Supplementation with Fish Oil Improves Meat Fatty Acid Profile although Impairs Growth Performance of Early Weaned Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets, Animals, and Experimental Design
2.2. Productive Performance, Carcass Characteristics, and Ileal Morphology
2.3. Cecal Fermentation
2.4. Chemical Analyses
2.5. Statistical Analyses
3. Results
3.1. Growth Performance, Carcass Characteristics, and Ileal Morphology
3.2. Cecal Fermentation
4. Discussion
4.1. Growth Performance, Carcass Characteristics, and Ileal Morphology
4.2. Cecal Fermentation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gai, F.; Gasco, L.; Liu, H.W.; Lussiana, C.; Brugiapaglia, A.; Masoero, G.; Zoccarato, I. Effect of diet chestnut tannin supplementation on meat quality, fatty acid profile and lipid stability in broiler rabbits. Ital. J. Anim. Sci. 2009, 8, 787–789. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Szendro, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Rodríguez, M.; Carro, M.D.; Valiente, V.; Formoso-Rafferty, N.; Rebollar, P.G. Effects of dietary fish oil supplementation on performance, meat quality and cecal fermentation of growing rabbits. J. Anim. Sci. 2017, 95, 3620–3630. [Google Scholar] [CrossRef] [PubMed]
- Lazzaroni, C.; Biagini, D.; Lussiana, C. Fatty acid composition of meat and perirenal fat in rabbits from two different rearing systems. Meat Sci. 2009, 83, 135–139. [Google Scholar] [CrossRef] [PubMed]
- de Blas, J.C.; Mateos, G.G. Feed formulation. In Nutrition of the Rabbit, 2nd ed.; de Blas, J.C., Wiseman, J., Eds.; CABI Publishing: Wallingford, UK, USA, 2010; pp. 222–232. [Google Scholar]
- Peiretti, P.G. Effects of dietary fatty acids on lipid traits in the muscle and perirenal fat of growing rabbits fed mixed diets. Animals 2012, 2, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Rodríguez, N.; Beltrán, S.; Jaime, I.; Sara, M.; Sanz, M.T.; Carballido, J.R. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. Technol. 2012, 11, 1–12. [Google Scholar] [CrossRef]
- Rodríguez, M.; García-García, R.M.; Arias-Álvarez, M.; Millán, P.; Febrel, N.; Formoso-Rafferty, N.; López-Tello, J.; Lorenzo, P.L.; Rebollar, P.G. Improvements in the conception rate, milk composition and embryo quality of rabbit does after dietary enrichment with n-3 polyunsaturated fatty acids. Animal 2018, 12, 2080–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallois, M.; Gidenne, T.; Fortun-Lamothe, L.; Huerou-Luron, I.L.; Lalles, J.P. An early stimulation of solid feed intake slightly influences the morphological gut maturation in the rabbit. Reprod. Nutr. Dev. 2005, 45, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Fortun-Lamothe, L.; Boullier, S. A review on the interactions between gut microflora and digestive mucosal immunity. Possible ways to improve the health of rabbits. Livest. Sci. 2007, 107, 1–18. [Google Scholar] [CrossRef]
- Marounek, M.; Skřivanová, V.; Savka, O. Effect of caprylic, capric and oleic acid on growth of rumen and rabbit caecal bacteria. J. Anim. Feed Sci. 2002, 11, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Skřivanová, E.; Molatová, Z.; Skřivanová, V.; Marounek, M. Inhibitory activity of rabbit milk and medium-chain fatty acids against enteropathogenic Escherichia coli O128. Vet. Microbiol. 2009, 135, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Maertens, L.; Aerts, J.M.; De Brabander, D.L. Effect of a diet rich in n-3 fatty acids on the performances and milk composition of does and the viability of their progeny. In Proceedings of the 11e Journées de la Recherche Cunicole, Paris, France, 29–30 November 2005. [Google Scholar]
