Performance and Behavioural Responses of Group Housed Dairy Calves to Two Different Weaning Methods
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Treatments and Experimental Design
2.3. Housing and Diet
2.4. Data Collection
2.4.1. Feed Nutrient Composition
2.4.2. Live Weight
2.4.3. Feed Intake and Feeding Behaviour
2.4.4. Calf Health
2.4.5. Calf Activity
2.4.6. Heart Rate Monitors
2.5. Statistical Analysis
2.5.1. Calf Performance and Feeding Behavior
2.5.2. Calf Health
2.5.3. Physiological and Behavioural Measures
3. Results
3.1. Feed Intake and Calf Performance
3.2. Calf Health
3.3. Automatic Feeder Behaviour
3.3.1. Drinking Speed and Drinking Time
3.3.2. Milk and Concentrate Feeder Visits
3.4. Lying Behaviour
3.5. Heart Rate Variability
4. Discussion
4.1. Calf Performance and Efficiency
4.2. Automated Feeders
4.3. Physiological and Behavioural Measures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weary, D.M.; Jasper, J.; Hötzel, M.J. Understanding weaning distress. Appl. Anim. Behav. Sci. 2008, 110, 24–41. [Google Scholar] [CrossRef]
- Hulbert, L.E.; Moisa, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.P.; Jensen, M.B.; Lidfors, L. Milk allowance and weaning method affect the use of a computer controlled milk feeder and the development of cross-sucking in dairy calves. Appl. Anim. Behav. Sci. 2008, 109, 223–237. [Google Scholar] [CrossRef]
- Sweeney, B.C.; Rushen, J.; Weary, D.M.; de Passille, A.M. Duration of weaning, starter intake, and weight gain of dairy calves fed large amounts of milk. J. Dairy Sci. 2010, 93, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Overvest, M.A.; Crossley, R.E.; Miller-Cushon, E.; Devries, T. Social housing influences the behavior and feed intake of dairy calves during weaning. J. Dairy Sci. 2018, 101, 8123–8134. [Google Scholar] [CrossRef] [PubMed]
- Jasper, J.; Budzynska, M.; Weary, D.M. Weaning distress in dairy calves: Acute behavioural responses by limit-fed calves. Appl. Anim. Behav. Sci. 2008, 110, 136–143. [Google Scholar] [CrossRef]
- Theurer, M.E.; Amrine, D.E.; White, B.J. Remote Noninvasive Assessment of Pain and Health Status in Cattle. Vet. Clin. N. Am.-Food Anim. Pract. 2013, 29, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Rushen, J.; Chapinal, N.; de Passille, A.M. Automated monitoring of behavioural-based animal welfare indicators. Anim. Welf. 2012, 21, 339–350. [Google Scholar] [CrossRef]
- de Passille, A.M.; Rushen, J. Adjusting the weaning age of calves fed by automated feeders according to individual intakes of solid feed. J. Dairy Sci. 2012, 95, 5292–5298. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, K.; Costa, J.H.C.; Neave, H.W.; von Keyserlingk, M.A.G.; Weary, D.M. The effect of milk allowance on behavior and weight gains in dairy calves. J. Dairy Sci. 2017, 100, 504–512. [Google Scholar] [CrossRef]
- De Paula Vieira, A.; Guesdon, V.; de Passillé, A.M.; von Keyserlingk, M.A.G.; Weary, D.M. Behavioural indicators of hunger in dairy calves. Appl. Anim. Behav. Sci. 2008, 109, 180–189. [Google Scholar] [CrossRef]
- Clapp, J.B.; Croarkin, S.; Dolphin, C.; Lyons, S.K. Heart rate variability: A biomarker of dairy calf welfare. Anim. Prod. Sci. 2014, 55, 1289–1294. [Google Scholar] [CrossRef]
