Beynen, A.C. Ascorbic acid concentrations in milk from Sudanese camels. J. Anim. Physiol. Anim. Nutr. 2010, 89, 35–37. [Google Scholar] [CrossRef]
- Alhumaid, A.I.; Mousa, H.M.; Elmergawi, R.A.; Abdelsalam, A.M. Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. Am. J. Food Technol. 2010, 5, 22–30. [Google Scholar]
- Haj, O.A.A.; Kanhal, H.A.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010, 20, 811–821. [Google Scholar] [CrossRef]
- Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A.A. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci. Technol. 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Kaskous, S. Importance of camel milk for human health. Emir. J. Food Agric. 2016, 28, 158–163. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Wang, B.; Zhang, F.; Shao, Y. Influence of Bactrian camel milk on the gut microbiota. J. Dairy Sci. 2018, 101, 5758. [Google Scholar] [CrossRef]
- El-Agamy, E.I.; Nawar, M.; Shamsia, S.M.; Awad, S.; Haenlein, G.F.W. Are camel milk proteins convenient to the nutrition of cow milk allergic children? Small Rumin. Res. 2009, 82, 1–6. [Google Scholar] [CrossRef]
- Cosentino, C.; Paolino, R.; Musto, M.; Freschi, P. Innovative Use of Jenny Milk from Sustainable Rearing. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Springer: Cham, Switzerland, 2015; pp. 113–132. [Google Scholar] [Green Version]
- Alhashem, F.; Dallak, M.; Bashir, N.; Abbas, M.; Elessa, R.; Khalil, M.; Alkhateeb, M. Camel’s milk protects against cadmium chloride induced toxicity in white albino rats. Am. J. Pharmacol. Toxicol. 2009, 4, 107–117. [Google Scholar]
- El Agamy, E.I.; Ruppanner, R.; Ismail, A.; Champagne, C.P.; Assaf, R. Antibacterial and antiviral activity of camel milk protective proteins. J. Dairy Res. 1992, 59, 169–175. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Khalil, J.K.; Al-Shalhat, A.; Al-Mohammad, H. Chemical Composition and Nutritional Quality of Camel Milk. J. Food Sci. 2010, 49, 744–747. [Google Scholar] [CrossRef]
- Mihic, T.; Rainkie, D.; Wilby, K.J.; Pawluk, S.A. The Therapeutic Effects of Camel Milk: A Systematic Review of Animal and Human Trials. J. Evid. Based Complementary Altern. Med. 2016, 21, NP110. [Google Scholar] [CrossRef] [PubMed]
- Korish, A.A.; Arafah, M.M. Camel milk ameliorates steatohepatitis, insulin resistance and lipid peroxidation in experimental non-alcoholic fatty liver disease. BMC Complementary Altern. Med. 2013, 13, 264. [Google Scholar] [CrossRef] [PubMed]
- Al-Ayadhi, L.Y.; Nadra Elyass, E. Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD). Evid. Based Complementray Altern. Med. 2013, 2013, 602834. [Google Scholar] [CrossRef]
- Aggarwala, A.C.; Sharma, R.M. A Laboratory Manual of Milk Inspection; Asia Publishing House: London, UK, 1961. [Google Scholar]