- De Blas, J.C.; Gutiérrez, I.; Carabaño, R. Destete precoz en gazapos. Situación actual y perspectivas. In Avances en Nutrición y Alimentación Animal. XV Curso de Especialización FEDNA; García-Rebollar, P., de Blas, J.C., Mateos, G.G., Eds.; Ediciones Peninsular: Madrid, Spain, 1999; pp. 65–82. [Google Scholar]
- Xiccato, G.; Trocino, A.; Sartori, A.; Queaque, P.I. Early weaning of rabbits: Effect of age and diet on weaning and post-weaning performance. In Proceedings of the 7th World Rabbit Congress, Valencia, Spain, 4–7 July 2000. [Google Scholar]
- Pascual, J.J. Early weaning of young rabbits: A review. World Rabbit Sci. 2001, 9, 165–170. [Google Scholar] [CrossRef]
- Pascual, J.J.; Xiccato, G.; Fortun-Lamothe, L. Strategies for doe’s corporal condition improvement–relationship with litter viability and career length. In Recent Advances in Rabbit Sciences; Maertens, L., Coudert, P., Eds.; Institute for Agricultural and Fisheries Research: Brussels, Belgium, 2006; pp. 247–258. [Google Scholar]
- Xiccato, G.; Trocino, A.; Sartori, A.; Queaque, P.I. Effect of weaning diet and weaning age on growth, body composition and caecal fermentation of young rabbits. Anim. Sci. 2003, 77, 101–111. [Google Scholar] [CrossRef]
- Gallois, M.; Gidenne, T.; Tasca, C.; Caubet, C.; Coudert, C.; Milon, A.; Boullier, S. Maternal milk contains antimicrobial factors that protect young rabbits from enteropathogenic Escherichia coli infection. Clin. Vaccine Immunol. 2007, 14, 585–592. [Google Scholar] [CrossRef] [PubMed]
- El-Sabrout, K.; Aggag, S. The gene expression of weaning age and its effect on productive performance of rabbits. World Rabbit Sci. 2017, 25, 1–7. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado (BOE). Real Decreto 53/2013, de 1 de febrero, por el que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia. Boletín Oficial del Estado 2013, 34, 11370–11421. [Google Scholar]
- Commission Internationale de L’Eclairage (CIE). Technical Report: Colorimetry, 3rd ed.; Commission Internationale de L’Eclairage (CIE): Vienna, Austria, 2004. [Google Scholar]
- Blasco, A.; Ouhayoun, J.; Masoero, G. Harmonization of Criteria and Terminology in Rabbit Meat Research. World Rabbit Sci. 1993, 1, 3–10. [Google Scholar] [CrossRef]
- Hampson, D.J. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 1986, 40, 32–40. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Agricultural Chemists, 18th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Segura, J.; López-Bote, C.J. A laboratory efficient method for intramuscular fat analysis. Food Chem. 2014, 145, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Cordero, G.; Isabel, B.; Morales, J.; Menoyo, D.; Piñeiro, C.; López-Bote, C.J. Effect of dietary CLA administration on fatty acid composition and lipogenic and lipolytic enzyme activities in suckling and weaned piglets. Anim. Feed Sci. Technol. 2011, 164, 232–240. [Google Scholar] [CrossRef]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res. 2008, 52, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Korver, D.R.; Roura, E.; Klasing, K.C. Effect of dietary energy level and oil source on broiler performance and response to an inflammatory challenge. Poult. Sci. 1998, 77, 1217–1227. [Google Scholar] [CrossRef]
- Korver, D.R.; Wakenell, P.; Klasing, K.C. Dietary fish oil or lofrin, a 5-lipoxyenase inhibitor, decrease the growth-suppressing effects of coccidiosis in broiler chicks. Poult. Sci. 1997, 76, 1355–1363. [Google Scholar] [CrossRef]
