Methane and Carbon Dioxide Emission of Beef Heifers in Relation with Growth and Feed Efficiency
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Definition of Traits and Data Analyses
2.3. Data Analysis
3. Results and Discussions
3.1. Recorded Traits
3.2. Calculated Growth and Methane Efficiency Traits
3.3. Calculated Growth and Methane Efficiency Traits Adjusted for Carbon Dioxide Emission
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Veysset, P.; Lherm, M.; Roulenc, M.; Troquier, C.; Bébin, D. Productivity and technical efficiency of suckler beef production systems: Trends for the period 1990 to 2012. Animal 2015, 9, 2050–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dollé, J.B.; Agabriel, J.; Peyraud, J.L.; Faverdin, P.; Manneville, V.; Raison, C.; Gac, A.; Le Gall, A. Les gaz à effet de serre en élevage bovin: Évaluation et leviers d’action. INRA Prod. Anim. 2011, 24, 415–432. [Google Scholar]
- Gac, A.; Manneville, V.; Raison, C.; Charroin, T.; Ferrand, M. L’empreinte carbone des élevages d’herbivores: Présentation de la méthodologie d’évaluation appliquée à des élevages spécialisés lait et viande. Renc. Rech. Rum. 2010, 17, 335–342. [Google Scholar]
- Berry, D.P.; Crowley, J.J. Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donoghue, K.A.; Bird-Gardiner, T.; Arthur, P.F.; Herd, R.M.; Hegarty, R.F. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle. J. Anim. Sci. 2016, 94, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Pinares-Patiño, C.S.; Hickey, S.M.; Young, E.A.; Dodds, K.G.; MacLean, S.; Molano, G. Heritability estimates of methane emissions from sheep. Animal 2013, 7, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Hegarty, R.S.; Goopy, J.P.; Herd, R.M.; McCorkell, B. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 2007, 85, 1479–1486. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Hegarty, R.S. Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol. 2011, 166–167, 291–301. [Google Scholar] [CrossRef]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. Animal 2013, 7, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Jones, F.M.; Phillips, F.A.; Naylor, T.; Mercer, N.B. Methane emissions from grazing Angus beef cows selected for divergent residual feed intake. Anim. Feed Sci. Technol. 2011, 166–167, 302–307. [Google Scholar] [CrossRef]
- Fitzsimons, C.; Kenny, D.A.; Deighton, M.H.; Fahey, A.G.; McGee, M. Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. J. Anim. Sci. 2013, 91, 5789–5800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercadante, M.E.Z.; Caliman, A.P.M.; Canesin, R.C.; Bonilha, S.F.M.; Berndt, A.; Frighetto, R.T.S.; Magnani, E.; Branco, R.H. Relationship between residual feed intake and enteric methane emission in Nellore cattle. Rev. Bras. Zootec. 2015, 44, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Herd, R.M.; Velazco, J.I.; Arthur, P.F.; Hegarty, R.F. Associations among methane emission traits measured in the feedlot and in respiration chambers in Angus cattle bred to vary in feed efficiency. J. Anim. Sci. 2016, 94, 4882–4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, R.P.; Hart, K.J.; Boland, T.M.; Kelly, A.K.; McGee, M.; Kenny, D.A. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. J. Anim. Sci. 2016, 94, 1179–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, A.W.; Vyas, D.; Manafiazar, G.; Basarab, J.A.; Beauchemin, K.A. Enteric methane emission from low- and high-residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques. J. Anim. Sci. 2017, 95, 3727–3737. [Google Scholar] [CrossRef]
- Oliveira, L.F.; Ruggieri, A.C.; Branco, R.H.; Cota, O.L.; Canesin, R.C.; Costa, H.J.U.; Mercadante, M.E.Z. Feed efficiency and enteric methane production of Nellore cattle in the feedlot and on pasture. Anim. Prod. Sci. 2018, 58, 886–893. [Google Scholar] [CrossRef]
- Herd, R.M.; Velazco, J.I.; Arthur, P.F.; Hegarty, R.S. Proxies to adjust methane production rate of beef cattle when the quantity of feed consumed is unknown. Anim. Prod. Sci. 2016, 56, 231–237. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Lecomte, P.; Demarquilly, C.; Aufrere, J.; Dardenne, P.; Stilmant, D.; Buldgen, A. Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Anim. Feed Sci. Technol. 2009, 148, 138–156. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Boval, M.; Giger-Reverdin, S.; Fernández-Pierna, J.A.; Dardenne, P. Faecal near infrared spectroscopy to assess diet quality in tropical and temperate grassland. In Book of Abstracts 64th Annual Meeting of the European Federation of Animal Science, Nantes, France, 26-30 September 2013; Wageningen Academic: Wageningen, The Netherlands, 2013; p. 167. [Google Scholar]
- SAS Institute Inc. SAS/STAT 15.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2018; Available online: https://documentation.sas.com/?docsetId=statug&docsetTarget=titlepage.htm&docsetVersion=15.1&locale=fr (accessed on 27 July 2019).