- Zhang, H.; Yao, J.; Zhao, D.; Liu, H.; Li, J.; Guo, M. Changes in Chemical Composition of Alxa Bactrian Camel Milk during Lactation. J. Dairy Sci. 2005, 88, 3402–3410. [Google Scholar]
- Bai, Y.H.; Zhao, D.B.; Niu, Y.W. Composition and characteristics of Chinese Bactrian camel milk. Small Rumin. Res. 2015, 127, 58–67. [Google Scholar]
- Konuspayeva, G.; Faye, B.; Loiseau, G. The composition of camel milk: A meta-analysis of the literature data. J. Food Compos. Anal. 2009, 22, 95–101. [Google Scholar] [CrossRef]
- Elobied, A.A.; Osman, A.M.; Kashwa, S.M.A.; Ali, A.S.; Ibrahim, M.T.; Salih, M.M. Effect of parity and breed on some physico-chemical components of Sudanese camel milk. Res. Opin. Anim. Vet. Sci. 2015, 5, 20–24. [Google Scholar]
- Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M.I. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species. Asian-Australas. J. Anim. Sci. 2016, 29, 1022–1028. [Google Scholar] [CrossRef]
- Salmen, S.H.; Abu-Tarboush, H.M.; Al-Saleh, A.A.; Metwalli, A.A. Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia. Saudi J. Biol. Sci. 2012, 19, 177–183. [Google Scholar] [CrossRef]
- Shamsia, S.M. Nutritional and therapeutic properties of camel and human milks. Int. J. Genet. Mol. Biol. 2007, 1, 52–58. [Google Scholar]
- Csapó, J.; Salamon, S.; Lóki, K.; Csapókiss, Z. Composition of mare’s colostrum and milk: II. Protein content, amino acid composition and contents of macro- and micro-elements. Acta Univ. Sapientiae Aliment. 2009, 5, 403–415. [Google Scholar]
- Konuspayeva, G.; Lemarie, É.; Faye, B.; Loiseau, G.; Montet, D. Fatty acid and cholesterol composition of camel’s (Camelus bactrianus, Camelus dromedarius and hybrids) milk in Kazakhstan. Dairy Sci. Technol. 2008, 88, 327–340. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 2000, 49, 181–205. [Google Scholar] [CrossRef]
- Sharma, R.; Ahlawat, S.; Aggarwal, R.A.K.; Dua, A.; Sharma, V.; Tantia, M.S. Comparative milk metabolite profiling for exploring superiority of indigenous Indian cow milk over exotic and crossbred counterparts. J. Food Sci. Technol. 2018, 55, 4232–4243. [Google Scholar] [CrossRef] [PubMed]
- Sretenović, L.; Pantelić, V.; Novaković, Ž. Importance of utilization of omega-3 fatty acids in human and animal nutrition. Biotechnol. Anim. Husb. 2009, 25, 439–449. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bernard, L.; Leroux, C.; Chilliard, Y. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Anim. Int. J. Anim. Biosci. 2010, 4, 1140. [Google Scholar] [CrossRef]
- Ferlay, A.; Martin, B.; Pradel, P.; Coulon, J.B.; Chilliard, Y. Influence of Grass-Based Diets on Milk Fatty Acid Composition and Milk Lipolytic System in Tarentaise and Montbéliarde Cow Breeds. J. Dairy Sci. 2006, 89, 4026–4041. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2010, 109, 828–855. [Google Scholar] [CrossRef]