- Tanghe, S.; de Smet, S. Does sow reproduction and piglet performance benefit from the addition of n-3 polyunsaturated fatty acids to the maternal diet? Vet. J. 2013, 197, 560–569. [Google Scholar] [CrossRef]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processed: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 2015, 1852, 469–484. [Google Scholar] [CrossRef]
- Rodríguez, M.; García-García, R.M.; Arias-Álvarez, M.; Formoso-Rafferty, N.; Millán, P.; López-Tello, J.; Lorenzo, P.L.; González-Bulnes, A.; Rebollar, P.G. A diet supplemented with n-3 polyunsaturated fatty acids influences the metabolic and endocrine response of rabbit does and their offspring. J. Anim. Sci. 2017, 95, 2690–2700. [Google Scholar]
- Gómez-Conde, M.S.; García, J.; Chamorro, S.; Eiras, P.; Rebollar, P.G.; Pérez de Rozas, A.; Badiola, I.; De Blas, C.; Carabaño, R. Neutral detergent-soluble fiber improves gut barrier function in twenty-five-day-old weaned rabbits. J. Anim. Sci. 2007, 85, 3313–3321. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.; Litman, B.; Kim, H.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001, 36, 945–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, D. Fatty acids and immune responses—A new perspective in searching for clues to mechanism. Annu. Rev. Nutr. 2000, 20, 431–456. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.B.; Keelan, M.; Clandinin, M.T.; Walker, K. Dietary fat selectively alters transport properties of rat jejunum. J. Clin. Investig. 1986, 77, 279–288. [Google Scholar] [CrossRef]
- Gabler, N.K.; Radcliffe, J.S.; Spencer, J.D.; Webel, D.M.; Spurlock, M.E. Feeding long-chain n−3 polyunsaturated fatty acids during gestation increases intestinal glucose absorption potentially via the acute activation of AMPK. J. Nutr. Biochem. 2009, 20, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, J.; Hu, M.Y.; Tang, J.; Shao, Z.F.; Li, M.H. Protective effects of γ -aminobutyric acid (gaba) on the small intestinal mucosa in heat-stressed wenchang chicken. J. Anim. Plant Sci. 2005, 25, 78–87. [Google Scholar]
- Attia, Y.A.; Hamed, R.S.; El-Hamid, A.E.; Shahba, H.A.; Bovera, F. Effect of inulin and mannan-oligosaccharides compared with zinc-bacitracin on growing performance, nutrient digestibility and hematological profiles of growing rabbits. Anim. Prod. Sci. 2015, 55, 80–86. [Google Scholar] [CrossRef]
- Bovera, F.; Marono, S.; Di Meo, C.; Piccolo, G.; Iannaccone, F.; Nizza, A. Effect of mannanoligosaccharides supplementation on caecal microbial activity of rabbits. Animal 2010, 4, 1522–1527. [Google Scholar] [CrossRef] [Green Version]
- Loponte, R.; Secci, G.; Mancini, S.; Bovera, F.; Panettieri, V.; Nizza, A.; Di Meo, C.; Giovanni, P.; Parisi, G. Effect of the housing system (free-range vs. open air cages) on growth performance, carcass and meat quality and antioxidant capacity of rabbits. Meat Sci. 2018, 145, 137–143. [Google Scholar] [CrossRef]
- Kowalska, D.; Bielanski, P. Meat quality of rabbit fed a diet supplemented with fish oil and antioxidant. Anim. Sci. Pap. Rep. 2009, 27, 139–148. [Google Scholar]
- Trebušak, T.; Levart, A.; Salobir, J.; Pirman, T. A higher proportion of PUFA in the diet increases the PUFA content in rabbit meat but reduces the oxidative stability of meat. Poljoprivreda 2015, 21, 73–77. [Google Scholar] [CrossRef]
- Bianchi, M.; Petracci, M.; Cavani, C. The influence of linseed on rabbit meat quality. World Rabbit Sci. 2009, 17, 97–107. [Google Scholar] [CrossRef]