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Arbre, M.; Rochette, Y.; Guyader, J.; Lascoux, C.; Gomez, L.M.; Eugène, M.; Morgavi, D.P.; Renand, G.; Doreau, M.; Martin, C. Repeatability of enteric methane determinations from cattle using either the SF6 tracer technique or the GreenFeed system. Anim. Prod. Sci. 2016, 56, 238–243. [Google Scholar] [CrossRef]
- Renand, G.; Maupetit, D. Assessing individual differences in enteric methane emission among beef heifers using the GreenFeed Emission Monitoring system: Effect of the length of testing period on precision. Anim. Prod. Sci. 2016, 56, 218–223. [Google Scholar] [CrossRef]
- Arthur, P.A.; Barchia, I.M.; Weber, C.; Bird-Gardiner, T.; Donoghue, K.A.; Herd, R.M.; Hegarty, R.S. Optimizing test procedures for estimating daily methane and carbon dioxide emissions in cattle using short-term breath measures. J. Anim. Sci. 2017, 95, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Manafiazar, G.; Zimmermann, S.; Basarab, J.A. Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed emissions monitoring system. Can. J. Anim. Sci. 2017, 97, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Taussat, S.; Saintilan, R.; Krauss, D.; Maupetit, D.; Fouilloux, M.N.; Renand, G. Relationship between feed efficiency and slaughter traits of French Charolais bulls. J. Anim. Sci. 2019, 97, 2308–2319. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.B.D.; Utsumi, S.A.; Doric, C.D.; Brito, A.F. Integrating spot short-term measurements of carbon emissions and backward dietary energy partition calculations to estimate intake in lactating dairy cows fed ad libitum or restricted. J. Dairy Sci. 2015, 98, 8913–8925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonker, A.; Hickey, S.M.; Rowe, S.J.; Janssen, P.H.; Shackell, G.H.; Elmes, S.; Bain, W.E.; Wing, J.; Greer, G.J.; Bryson, B.; et al. Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiratory chambers. J. Anim. Sci. 2018, 96, 3031–3042. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methaods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef] [Green Version]
- Arthur, P.F.; Bird-Gardiner, T.; Barcia, I.M.; Donoghue, K.A.; Herd, R.M. Relationships among carbon dioxide, feed intake and feed efficiency traits in ad libitum fed beef cattle. J. Anim. Sci. 2018, 96, 4859–4867. [Google Scholar] [CrossRef]
- Bird-Gardiner, T.; Arthur, P.F.; Barchia, I.M.; Donoghue, K.A.; Herd, R.M. Phenotypic relationships among methane production traits assessed under ad libitum feeding of beef cattle. J. Anim. Sci. 2017, 95, 4391–4398. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 2006 IPCC Guidelines for national greenhouse gas inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 2 September 2019).