- Novak, E.M.; Innis, S.M. Impact of maternal dietary n-3 and n-6 fatty acids on milk medium-chain fatty acids and the implications for neonatal liver metabolism. AJP Endocrinol. Metab. 2011, 301, E807–E817. [Google Scholar] [CrossRef]
- Mathew, T. Methods of Multivariate Analysis. Technometrics 1996, 38, 76–77. [Google Scholar] [CrossRef]
- Coppa, M.; Chassaing, C.; Ferlay, A.; Agabriel, C.; Laurent, C.; Borreani, G.; Barcarolo, R.; Baars, T.; Kusche, D.; Harstad, O.M. Potential of milk fatty acid composition to predict diet composition and authenticate feeding systems and altitude origin of European bulk milk. J. Dairy Sci. 2015, 98, 1539–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, E.; Pozzo, L.; Giribaldi, M.; Bergero, D.; Gennero, M.S.; Dezzutto, D.; Mclean, A.; Borreani, G.; Coppa, M.; Cavallarin, L. Effect of farming system on donkey milk composition. J. Sci. Food Agric. 2018, 98, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.; Yi, L.; Siriguleng; Hasi, S.; He, J.; Hai, L.; Wang, Z.; Guo, F.; Qiao, X.; Jirimutu. Comparative analysis of fecal microbial communities in cattle and Bactrian camels. PLoS ONE 2017, 12, e0173062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Location | Number of Samples |
---|---|
Hovd aimag Zereg sum (Hovd) | 13 |
Gobialtai aimag Sharga sum Sonduult (Sharga) | 21 |
Gobialtai aimag Tseel sum Buuriin gol (Tseel) | 16 |
Umnugovi aimag Bulgan sum (Bulgan) | 32 |
Umnugovi aimag Tsogtovoo sum Bor teeg bag Erdenet olgoi (Tsogtovoo) | 20 |
Region | Fat (%) | Protein (%) | Lactose (%) | Total Solids (%) | Ash (%) |
---|---|---|---|---|---|
Hovd | 6.24 ± 1.29 | 3.65 ± 0.40 | 5.24 ± 0.59 | 9.62 ± 1.08 | 0.73 ± 0.09 |
Sharga | 5.14 ± 0.61 | 3.63 ± 0.49 | 5.24 ± 0.73 | 9.60 ± 1.32 | 0.89 ± 0.07 |
Tseel | 5.01 ± 0.85 | 3.62 ± 0.49 | 5.21 ± 0.71 | 9.52 ± 1.90 | 0.89 ± 0.09 |
Bulgan | 5.40 ± 1.30 | 3.74 ± 0.42 | 5.40 ± 0.60 | 9.89 ± 1.11 | 0.92 ± 0.09 |
Tsogtovoo | 6.01 ± 1.41 | 3.82 ± 0.17 | 5.50 ± 0.23 | 10.08 ± 0.45 | 0.84 ± 0.07 |
Amino Acid | Hovd | Sharga | Tseel | Bulgan | Tsogtovoo |
---|---|---|---|---|---|
Histidine | 0.10 ± 0.02 b | 0.11 ± 0.01 b | 0.11 ± 0.01 b | 0.09 ± 0.02 a,b | 0.12 ± 0.01 a |
Isoleucine | 0.21 ± 0.05 a,b | 0.22 ± 0.02 a | 0.22 ± 0.03 a,b | 0.24 ± 0.04 a,b | 0.25 ± 0.03 b |
Leucine | 0.40 ± 0.09 a,b | 0.42 ± 0.04 a | 0.41 ± 0.06 a,b | 0.45 ± 0.08 a,b | 0.47 ± 0.06 b |
Lysine | 0.29 ± 0.05 b | 0.31 ± 0.02 b | 0.30 ± 0.04 b | 0.33 ± 0.05 a,b | 0.35 ± 0.03 a |
Methionine | 0.12 ± 0.02 a | 0.13 ± 0.01 a,b | 0.13 ± 0.02 a,b | 0.13 ± 0.02 a,b | 0.14 ± 0.02 b |
Phenylalanine | 0.17 ± 0.03 a,b | 0.18 ± 0.01 b | 0.18 ± 0.02 b | 0.19 ± 0.03 a,b | 0.20 ± 0.02 a |