- von Borell, E.; Langbein, J.; Despres, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Forde, R.; Minero, M.; Mohr, E.; Prunier, A.; et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef]
- Stewart, M.; Verkerk, G.A.; Stafford, K.J.; Schaefer, A.L.; Webster, J.R. Noninvasive assessment of autonomic activity for evaluation of pain in calves, using surgical castration as a model. J. Dairy Sci. 2010, 93, 3602–3609. [Google Scholar] [CrossRef]
- McEwan, A.D.; Fisher, E.W.; Selman, I.E.; Penhale, W.J. A turbidity test for estimation of immune globulin levels in neonatal calf serum. Clin. Chim. Acta 1970, 27, 155–163. [Google Scholar] [CrossRef]
- Dunn, A.; Duffy, C.; Gordon, A.; Morrison, S.; Argűello, A.; Welsh, M.; Earley, B. Comparison of single radial immunodiffusion and ELISA for the quantification of immunoglobulin G in bovine colostrum, milk and calf sera. J. Appl. Anim. Res. 2018, 46, 758–765. [Google Scholar] [CrossRef]
- Dunn, A.; Ashfield, A.; Earley, B.; Welsh, M.; Gordon, A.; McGee, M.; Morrison, S.J. Effect of concentrate supplementation during the dry period on colostrum quality and effect of colostrum feeding regimen on passive transfer of immunity, calf health, and performance. J. Dairy Sci. 2017, 100, 357–370. [Google Scholar] [CrossRef]
- Quigley, J.D.; Wolfe, T.A.; Elsasser, T.H. Effects of additional milk replacer feeding on calf health, growth, and selected blood metabolites in calves. J. Dairy Sci. 2006, 89, 207–216. [Google Scholar] [CrossRef]
- McGuirk, S.M.; Peek, S.F. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system. Anim. Health Res. Rev. 2014, 15, 145–147. [Google Scholar] [CrossRef]
- Finney, G.; Gordon, A.; Scoley, G.; Morrison, S.J. Validating the IceRobotics IceQube tri-axial accelerometer for measuring daily lying duration in dairy calves. Livest. Sci. 2018, 214, 83–87. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Kaufmann, T.; Sütterlin, S.; Schulz, S.M.; Vögele, C. ARTiiFACT: A tool for heart rate artifact processing and heart rate variability analysis. Behav. Res. Methods 2011, 43, 1161–1170. [Google Scholar] [CrossRef]
- Khan, M.A.; Weary, D.M.; von Keyserlingk, M.A. Invited review: Effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J. Dairy Sci. 2011, 94, 1071–1081. [Google Scholar] [CrossRef]
- Steele, M.A.; Doelman, J.H.; Leal, L.N.; Soberon, F.; Carson, M.; Metcalf, J.A. Abrupt weaning reduces postweaning growth and is associated with alterations in gastrointestinal markers of development in dairy calves fed an elevated plane of nutrition during the preweaning period. J. Dairy Sci. 2017, 100, 5390–5399. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.L.V.; McLeod, K.R.; Klotz, J.L.; Heitmann, R.N. Rumen Development, Intestinal Growth and Hepatic Metabolism In The Pre- and Postweaning Ruminant. J. Dairy Sci. 2004, 87, E55–E65. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, B.L. On the interpretation of feeding behaviour measures and the use of feeding rate as an indicator of social constraint. Appl. Anim. Behav. Sci. 1999, 63, 79–91. [Google Scholar] [CrossRef]