- Van Lingen, H.J.; Niu, M.; Kebreab, E.; Valadares-Filho, S.C.; Rooke, J.A.; Dutie, C.A.; Schwarm, A.; Kreuzer, M.; Hynd, P.I.; Caetano, M.; et al. Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agric. Ecosyst. Environ. 2019, 283. [Google Scholar] [CrossRef]
- Archer, J.A.; Arthur, P.F.; Herd, R.M.; Parnell, P.F.; Pitchford, W.S. Optimum postweaning test for measurement of growth rate, feed intake, and feed efficiency in British breed cattle. J. Anim. Sci. 1997, 75, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Nkrumah, J.D.; Li, C.; Basarab, J.A.; Goonewardene, L.A.; Okine, E.K.; Crews, D.H.; Moore, S.S. Test duration for growth, feed intake, and feed efficiency in beef cattle using the GrowSafe system. J. Anim. Sci. 2006, 84, 2289–2298. [Google Scholar] [CrossRef] [PubMed]
- BIF. Guidelines for Uniform Beef Improvement Programs, 9th ed.; Beef Improvement Federation: Prairie, MS, USA, 2010. [Google Scholar]
- Sauvant, D.; Giger-Reverdin, S.; Serment, A.; Broudiscou, L. Influences des régimes et de leur fermentation dans le rumen sur la production de méthane par les ruminants. INRA Prod. Anim. 2011, 24, 433–446. [Google Scholar]
- Freetly, H.C.; Brown-Brandl, T.M. Enteric methane production from beef cattle that vary in feed efficiency. J. Anim. Sci. 2013, 91, 4826–4831. [Google Scholar] [CrossRef]
- Flay, H.E.; Kuhn-Sherlock, B.; MacDonald, K.A.; Lopez-Villalobos, N.; Donaghy, D.J.; Roche, J.R. Selecting cattle for low residual feed intake did not affect daily methane production but increased methane yield. J. Dairy Sci. 2018, 102, 1–6. [Google Scholar] [CrossRef]
- Richardson, E.C.; Herd, R.M. Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Aust. J. Exp. Agric. 2004, 44, 431–440. [Google Scholar] [CrossRef]
- Løvendahl, P.; Difford, G.F.; Li, B.; Chagunda, M.G.G.; Huhtanen, P.; Lidauer, M.H.; Lassen, J.; Lund, P. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 2018, 12, s336–s349. [Google Scholar] [CrossRef] [Green Version]
- Olijhoek, D.W.; Løvendahl, P.; Lassen, J.; Hellwing, A.L.F.; Höglund, J.K.; Weisbjerg, M.R.; Noel, S.J.; McLean, F.; Højberg, O.; Lund, P. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 3 forage-to-concentrate ratios. J. Dairy Sci. 2017, 101, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fitzsimons, C.; Kenny, D.A.; McGee, M. Visceral organ weights, digestion and carcass characteristics of beef bulls differing in residual feed intake offered a high concentrate diet. Animal 2014, 8, 949–959. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.; Delagarde, R.; Faverdin, P. Identification of biological traits associated with differences in residual energy intake among lactating Holstein cows. J. Dairy Sci. 2017, 101, 4193–4211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtanen, P.; Ramin, M.; Cabezas-Garcia, E.H. Effects of ruminal digesta retention time on methane emissions: A modelling approach. Anim. Prod. Sci. 2016, 56, 501–506. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Ebrahimi, S.H.; McEwan, J.C.; Clark, H.; Luo, D. Is rumen retention time implicated in sheep differences in methane emission? Proc. N. Z. Soc. Anim. Prod. 2011, 71, 219–222. [Google Scholar]