Threonine | 0.18 ± 0.03 b | 0.18 ± 0.01 b | 0.19 ± 0.02 a,b | 0.20 ± 0.03 a,b | 0.21 ± 0.02 a |
Valine | 0.25 ± 0.05 a,b | 0.25 ± 0.06 a | 0.26 ± 0.03 a,b | 0.27 ± 0.04 a,b | 0.29 ± 0.03 b |
Total EAA | 1.71 ± 0.35 b | 1.79 ± 0.17 b | 1.78 ± 0.24 a,b | 1.94 ± 0.32 a,b | 2.03 ± 0.22 a |
Alanine | 0.09 ± 0.02 b | 0.09 ± 0.01 b | 0.09 ± 0.01 a,b | 0.10 ± 0.02 a,b | 0.11 ± 0.01 a |
Arginine | 0.15 ± 0.03 b | 0.16 ± 0.01 b | 0.16 ± 0.02 b | 0.17 ± 0.03 a,b | 0.18 ± 0.02 a |
Aspartic acid | 0.24 ± 0.04 a,b | 0.25 ± 0.02 a | 0.26 ± 0.03 a,b | 0.28 ± 0.05 b,c | 0.29 ± 0.03 c |
Glutamic acid | 0.79 ± 0.16 b | 0.83 ± 0.06 b | 0.84 ± 0.11 a,b | 0.91 ± 0.15 a,b | 0.94 ± 0.09 a |
Glycine | 0.05 ± 0.01 b | 0.05 ± 0.01 b | 0.05 ± 0.01 b | 0.05 ± 0.01 a,b | 0.06 ± 0.01 a |
Serine | 0.16 ± 0.03 b | 0.18 ± 0.01 b | 0.19 ± 0.02 a,b | 0.20 ± 0.03 a,b | 0.21 ± 0.02 a |
Tyrosine | 0.15 ± 0.03 a | 0.16 ± 0.01 a | 0.16 ± 0.02 a | 0.18 ± 0.03 b | 0.18 ± 0.02 b |
Proline | 0.40 ± 0.09 b | 0.43 ± 0.03 b | 0.48 ± 0.07 a,b | 0.49 ± 0.08 b | 0.46 ± 0.06 a,b |
Cystine | 0.05 ± 0.01 b,c | 0.05 ± 0.01 c | 0.05 ± 0.01 c | 0.06 ± 0.01 a | 0.05 ± 0.01 a,b |
Total NEAA | 2.13 ± 0.43 a,b | 2.19 ± 0.17 a | 2.26 ± 0.30 a,b | 2.50 ± 0.42 b | 2.49 ± 0.42 b |
TAA | 3.85 ± 0.77 a,b | 3.98 ± 0.33 a | 4.05 ± 0.54 a,b | 4.44 ± 0.74 b | 4.52 ± 0.47 b |
Fatty Acid | Hovd | Sharga | Tseel | Bulgan | Tsogtovoo |
---|---|---|---|---|---|
C4:0 | 0.02 ± 0.04 a | 0.01 ± 0.01 a | 0.01 ± 0.02 a | 0.04 ± 0.03 b | 0.04 ± 0.05 b |
C6:0 | 0.20 ± 0.11 b,c | 0.10 ± 0.02 a | 0.12 ± 0.06 a,b | 0.30 ± 0.16 c | 0.22 ± 0.11 b,c |
C8:0 | 0.09 ± 0.08 a | 0.13 ± 0.03 a | 0.10 ± 0.06 a | 0.36 ± 0.16 b | 0.29 ± 0.16 b |
C10:0 | 0.01 ± 0.03 a | 0.11 ± 0.06 a,b | 0.05 ± 0.06 a | 0.16 ± 0.09 b,c | 0.18 ± 0.07 c |
C12:0 | 0.81 ± 0.09 a | 1.09 ± 0.14 a | 0.83 ± 0.08 b | 0.98 ± 0.22 b | 1.00 ± 0.08 b |
C13:0 | 0.01 ± 0.02 | 0.03 ± 0.04 | - | 0.03 ± 0.03 | 0.06 ± 0.20 |
C14:0 | 10.18 ± 1.30 a | 12.64 ± 1.57 b | 12.24 ± 0.91 a | 13.15 ± 2.46 b | 13.66 ± 0.98 b |
C15:0 | 1.94 ± 0.17 a | 1.71 ± 0.24 a | 2.14 ± 0.58 b | 2.23 ± 0.27 b | 1.94 ± 0.14 a |
C16:0 | 23.99 ± 1.47 a | 30.08 ± 1.82 b | 27.40 ± 6.82 a | 30.48 ± 2.11 b | 30.72 ± 1.72 b,c |
C17:0 | 1.16 ± 0.09 c | 1.21 ± 0.10 b,c | 1.46 ± 0.12 a | 1.29 ± 0.17 b | 1.22 ± 0.12 b,c |
C18:0 | 16.18 ± 1.91 a | 16.49 ± 1.18 a | 14.99 ± 2.01 a | 11.13 ± 2.46 b | 12.27 ± 1.59 b |
C20:0 | 1.72 ± 0.37 c | 0.89 ± 0.28 b,c | 1.09 ± 0.25 c | 0.39 ± 0.12 a | 0.56 ± 0.06 a,b |
C21:0 | 0.56 ± 0.21 c | 0.37 ± 0.05 b | 0.46 ± 0.06 c | 0.13 ± 0.09 a | 0.39 ± 0.12 b,c |
C22:0 | 0.64 ± 0.31 a | 0.34 ± 0.11 a,b | 0.55 ± 0.17 a | 0.22 ± 0.11 b,c | 0.15 ± 0.09 c |
C24:0 | 0.02 ± 0.05 | 0.05 ± 0.07 | 0.06 ± 0.09 | 0.03 ± 0.05 | 0.06 ± 0.07 |