- Enriquez, D.; Hotzel, M.J.; Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta Vet. Scand. 2011, 53, 28. [Google Scholar] [CrossRef]
- Sangha, S.; McComb, C.; Scheibenstock, A.; Johannes, C.; Lukowiak, K. The effects of continuous versus partial reinforcement schedules on associative learning, memory and extinction in Lymnaea stagnalis. J. Exp. Biol. 2002, 205, 1171–1178. [Google Scholar]
- Borderas, T.F.; de Passille, A.M.; Rushen, J. Feeding behavior of calves fed small or large amounts of milk. J. Dairy Sci. 2009, 92, 2843–2852. [Google Scholar] [CrossRef] [Green Version]
- Miller-Cushon, E.K.; DeVries, T.J. Invited review: Development and expression of dairy calf feeding behaviour. Can. J. Anim. Sci. 2015, 95, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Van Reenen, C.G.; O’Connell, N.E.; Van der Werf, J.T.N.; Korte, S.M.; Hopster, H.; Jones, R.B.; Blokhuis, H.J. Responses of calves to acute stress: Individual consistency and relations between behavioral and physiological measures. Physiol. Behav. 2005, 85, 557–570. [Google Scholar] [CrossRef]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef]
- Mohr, E.; Langbein, J.; Nurnberg, G. Heart rate variability—A noninvasive approach to measure stress in calves and cows. Physiol. Behav. 2002, 75, 251–259. [Google Scholar] [CrossRef]
- Kovacs, L.; Jurkovich, V.; Bakony, M.; Szenci, O.; Poti, P.; Tozser, J. Welfare implication of measuring heart rate and heart rate variability in dairy cattle: Literature review and conclusions for future research. Animal 2014, 8, 316–330. [Google Scholar] [CrossRef]
- Swartz, T.H.; McGilliard, M.L.; Petersson-Wolfe, C.S. Technical note: The use of an accelerometer for measuring step activity and lying behaviors in dairy calves. J. Dairy Sci. 2016, 99, 9109–9113. [Google Scholar] [CrossRef] [Green Version]
- Budzynska, M.; Weary, D.M. Weaning distress in dairy calves: Effects of alternative weaning procedures. Appl. Anim. Behav. Sci. 2008, 112, 33–39. [Google Scholar] [CrossRef]
Age (d) | Weaning Method (L/Day) | No. of Feeds/d | |
---|---|---|---|
Gradual | Abrupt | ||
0–3 | 4 (colostrum/TM) | 4 (colostrum/TM) | 2 |
4 1 | 4 (TM + MR) | 4 (TM + MR) | 2 |
5–8 | 4 | 4 | Automatic feeder |
9–35 | 6 | 6 | Automatic feeder |
36–49 | 6 reducing to 3.6 | 6 | Automatic feeder |
50–56 | 3.6 reducing to 2 | - | Automatic feeder |
Parameter | Milk Replacer | Concentrate | Straw |
---|---|---|---|
Dry matter (g/kg Fresh) | 963 | 965 | 948 |
Nitrogen (g/kg DM) | 37.2 | 32.4 | 5.3 |
NDF (g/kg DM) | - | 255.1 | 898.7 |
ADF (g/kg DM) | - | 122.5 | 518.1 |
Ash (g/kg DM) | 71.0 | 65.4 | 44.0 |
Ether extract (g/kg DM) | 206.8 | 33.9 | 13.0 |
Gross energy (MJ/kg DM) | 21.5 | 18.2 | 18.8 |
Parameter | Weaning Plan (WP) | p-Value | ||||
---|---|---|---|---|---|---|
Gradual | Abrupt | SED | WP | Day | WP × Day | |
Daily Intake (gDM/day) | ||||||
Milk Replacer | ||||||
day 5–49 | 754 | 806 | 5.92 | <0.001 | <0.001 | <0.001 |
Concentrate | ||||||
day 36–49 | 455 | 235 | 35.96 | <0.001 | <0.001 | <0.001 |
day 50–56 | 1160 | 1557 | 84.46 | <0.001 | <0.001 | <0.001 |
day 57–62 | 2280 | 2188 | 78.71 | 0.250 | <0.001 | 0.715 |
Total Intake (kgDM) | ||||||
Milk Replacer | 36.4 | 36.3 | 0.38 | 0.685 | - | - |