- Goopy, J.P.; Donaldson, A.; Hegarty, R.; Vercoe, P.E.; Haynes, F.; Barnett, M.; Oddy, V.H. Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br. J. Nutr. 2014, 111, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.J.; Cameron, M.; Donaldson, A.J.; Austin, K.L.; Harden, S.; Robinson, D.L.; Oddy, V.H. Aspects of digestive function in sheep related to phenotypic variation in methane emissions. Anim. Prod. Sci. 2019, 59, 55–65. [Google Scholar] [CrossRef]
- Wallace, R.J.; Rooke, J.A.; McKain, N.; Duthie, C.A.; Hyslop, J.J.; Ross, D.W. The rumen microbial metagenome associated with high methane production in cattle. BMC Genom. 2015, 16, 839. [Google Scholar] [CrossRef] [Green Version]
- Roehe, R.; Dewhurst, R.J.; Duthie, C.A.; Rooke, J.A.; McCain, N.; Ross, D.W.; Hyslop, J.J.; Waterhouse, A.; Freeman, T.C.; Watson, M.; et al. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiency feed converting hosts based on metagenomic gene abundance. PLoS Genet. 2016, 12, e1005846. [Google Scholar] [CrossRef]
- Difford, G.F.; Plichta, D.R.; Løvendahl, P.; Lassen, J.; Noel, S.J.; Højberg, O.; Wright, A.D.W.; Zhu, Z.; Kristensen, L.; Nielsen, H.B.; et al. Host genetics and the rumen microbiome jointly associate with methane emission in dairy cows. PLoS Genet. 2018, 14, e1007580. [Google Scholar] [CrossRef] [Green Version]
- Ramayo-Caldas, Y.; Zingaretti, L.; Popova, M.; Estellé, J.; Bernard, A.; Pons, N.; Bellot, P.; Mach, N.; Rau, A.; Roume, H.; et al. Identification of rumen biomarkers linked to methane emission in Holstein cows. J. Anim. Breed. Genet. 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef] [Green Version]
Ingredients | Grass Silage † | Hay | Concentrate Complement * | GreenFeed Pellet ** |
---|---|---|---|---|
Dry matter (g/kg) | 264 [210–352] | 864 | 876 | 889 |
Chemical composition (g/kg DM) | ||||
Ash | 105 [90–117] | 82 | 60 | 89 |
Crude Protein | 111 [107–118] | 78 | 162 | 153 |
Cellulose | 295 [284–307] | 317 | 53 | 171 |
Net energy (MJ/kg DM) | 6.04 [5.96–6.19] | 3.90 | 8.03 | 5.96 |
Trait | Unit | Abbreviation | Formula |
---|---|---|---|
Mid-test body weight | kg | BW | Predicted live weight by regression at mid-test |
Metabolic body weight | Kg0.75 | MBW | BW0.75 |
Dry matter intake | kg/d | DMI | Daily average of roughage plus pellet dry matter intake |
Average daily gain | g/d | ADG | Regression coefficient of body weights on time |
Methane emission rate | g/d | CH4 | Daily average of methane emission spot measures |
Carbon dioxide emission rate | g/d | CO2 | Daily average of carbon dioxide emission spot measures |
Feed efficiency ratio | g/kg | ADG/DMI | ADG divided by DMI |
Residual gain from MBW and DMI | g/d | rwiADG | ADG—expADG where expADG is obtained by the regression of ADG on MBW and DMI |
