Performance and Ruminal Parameters of Boer Crossbred Goats Fed Diets that Contain Crude Glycerin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Animals, and Diets
2.2. Feed Intake, Nutrient Digestibility and Animal Performance
2.3. Chemical Analysis
2.4. Calculated Composition
2.5. Sampling and Analysis of Ruminal Fluid
2.6. Statistical Analysis
3. Results
3.1. Nutrient Intake
3.2. Digestibility Coefficients
3.3. Performance
3.4. Rumen Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Posada, J.A.; Rincón, L.E.; Cardona, C.A. Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem. Bioresour. Technol. J. 2012, 111, 282–293. [Google Scholar] [CrossRef]
- Alvarenga, R.R.; Lima, E.M.C.; Zangeronimo, M.G.; Rodrigues, P.B.; Bernardino, V.M.P. Use of glycerine in poultry diets. World’s Poult. Sci. J. 2012, 68, 637–644. [Google Scholar] [CrossRef]
- Hernández, F.; Orengo, J.; Villodre, C.; Martínez, S.; López, M.; Madrid, J. Addition of crude glycerin to pig diets: Sow and litter performance, and metabolic and feed intake regulating hormones. Animal 2016, 10, 919–926. [Google Scholar] [CrossRef]
- Socreppa, L.M.; Moraes, K.A.K.; Oliveira, A.S.; Batista, E.D.; Drosghic, L.C.A.; Botini, L.A.; Paula, D.C.; Stinguel, H.; Bento, F.C.; Moraes, E.H.B.K. Crude glycerine as an alternative energy feedstuff for beef cattle grazing tropical pasture. J. Agric. Sci. 2017, 155, 839–846. [Google Scholar] [CrossRef]
- Fávaro, V.R.; Ezequiel, J.M.B.; D’Aurea, A.P.; Van Cleef, E.H.C.B.; Sancanari, J.B.D.; Santos, V.C.; Homem Junior, A.C. Glycerin in cattle feed: Intake, digestibility, and ruminal and blood parameters. Semin. Ciências Agrárias 2015, 36, 1495–1506. [Google Scholar] [CrossRef]
- Gunn, P.J.; Schultz, A.F.; Van Emon, M.L.; Neary, M.K.; Lemenager, R.P.; Rusk, C.P.; Lake, S.L. Effects of elevated crude glycerin concentrations on feedlot performance, carcass characteristics, and serum metabolite and hormone concentrations in finishing ewe and wether lambs. Prof. Anim. Sci. 2010, 26, 298–306. [Google Scholar] [CrossRef]
- Chanjula, P. Use of crude glycerin as an energy source for goat diets: A review. J. Dairy Vet. Sci. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- Krebs, H.A.; Lund, P. Formation of glucose from hexoses, pentoses, polyols and related substances in kidney cortex. Biochem. J. 1966, 98, 210–214. [Google Scholar] [CrossRef]
- Donkin, S.S. Glycerol from biodiesel production: The new corn for dairy cattle. Rev. Bras. Zootec. 2008, 37, 280–286. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, D.J.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Weiss, W.P. Energy prediction equations for ruminant feeds. Proc. Corn. Nut. Conf. Feed Manuf. 1999, 61, 76–185. [Google Scholar]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Carvalho, G.G.P.; Garcia, R.; Pires, A.J.V.; Silva, R.R.; Ribeiro, L.S.O.; Chagas, D.M.T.; Pinho, B.D.; Domiciano, E.M.B. Consumption, apparent digestibility and days of total collection in the estimation of digestibility in goats fed diets containing sugar cane treated with calcium oxide. Braz. J. Anim. Sci. 2010, 39, 2714–2723. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Madrid, J.; Villodre, C.; Valera, L.; Orengo, J.; Martínez, S.; López, M.J.; Megías, M.D.; Hernández, F. Effect of crude glycerin on feed manufacturing, growth performance, plasma metabolites and nutrient digestibility of growing finishing pigs. J. Anim. Sci. 2013, 91, 3788–3795. [Google Scholar] [CrossRef]