C14:1 | 0.27 ± 0.17 a | 0.42 ± 0.10 a | 0.42 ± 0.09 a | 0.62 ± 0.20 b | 0.58 ± 0.14 b |
C16:1 | 5.86 ± 0.68 a | 5.37 ± 0.60 a | 5.72 ± 1.74 a | 7.53 ± 1.74 b | 7.40 ± 0.72 b |
C17:1 | 0.66 ± 0.23 b,c | 0.56 ± 0.04 a | 0.76 ± 0.07 b,c | 0.79 ± 0.16 c | 0.63 ± 0.23 b |
C21:1 | 0.10 ± 0.12 b,c | 0.13 ± 0.08 a | 0.15 ± 0.10 b,c | 0.11 ± 0.07 c | 0.13 ± 0.08 b |
C22:1 | 0.29 ± 0.43 b,c | 0.30 ± 0.15 a | 0.36 ± 0.16 b,c | - | 0.48 ± 0.25 b |
C18:1n-9t | 1.82 ± 0.36 c | 1.42 ± 0.20 b,c | 1.39 ± 0.28 b,c | 1.08 ± 1.93 a | 1.20 ± 0.29 b |
C18:1n-9c | 22.42 ± 2.02 a | 15.79 ± 1.60 b | 17.87 ± 1.74 c | 18.13 ± 2.52 b | 17.06 ± 1.88 c |
C18:2n-6t | 0.19 ± 0.18 | 0.24 ± 0.40 | 0.27 ± 0.28 | 0.15 ± 0.11 | 0.14 ± 0.09 |
C18:2n-6c | 2.54 ± 0.27 c,d | 1.92 ± 0.38 b,c | 2.21 ± 0.21 c,d | 1.73 ± 0.23 a,b | 1.68 ± 0.19 a |
C18:3n-3 | 1.13 ± 0.15 a | 1.21 ± 0.19 a | 1.03 ± 0.12 a | 0.61 ± 0.17 b | 0.46 ± 0.06 b |
C20:4 | - | 0.03 ± 0.04 | 0.01 ± 0.02 | 0.06 ± 0.08 | 0.03 ± 0.05 |
Fatty Acid | Hovd | Sharga | Tseel | Bulgan | Tsogtovoo |
---|---|---|---|---|---|
SFA | 57.53 ± 3.37 a | 65.24 ± 2.67 b | 61.12 ± 7.19 b | 60.90 ± 4.23 a | 62.75 ± 2.41 b |
MUFA | 34.15 ± 2.77 a | 26.14 ± 2.13 b | 29.16 ± 1.79 c | 30.13 ± 3.47 c | 29.29 ± 2.08 c |
PUFA | 4.42 ± 0.61 a | 3.76 ± 0.44 a | 3.97 ± 0.29 a | 2.94 ± 0.51 b | 2.70 ± 0.36 b |
SCFA | 0.20 ± 0.15 a,b | 0.11 ± 0.02 a | 0.13 ± 0.07 a | 0.34 ± 0.17 c | 0.26 ± 0.13 b,c |
MCFA | 11.35 ± 1.38 a | 14.41 ± 1.73 b,c | 13.66 ± 1.09 a,b | 15.29 ± 2.67 c | 15.77 ± 1.29 c |
LCFA | 81.26 ± 2.15 a | 78.10 ± 1.14 a,b | 77.52 ± 7.80 a | 76.34 ± 1.29 c | 76.51 ± 1.51 b,c |
OCFA | 4.32 ± 0.48 a,b | 3.87 ± 0.34 a | 4.82 ± 0.60 c | 4.47 ± 0.40 b,c | 4.23 ± 0.42 a,b |
n-6 FA | 2.73 ± 0.35 a | 2.16 ± 0.30 b | 2.48 ± 0.21 a,b | 1.87 ± 0.23 c | 1.82 ± 0.23 c |
n-3 FA | 1.14 ± 0.15 a | 1.21 ± 0.19 a | 1.03 ± 0.12 a,b | 0.88 ± 0.27 b | 0.46 ± 0.06 c |
n-6/n-3 | 2.42 ± 0.29 c | 1.80 ± 0.24 b | 2.44 ± 0.25 c | 2.34 ± 1.92 b,c | 3.97 ± 0.34 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Xiao, Y.; Orgoldol, K.; Ming, L.; Yi, L.; Ji, R. Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. Animals 2019, 9, 890. https://doi.org/10.3390/ani9110890
He J, Xiao Y, Orgoldol K, Ming L, Yi L, Ji R. Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. Animals. 2019; 9(11):890. https://doi.org/10.3390/ani9110890
Chicago/Turabian StyleHe, Jing, Yuchen Xiao, Khongorzul Orgoldol, Liang Ming, Li Yi, and Rimutu Ji. 2019. "Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia" Animals 9, no. 11: 890. https://doi.org/10.3390/ani9110890
APA StyleHe, J., Xiao, Y., Orgoldol, K., Ming, L., Yi, L., & Ji, R. (2019). Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. Animals, 9(11), 890. https://doi.org/10.3390/ani9110890