Residual intake from MBW and ADG | kg/d | rwgDMI | DMI—expDMI where expDMI is obtained by the regression of DMI on MBW and ADG |
Methane yield | g/kg | CH4/DMI | CH4 divided by DMI |
Residual methane from MBW and DMI | g/d | rwiCH4 | CH4—expCH4 where expCH4 is obtained by the regression of CH4 on MBW and DMI |
Gain to carbon dioxide ratio | g/kg | ADG/CO2 | ADG divided by CO2 |
Residual gain from MBW and CO2 | g/d | rwcADG | ADG—expADG where expADG is obtained by the regression of ADG on MBW and CO2 |
Residual carbon dioxide from MBW and ADG | g/d | rwgCO2 | CO2—expCO2 where expCO2 is obtained by the regression of CO2 on MBW and ADG |
Methane to carbon dioxide ratio | g/kg | CH4/CO2 | CH4 divided by CO2 |
Residual methane from MBW and CO2 | g/d | rwcCH4 | CH4—expCH4 where expCH4 is obtained by the regression of CH4 on MBW and CO2 |
Trait ‡ | Unit | Galle Heifers (n = 252) | Borculo Heifers (n = 74) | ||||
---|---|---|---|---|---|---|---|
Mean | SD * | CV † | Mean | SD * | CV † | ||
Start age | d | 678 | 6 | 1% | 665 | 21 | 3% |
Start weight | kg | 499 | 44 | 9% | 495 | 49 | 10% |
Organic matter digestibility | 0.723 | 0.017 | 2% | 0.605 | 0.015 | 2% | |
BW | kg | 534 | 46 | 9% | 508 | 49 | 10% |
DMI | kg/d | 8.75 | 1.31 | 15% | 7.89 | 0.87 | 11% |
ADG | g/d | 932 | 163 | 18% | 360 | 180 | 50% |
Spot measures per day | 3.4 | 0.9 | 26% | 3.2 | 0.5 | 15% | |
Total number of measures | 220 | 59 | 27% | 232 | 39 | 17% | |
Visit duration | min:s | 3:39 | 0:12 | 6% | 4:01 | 0:19 | 8% |
CH4 | g/d | 205 | 20 | 10% | 206 | 17 | 8% |
CO2 | g/d | 6918 | 544 | 8% | 6139 | 411 | 7% |
Trait ‡ | DMI | ADG | CH4 | CO2 |
---|---|---|---|---|
BW | 0.42 a | 0.40 a | 0.68 a | 0.77 a |
0.53 a | 0.11 | 0.70 a | 0.85 a | |
DMI | 0.37 a | 0.36 a | 0.38 a | |
0.28 c | 0.48 a | 0.52 a | ||
ADG | 0.44 a | 0.46 a | ||
0.26 c | 0.21 | |||
CH4 | 0.86 a | |||
0.83 a |
Trait ‡ | Unit | Galle Heifers (n = 252) | Borculo Heifers (n = 74) | ||||
---|---|---|---|---|---|---|---|
Mean | SD * | CV † | Mean | SD * | CV † | ||
ADG/DMI | g/kg | 109 | 22 | 20% | 46 | 22 | 49% |
rwiADG | g/d | 0 | 145 | 16% | 0 | 173 | 48% |
rwgDMI | kg/d | 0 | 1.15 | 13% | 0 | 0.71 | 9% |
CH4/DMI | g/kg | 24.0 | 3.8 | 16% | 26.4 | 2.9 | 11% |
rwiCH4 | g/d | 0 | 14 | 7% | 0 | 12 | 6% |
Trait ‡ | ADG/DMI | rwiADG | rwgDMI | CH4/DMI | rwiCH4 |
---|---|---|---|---|---|
BW | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 |
−0.02 | 0.00 | 0.00 | 0.04 | 0.00 | |
DMI | −0.43 a | 0.00 | 0.88 a | −0.77 a | 0.00 |
0.04 | 0.00 | 0.82 a | −0.67 a | 0.00 | |
ADG | 0.63 a | 0.89 a | 0.00 | −0.08 | 0.20 c |
0.97 a | 0.96 a | 0.00 | −0.08 | 0.21 | |
CH4 | 0.14 c | 0.17 b | 0.04 | 0.27 a | 0.73 a |
0.13 | 0.15 | 0.08 | 0.30 b | 0.70 a | |
CO2 | 0.14 c | 0.16 c | 0.02 | 0.17 c | 0.46 a |
0.08 | 0.10 | 0.05 | 0.15 | 0.31 c | |
ADG/DMI | 0.81 a | −0.67 a | 0.57 a | 0.21 a | |
0.99 a | −0.20 | 0.07 | 0.19 | ||