- Siegfried, V.R.; Ruckermann, H.; Stumpf, G. Method for the determination of organic acids in silage by high performance liquid chromatography. Landwirtsch. Forsch. 1984, 37, 298–304. [Google Scholar]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar]
- Lage, J.F.; Paulino, P.V.R.; Pereira, L.G.R.; Duarte, M.S.; Valadares Filho, S.C.; Oliveira, A.S.; Souza, N.K.P.; Lima, J.C.M. Carcass characteristics of feedlot lambs fed crude glycerin contaminated with high concentrations of crude fat. Meat Sci. 2014, 96, 108–113. [Google Scholar] [CrossRef]
- Krehbiel, C.R. Ruminal and physiological metabolism of glycerin. J. Anim. Sci. 2008, 86 (Suppl. 2), 392. [Google Scholar]
- Pol, A.; Demeyer, D.I. Fermentation of methanol in the sheep rumen. Appl. Environ. Microbiol. 1988, 54, 832–834. [Google Scholar]
- Abo El-Nor, S.; Abughazaleha, A.A.; Potua, R.B.; Hastings, D.; Khattab, M.S.A. Effects of differing levels of glycerol on rumen fermentation and bacteria. Anim. Feed Sci. Technol. 2010, 162, 99–105. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Olmos Colmenero, J.J.; Broderic, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Long, M.; Corl, B.A.; Karnati, K.R. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows. J. Dairy Sci. 2011, 94, 5544–5557. [Google Scholar] [CrossRef] [PubMed]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef]
- Mehrez, A.Z.; Ørskov, E.M.; McDonald, I. Rates of rumen fermentation in relation to ammonia concentration. Br. J. Nutr. 1977, 38, 437–443. [Google Scholar] [CrossRef]
Dietary Ingredient (%) | Dietary Crude Glycerin Levels (g/kg Dry Matter) | |||
---|---|---|---|---|
0 | 50 | 100 | 150 | |
Diet composition | ||||
Cornmeal | 18.0 | 12.0 | 6.00 | 0.00 |
Soybean meal | 20.5 | 21.5 | 22.5 | 23.5 |
Crude glycerin | 0.0 | 5.00 | 10.0 | 15.0 |
Mineral supplement | 1.50 | 1.50 | 1.50 | 1.50 |
Sorghum silage | 60.0 | 60.0 | 60.0 | 60.0 |
Chemical composition, % | ||||
DM | 55.5 | 55.7 | 56.0 | 56.2 |
Organic matter [OM] 1 | 94.1 | 93.7 | 94.1 | 94.2 |
Mineral matter [MM] 1 | 5.08 | 5.23 | 5.39 | 5.54 |
Crude protein [CP] 1 | 14.9 | 15.0 | 15.1 | 15.1 |
Ether extract [EE] 1 | 3.13 | 2.84 | 2.55 | 2.26 |
Neutral detergent fiber [NDF] 1 | 34.9 | 34.3 | 33.7 | 33.1 |
Acid detergent fiber [ADF] 1 | 16.7 | 16.6 | 16.6 | 16.6 |
Methanol 1 | 0.00 | 0.33 | 0.66 | 0.99 |
Calculated composition, % | ||||
Non-fibrous carbohydrate [NFC] 1,2 | 41.9 | 42.6 | 43.3 | 44.0 |
Total digestible nutrients [TDN] 3 | 64.0 | 64.0 | 64.0 | 64.0 |
Item (%) | Ingredient | |||
---|---|---|---|---|
Sorghum Silage | Cornmeal | Soybean Meal | Crude Glycerin | |
Dry matter | 33.6 | 88.6 | 87.3 | 94.0 |
Organic matter 1 | 96.7 | 98.5 | 93.5 | 96.4 |
Mineral matter 1 | 3.29 | 1.54 | 6.48 | 3.60 |
Crude protein 1 | 7.55 | 6.42 | 45.03 | ND |
Ether extract 1 | 3.05 | 5.15 | 1.84 | ND |
Neutral detergent fibre 1 | 49.0 | 13.1 | 15.5 | ND |
Acid detergent fibre 1 | 26.2 | 1.30 | 3.63 | ND |
Glycerol | 0.00 | 0.00 | 0.00 | 43.4 |
Methanol | 0.00 | 0.00 | 0.00 | 6.6 |
Calculated composition | ||||
Non-fibrous carbohydrate 1,2 | 37.1 | 73.8 | 31.2 | 96.4 |
Total digestible nutrients 1,3 | 55.0 | 81.1 | 80.1 | ND |