Concentrate | ||||||
day 5–49 | 9.1 | 4.1 | 0.79 | <0.001 | - | - |
day 5–56 | 18.8 | 13.4 | 1.39 | <0.001 | - | - |
day 5–62 | 32.6 | 26.5 | 1.79 | 0.001 | - | - |
day 36–49 | 6.6 | 3.1 | 0.25 | <0.001 | - | - |
day 50–56 | 8.1 | 10.9 | 0.68 | <0.001 | - | - |
day 57–62 | 13.7 | 13.1 | 0.49 | 0.266 | - | - |
Combined Dry matter intake (kgDM) | ||||||
day 5–56 | 55.2 | 49.6 | 1.47 | <0.001 | - | - |
day 5–62 | 69.0 | 62.8 | 1.89 | 0.001 | - | - |
Parameter | Weaning Plan | p-Value | ||
---|---|---|---|---|
Gradual | Abrupt | SED | ||
Live weight 1 (kg) | ||||
day 50 | 70.1 | 69.2 | 1.16 | 0.354 |
day 57 | 75.9 | 74.5 | 1.12 | 0.215 |
day 63 | 83.4 | 81.2 | 1.28 | 0.085 |
ADG 2 (kg/day) | ||||
day 7–35 | 0.59 | 0.57 | 0.023 | 0.393 |
day 7–63 | 0.68 | 0.65 | 0.019 | 0.079 |
day 36–49 | 0.66 | 0.71 | 0.036 | 0.163 |
day 50–56 | 0.90 | 0.39 | 0.078 | <0.001 |
day 57–62 | 0.86 | 1.00 | 0.089 | 0.150 |
FCE 3 (kg gain/kg DMI) | ||||
day 7–35 | 0.64 | 0.62 | 0.025 | 0.514 |
day 7–63 | 0.55 | 0.57 | 0.016 | 0.151 |
day 36–49 | 0.53 | 0.64 | 0.029 | <0.001 |
day 50–56 | 0.47 | 0.21 | 0.126 | 0.049 |
day 57–62 | 0.32 | 0.42 | 0.043 | 0.031 |
Parameter | Weaning Plan (WP) | p-Value | ||||
---|---|---|---|---|---|---|
Gradual | Abrupt | SED | WP | Day (D) | WP × D | |
Daily total lying time (min/d) | ||||||
Pre-Abrupt (day 45–49) | 1032 | 1037 | 14.91 | 0.871 | 0.984 | 0.713 |
Post-Abrupt (day 50–55) | 1046 | 997 | 12.85 | <0.001 | 0.012 | 0.105 |
Pre-Gradual (day 52–56) | 1046 | 1025 | 16.62 | 0.193 | 0.123 | 0.154 |
Post-Gradual (day 57–62) | 1037 | 1050 | 11.84 | 0.234 | 0.129 | 0.428 |
Number of daily lying episodes | ||||||
Pre-Abrupt (day 45–49) | 16.16 | 17.45 | 0.890 | 0.188 | 0.867 | 0.579 |
Post-Abrupt (day 50–55) | 17.17 | 15.03 | 0.708 | 0.004 | 0.016 | 0.095 |
Pre-Gradual (day 52–56) | 17.24 | 15.69 | 0.715 | 0.066 | 0.032 | 0.053 |
Post-Gradual (day 57–62) | 17.01 | 16.59 | 0.821 | 0.404 | 0.004 | 0.234 |
Lying bout duration (min) | ||||||
Pre-Abrupt (day 45–49) | 66.56 | 61.98 | 3.813 | 0.276 | 0.416 | 0.897 |
Post-Abrupt (day 50–55) | 64.24 | 68.94 | 2.741 | 0.100 | 0.034 | 0.160 |
Pre-Gradual (day 52–56) | 61.15 | 71.59 | 2.944 | 0.001 | 0.053 | 0.639 |
Post-Gradual (day 57–62) | 63.53 | 68.42 | 4.424 | 0.239 | 0.017 | 0.656 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scoley, G.; Gordon, A.; Morrison, S. Performance and Behavioural Responses of Group Housed Dairy Calves to Two Different Weaning Methods. Animals 2019, 9, 895. https://doi.org/10.3390/ani9110895
Scoley G, Gordon A, Morrison S. Performance and Behavioural Responses of Group Housed Dairy Calves to Two Different Weaning Methods. Animals. 2019; 9(11):895. https://doi.org/10.3390/ani9110895
Chicago/Turabian StyleScoley, Gillian, Alan Gordon, and Steven Morrison. 2019. "Performance and Behavioural Responses of Group Housed Dairy Calves to Two Different Weaning Methods" Animals 9, no. 11: 895. https://doi.org/10.3390/ani9110895
APA StyleScoley, G., Gordon, A., & Morrison, S. (2019). Performance and Behavioural Responses of Group Housed Dairy Calves to Two Different Weaning Methods. Animals, 9(11), 895. https://doi.org/10.3390/ani9110895