rwiADG | −0.23 a | 0.10 | 0.23 a | ||
−0.26 c | 0.13 | 0.22 | |||
rwgDMI | −0.87 a | −0.05 | |||
−0.83 a | −0.06 | ||||
CH4/DMI | 0.44 a | ||||
0.54 a |
Trait | ddl | CH4 | CO2 | ||
---|---|---|---|---|---|
Effect | F Value | Pr > F | F Value | Pr > F | |
Farm | 1 | 1.8 | 0.19 | 1.5 | 0.23 |
Contemporary Group*Farm | 24 | 19.6 | <0.001 | 22.2 | <0.001 |
MBW | 1 | 108.0 | <0.001 | 196.7 | <0.001 |
ADG | 1 | 10.8 | 0.001 | 9.6 | 0.002 |
DMI | 1 | 1.2 | 0.28 | 0.5 | 0.48 |
MBW*Farm | 1 | 0.6 | 0.44 | 1.9 | 0.16 |
ADG*Farm | 1 | 0.4 | 0.52 | 1.7 | 0.19 |
DMI*Farm | 1 | 0.3 | 0.56 | 0.1 | 0.75 |
Trait | Unit | Galle Heifers (n = 252) | Borculo Heifers (n = 74) | ||||
---|---|---|---|---|---|---|---|
Mean | SD * | CV † | Mean | SD * | CV † | ||
ADG/CO2 | g/kg | 136 | 21 | 15% | 59 | 28 | 48% |
rwcADG | g/d | 0 | 144 | 15% | 0 | 174 | 48% |
rwgCO2 | kg/d | 0 | 337 | 5% | 0 | 212 | 3% |
CH4/CO2 | g/kg | 29.8 | 1.5 | 5% | 33.5 | 1.6 | 5% |
rwcCH4 | g/d | 0 | 10 | 5% | 0 | 10 | 5% |
Trait ‡ | ADG/CO2 | rwcADG | rwgCO2 | CH4/CO2 | rwcCH4 |
---|---|---|---|---|---|
BW | 0.09 | 0.00 | 0.00 | 0.13 c | 0.00 |
0.00 | 0.00 | 0.00 | 0.07 | 0.00 | |
DMI | 0.22 a | 0.20 b | 0.03 | 0.10 | 0.05 |
0.20 | 0.19 | 0.08 | 0.12 | 0.09 | |
ADG | 0.89 a | 0.88 a | 0.00 | 0.14 c | 0.08 |
0.99 a | 0.97 a | 0.00 | 0.16 | 0.15 | |
CH4 | 0.08 | 0.04 | 0.49 a | 0.58 a | 0.51 a |
0.14 | 0.09 | 0.40 a | 0.61 a | 0.56 a | |
CO2 | 0.03 | 0.00 | 0.62 a | 0.09 | 0.00 |
0.07 | 0.00 | 0.52 a | 0.06 | 0.00 | |
ADG/DMI | 0.64 a | 0.65 a | 0.01 | 0.05 | 0.04 |
0.97 a | 0.96 a | −0.03 | 0.11 | 0.11 | |
rwiADG | 0.91 a | 0.94 a | −0.01 | 0.09 | 0.07 |
0.97 a | 0.95 a | −0.03 | 0.13 | 0.12 | |
rwgDMI | −0.02 | −0.01 | 0.04 | 0.03 | 0.03 |
−0.02 | −0.02 | 0.10 | 0.06 | 0.08 | |
CH4/DMI | −0.17 b | −0.17 b | 0.28 a | 0.24 a | 0.25 a |
−0.10 | −0.14 | 0.24 c | 0.33 b | 0.32 b | |
rwiCH4 | 0.01 | 0.04 | 0.68 a | 0.67 a | 0.70 a |
0.17 | 0.08 | 0.56 a | 0.79 a | 0.79 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renand, G.; Vinet, A.; Decruyenaere, V.; Maupetit, D.; Dozias, D. Methane and Carbon Dioxide Emission of Beef Heifers in Relation with Growth and Feed Efficiency. Animals 2019, 9, 1136. https://doi.org/10.3390/ani9121136
Renand G, Vinet A, Decruyenaere V, Maupetit D, Dozias D. Methane and Carbon Dioxide Emission of Beef Heifers in Relation with Growth and Feed Efficiency. Animals. 2019; 9(12):1136. https://doi.org/10.3390/ani9121136
Chicago/Turabian StyleRenand, Gilles, Aurélie Vinet, Virginie Decruyenaere, David Maupetit, and Dominique Dozias. 2019. "Methane and Carbon Dioxide Emission of Beef Heifers in Relation with Growth and Feed Efficiency" Animals 9, no. 12: 1136. https://doi.org/10.3390/ani9121136
APA StyleRenand, G., Vinet, A., Decruyenaere, V., Maupetit, D., & Dozias, D. (2019). Methane and Carbon Dioxide Emission of Beef Heifers in Relation with Growth and Feed Efficiency. Animals, 9(12), 1136. https://doi.org/10.3390/ani9121136