Item | Dietary Glycerin Level (g/kg) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | L ² | Q ³ | ||
Intake (g/day) | |||||||
DM | 827 | 733 | 714 | 608 | 27.4 | 0.01 | 0.89 |
OM | 793 | 704 | 683 | 581 | 26.3 | 0.01 | 0.87 |
CP | 110 | 105 | 95.7 | 85.5 | 3.56 | 0.01 | 0.67 |
EE | 21.6 | 16.6 | 14.0 | 8.92 | 0.999 | <0.01 | 0.96 |
NDF | 299 | 278 | 272 | 202 | 11.5 | 0.01 | 0.16 |
NFC | 362 | 313 | 301 | 284 | 10.1 | 0.01 | 0.57 |
TDN | 588 | 512 | 492 | 397 | 19.6 | 0.01 | 0.68 |
Intake (% body weight [BW]) | |||||||
DM | 3.16 | 2.92 | 2.87 | 2.63 | 16.78 | 0.01 | 0.72 |
NDF | 1.14 | 1.11 | 1.09 | 0.87 | 17.76 | 0.01 | 0.09 |
Item | Dietary Glycerin Level (g/kg) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | L ² | Q ³ | ||
Digestibility (%) | |||||||
DM | 69.8 | 69.0 | 68.2 | 65.1 | 0.90 | 0.07 | 0.37 |
OM | 71.3 | 70.7 | 70.1 | 66.2 | 0.86 | 0.08 | 0.34 |
CP | 67.1 | 70.3 | 69.0 | 67.2 | 0.85 | 0.31 | 0.09 |
EE | 76.5 | 62.9 | 56.3 | 38.3 | 3.26 | <0.01 | 0.31 |
NDF | 58.6 | 60.4 | 58.4 | 51.6 | 1.39 | 0.02 | 0.04 |
NFC | 82.8 | 80.5 | 81.6 | 81.4 | 0.57 | 0.22 | 0.54 |
Item | Dietary Glycerin Level (g/kg) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | L 2 | Q 3 | ||
IW (kg) | 17.8 | 17.9 | 17.9 | 17.6 | - | - | - |
FW (kg) | 26.2 | 25.2 | 24.9 | 23.1 | 0.59 | 0.02 | 0.09 |
TWG (kg) | 8.42 | 7.24 | 6.98 | 5.33 | 0.339 | 0.01 | 0.12 |
ADG (g/day) | 122 | 105 | 101 | 87.1 | 0.01 | 0.01 | 0.23 |
FC | 6.30 | 6.36 | 6.84 | 6.83 | 0.3495 | 0.53 | 0.38 |
FE | 0.166 | 0.165 | 0.160 | 0.160 | 0.0078 | 0.69 | 0.19 |
Item | Crude Glycerin Inclusion Level (g/kg) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | L ² | Q ³ | ||
Ruminal pH | 6.27 | 6.34 | 6.42 | 6.49 | 0.028 | <0.01 | 0.96 |
NH3–N (mg/dL) | 26.2 | 23.1 | 20.7 | 19.0 | 1.21 | <0.01 | 0.15 |
Acetate (mol/100 mol) | 67.0 | 64.3 | 64.4 | 64.1 | 0.54 | 0.08 | 0.12 |
Propionate (mol/100 mol) | 25.8 | 28.2 | 28.3 | 28.4 | 0.49 | 0.07 | 0.11 |
Butyrate (mol/100 mol) | 7.24 | 7.44 | 7.38 | 7.49 | 0.094 | 0.38 | 0.76 |
Total SCFA (mol/L) | 146 | 142 | 143 | 141 | 1.85 | 0.24 | 0.72 |
Acetate:propionate (A:P) | 2.74 | 2.35 | 2.35 | 2.34 | 0.066 | 0.07 | 0.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, H.; Santos, E.; Oliveira, J.; Carvalho, G.; Silva, F.; Cassuce, M.; Perazzo, A.; Zanine, A.; Pinho, R. Performance and Ruminal Parameters of Boer Crossbred Goats Fed Diets that Contain Crude Glycerin. Animals 2019, 9, 967. https://doi.org/10.3390/ani9110967
Bezerra H, Santos E, Oliveira J, Carvalho G, Silva F, Cassuce M, Perazzo A, Zanine A, Pinho R. Performance and Ruminal Parameters of Boer Crossbred Goats Fed Diets that Contain Crude Glycerin. Animals. 2019; 9(11):967. https://doi.org/10.3390/ani9110967
Chicago/Turabian StyleBezerra, Higor, Edson Santos, Juliana Oliveira, Gleidson Carvalho, Fabiano Silva, Meiry Cassuce, Alexandre Perazzo, Anderson Zanine, and Ricardo Pinho. 2019. "Performance and Ruminal Parameters of Boer Crossbred Goats Fed Diets that Contain Crude Glycerin" Animals 9, no. 11: 967. https://doi.org/10.3390/ani9110967
APA StyleBezerra, H., Santos, E., Oliveira, J., Carvalho, G., Silva, F., Cassuce, M., Perazzo, A., Zanine, A., & Pinho, R. (2019). Performance and Ruminal Parameters of Boer Crossbred Goats Fed Diets that Contain Crude Glycerin. Animals, 9(11), 967. https://doi.org/10.3390/ani9110967