Impact of Bovine Lipocalin-2 Gene on the Antioxidant Activity of Milk from Polish Holstein-Friesian Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collecting
2.2. SNPs Genotyping
2.3. Determination of the Antioxidant Activity of Milk
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohammed, A.A.; Ibrahim, A.A. Pathological roles of reactive oxygen species and their defence mechanism. Saudi Pharm. J. 2004, 12, 1–18. [Google Scholar]
- Bagchi, K.; Puri, S. Free radicals and antioxidants in health and disease. East. Mediterr. Health J. 1998, 4, 350–360. [Google Scholar]
- Atakisi, O.; Oral, H.; Atakisi, E.; Merhan, O.; Metin Pancarci, S.; Ozcan, A.; Marasli, S.; Polat, B.; Cola, A.; Kaya, S. Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Res. Vet. Sci. 2010, 89, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Flower, D.R. The lipocalin protein family: Structure and function. Biochem. J. 1996, 318, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, L.; Johnsen, A.H.; Sengeløv, H.; Borregaard, N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 1993, 268, 10425–10432. [Google Scholar] [PubMed]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta 2012, 1826, 129–169. [Google Scholar] [CrossRef]
- Litwin, C.M.; Calderwood, S.B. Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 1993, 6, 137–149. [Google Scholar] [CrossRef]
- Goetz, D.H.; Holmes, M.A.; Borregaard, N.; Bluhm, M.E.; Raymond, K.N.; Strong, R.K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 2002, 10, 1033–1043. [Google Scholar] [CrossRef]
- Roudkenar, M.H.; Kuwahara, Y.; Baba, T.; Roushandeh, A.M.; Ebishima, S.; Abe, S.; Ohkubo, Y.; Fukumoto, M. Oxidative stress induced lipocalin 2 gene expression: Addressing its expression under the harmful conditions. J. Radiat. Res. 2007, 48, 39–44. [Google Scholar] [CrossRef]
- Pokorska, J.; Piestrzyńska-Kajtoch, A.; Kułaj, D.; Ochrem, A.; Radko, A. Polymorphism of bovine lipocalin-2 gene and its impact on milk production traits and mastitis in Holstein Friesian cattle. Electron. J. Biotechnol. 2019, 40, 17–21. [Google Scholar] [CrossRef]
- Pokorska, J.; Kułaj, D.; Dusza, M.; Żychlińska-Buczek, J.; Makulska, J. New Rapid Method of DNA Isolation from Milk Somatic Cells. Anim. Biotechnol. 2016, 27, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Plust, D.; Czerniejewska-Surma, B.; Domiszewski, Z.; Bienkiewicz, G. Zawartość polifenoli. właściwości przeciwutleniające oraz zdolności redukujące naparów herbat białych liściastych. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2011, 286, 47–52. [Google Scholar]
- Van den Berg, R.; Haenen, G.R.M.M.; van den Berg, H.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C.; Frankham, R. Introduction to Quantitative Genetics, 4th ed.; Pearson: London, UK, 1996. [Google Scholar]
- Rodriguez, S.; Gaunt, T.R.; Day, I.N.M. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies. Am. J. Epidemiol. 2009, 169, 505–514. [Google Scholar] [CrossRef]
- Nei, M.; Roychoudhury, A. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar]
- Barret, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Szymanska, R.; Pospisil, P.; Kruk, J. Plant-Derived Antioxidants in Disease Prevention. Oxid Med. Cell Longev. 2018, 2018, 2068370. [Google Scholar] [CrossRef]
- Vertuani, S.; Angusti, A.; Manfredini, S. The antioxidants and pro-antioxidants network:an overview. Curr. Pharm. Des. 2004, 14, 1677–1694. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ayaz, M.; Ajmal, M.; Ellahi, M.Y.; Khalique, A. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Lipids Health Dis. 2017, 16, 163. [Google Scholar] [CrossRef] [PubMed]
- Ogorevc, J.; Kunej, T.; Razpet, A.; Dovc, P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet. 2009, 40, 832–851. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.; Rizos, D.; Kafkas, N.; Haliassos, A. Neutrophil gelatinase-associated lipocalin as a new biomarker in laboratory medicine. Clin. Chem. Lab. Med. 2012, 50, 1519–1532. [Google Scholar] [CrossRef]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef]
- Wilson, D.J.; Perry, C.G.R.; Mak, T.W.; Sweeney, G. Holo-lipocalin-2-derived siderophores increase mitochondrial ROS and impair oxidative phosphorylation in rat cardiomyocytes. Proc. Natl. Acad. Sci. USA 2018, 115, 1576–1581. [Google Scholar]
- Knnapen, A.M.; Nehls, P.; Borm, J.A. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic. Biol. Med. 1999, 27, 234–240. [Google Scholar] [CrossRef]
- Ingman, W.V.; Glynn, D.J.; Hutchinson, M.R. Inflammatory mediators in mastitis and lactation insufficiency. J. Mammary Gland Biol. Neoplasia 2014, 19, 161–167. [Google Scholar] [CrossRef]
- Conner, E.M.; Grisham, M.B. Inflammation, free radicals, and antioxidants. Nutrition 1996, 12, 274–277. [Google Scholar] [CrossRef]
- Kirkwood, T.B.; Kowald, A. The free-radical theory of ageing-older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. Bioessays 2012, 34, 692–700. [Google Scholar] [CrossRef]
Loci | Genotype Frequencies | MAF | χ2 (HWE) | Genetic Diversity Parameters | ||||
---|---|---|---|---|---|---|---|---|
He | Ne | PIC | ||||||
g.98793626A>G | AA | AG | GG | G | 0.00 | 0.285 | 1.399 | 0.218 |
0.686 | 0.284 | 0.030 | 0.172 | |||||
g.98793763G>C | GG | GC | CC | C | 15.87 * | 0.487 | 1.949 | 0.446 |
0.414 | 0.337 | 0.249 | 0.418 | |||||
g.98793889G>A | GG | GA | AA | A | 0.15 | 0.269 | 1.368 | 0.233 |
0.710 | 0.260 | 0.030 | 0.160 |
Effect | Classes | N | TEAC (µM TE) | Daily Milk Yield (kg) * | Fat (%) * | Protein (%) * | Lactose (%) * | SCC * (×103 cells/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSM | SE | LSM | SE | LSM | SE | LSM | SE | LSM | SE | LSM | SE | ||||
LCN2 genotypes | g.98793626A>G | AA | 116 | 3.53 | 0.25 | 26.23 | 0.73 | 3.75 | 0.07 | 3.52 | 0.03 | 4.60 | 0.03 | 512.88 | 71.80 |
AG | 48 | 2.97 | 0.38 | 26.64 | 1.12 | 3.83 | 0.11 | 3.60 | 0.05 | 4.71 | 0.04 | 303.28 | 110.71 | ||
GG | 5 | 2.67 | 1.17 | 25.94 | 3.44 | 3.80 | 0.33 | 3.40 | 0.16 | 4.66 | 0.13 | 307.62 | 338.81 | ||
g.98793763G>C | GG | 70 | 3.35 | 0.31 | 26.66 | 0.93 | 3.67 | 0.09 | 3.54 | 0.04 | 4.68 | 0.04 | 449.25 | 92.01 | |
GC | 57 | 2.60 A | 0.35 | 26.14 | 1.04 | 3.79 | 0.10 | 3.59 | 0.05 | 4.67 | 0.04 | 443.62 | 103.87 | ||
CC | 42 | 4.30 A | 0.39 | 26.03 | 1.17 | 3.92 | 0.11 | 3.46 | 0.05 | 4.57 | 0.05 | 452.26 | 117.21 | ||
g.98793889G>A | GG | 120 | 3.48 | 0.24 | 26.26 | 0.71 | 3.77 | 0.07 | 3.53 | 0.03 | 4.61 | 0.03 | 513.22 | 69.92 | |
GC | 44 | 3.06 | 0.41 | 26.60 | 1.19 | 3.79 | 0.11 | 3.58 | 0.06 | 4.72 | 0.05 | 271.92 | 117.21 | ||
CC | 5 | 2.67 | 1.17 | 25.94 | 3.44 | 3.80 | 0.33 | 3.40 | 0.16 | 4.66 | 0.13 | 306.93 | 338.15 | ||
age (year) | ≤4 | 12 | 1.25 A | 0.73 | 23.77 | 2.18 | 4.06 | 0.21 | 3.48 | 0.11 | 4.78 | 0.09 | 326.33 | 216.21 | |
4.1–6.0 | 101 | 3.07 b | 0.25 | 26.75 | 0.75 | 3.77 | 0.07 | 3.56 | 0.04 | 4.64 | 0.03 | 446.54 | 74.52 | ||
>6.0 | 56 | 4.07 Ab | 0.34 | 25.96 | 1.01 | 3.80 | 0.10 | 3.57 | 0.05 | 4.64 | 0.04 | 471.86 | 100.08 |
Effect | Classes | N | TEAC (µM TE) | |
---|---|---|---|---|
LSM | SE | |||
daily milk yield (kg) * | ≤25.0 | 73 | 4.11 Ab | 0.29 |
25.1–35.0 | 72 | 3.01 bc | 0.29 | |
>35.0 | 24 | 1.49 Ac | 0.50 | |
fat (%) * | ≤3.2 | 80 | 3.90 | 0.53 |
3.21–4.0 | 73 | 3.82 | 0.38 | |
>4.0 | 16 | 3.27 | 0.37 | |
protein (%) * | ≤3.5 | 33 | 3.47 | 0.31 |
3.5–4.0 | 73 | 3.20 | 0.34 | |
>4.0 | 63 | 4.33 | 0.70 | |
lactose (%) * | ≤4.40 | 30 | 3.47 | 0.54 |
4.41–4.80 | 80 | 3.65 | 0.35 | |
>4.80 | 59 | 3.88 | 0.37 | |
SCC (×103 cells/mL) * | <200 | 82 | 2.82 b | 0.38 |
200–400 | 36 | 4.00 b | 0.46 | |
>400 | 51 | 3.16 | 0.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorska, J.; Kułaj, D.; Piestrzyńska-Kajtoch, A.; Radko, A. Impact of Bovine Lipocalin-2 Gene on the Antioxidant Activity of Milk from Polish Holstein-Friesian Cows. Animals 2019, 9, 992. https://doi.org/10.3390/ani9110992
Pokorska J, Kułaj D, Piestrzyńska-Kajtoch A, Radko A. Impact of Bovine Lipocalin-2 Gene on the Antioxidant Activity of Milk from Polish Holstein-Friesian Cows. Animals. 2019; 9(11):992. https://doi.org/10.3390/ani9110992
Chicago/Turabian StylePokorska, Joanna, Dominika Kułaj, Agata Piestrzyńska-Kajtoch, and Anna Radko. 2019. "Impact of Bovine Lipocalin-2 Gene on the Antioxidant Activity of Milk from Polish Holstein-Friesian Cows" Animals 9, no. 11: 992. https://doi.org/10.3390/ani9110992
APA StylePokorska, J., Kułaj, D., Piestrzyńska-Kajtoch, A., & Radko, A. (2019). Impact of Bovine Lipocalin-2 Gene on the Antioxidant Activity of Milk from Polish Holstein-Friesian Cows. Animals, 9(11), 992. https://doi.org/10.3390/ani9110992