- Casado, C.; Moya, V.J.; Pascual, J.J.; Blas, E.; Cervera, C. Dietary fatty acid profile: Effects on caecal fermentation and performance of young and fattening rabbits. World Rabbit Sci. 2013, 21, 235–242. [Google Scholar] [CrossRef]
- Gidenne, T.; Lapanouse, A.; Fortun-Lamothe, L. Feeding strategy for the early weaned rabbit: Interest of a high energy and protein starter diet on growth and health status. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004. [Google Scholar]
- Kouba, M.; Benatmane, F.; Blochet, J.E.; Mourot, J. Effect of a linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Sci. 2008, 80, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, I.; Espinosa, A.; García, J.; Carabaño, R.; de Blas, J.C. Effect of levels of starch, fiber, and lactose on digestion and growth performance of early-weaned rabbits. J. Anim. Sci. 2002, 80, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Read, T.; Combes, S.; Gidenne, T.; Destombes, N.; Bébin, K.; Balmisse, E.; Fortun-Lamothe, L. Influence of feeding strategy and diet for reproductive rabbit does on intake, performances, and health of young and females before and after weaning. J. Anim. Sci. 2016, 94, 4848–4859. [Google Scholar] [CrossRef] [PubMed]
- Maertens, L. Possibilities to reduce the feed conversion in rabbit production. Proceedings of Giornate di Coniglicoltura ASIC, Forli, Italy, 2–3 April 2009. [Google Scholar]
- Pla, M.; Zomeño, C.; Hernández, P. Effect of the dietary n-3 and n-6 fatty acids on rabbit carcass and meat quality. In Proceedings of the 9th World Rabbit Congress, Verona, Italy, 10–13 June 2008. [Google Scholar]
- Volek, Z.; Marounek, M. Effect of feeding growing–fattening rabbits a diet supplemented with whole white lupin (Lupinus albus cv. Amiga) seeds on fatty acid composition and indexes related to human health in hind leg meat and perirenal fat. Meat Sci. 2011, 87, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Grigorova, N.; Ivanova, Z.; Bjorndal, B.; Vachkova, E.; Penchev, G.; Berge, R.; Ribarski, S.; Georgieva, T.M.; Yonkova, P.; Georgiev, I.P. Effect of fish oil supplementation and restricted feeding on body fat distribution and blood lipid profile in a rabbit model of castration-induced obesity. Res. Vet. Sci. 2019, 124, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.S.; Connor, W.E.; Spenler, C.W. Are dietary saturated, monounsaturated, and polyunsaturated fatty acids deposited to the same extent in adipose tissue of rabbits? Am. J. Clin. Nutr. 1993, 58, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Ukropec, J.; Reseland, J.E.; Gasperikova, D.; Demcakova, E.; Madsen, L.; Berge, R.K.; Rustan, A.C.; Klimes, I.; Drevon, C.A.; Sebökova, E. The hypotriglyceridemic effect of dietary n-3 FA is associated with increased β-Oxidation and reduced leptin expression. Lipids 2003, 38, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Mussa, P.P.; Prola, L.; Meineri, G. Use of different levels of false flax (Camelina sativa L.) seed in diets for fattening rabbits. Livest. Sci. 2007, 107, 192–198. [Google Scholar] [CrossRef]
- Bernardini, M.; Dal Bosco, A.; Castellini, C. Effect of dietary n-3/n-6 ratio on fatty acid composition of liver, meat and perirenal fat in rabbit. Anim. Sci. 1999, 68, 647–654. [Google Scholar] [CrossRef]
- Ander, B.P.; Edel, A.L.; McCullough, R.; Rodríguez-Leyva, D.; Rampersad, P.; Gilchrist, J.S.C.; Lukas, A.; Pierce, G.N. Distribution of omega-3 fatty acids in tissues of rabbits fed a flaxseed-supplemented diet. Metab. Clin. Exp. 2010, 59, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Matics, Z.; Cullere, M.; Szín, M.; Gerencsér, Z.; Szabó, A.; Fébel, H.; Odermatt, M.; Radnai, I.; Dalle Zotte, A.; Szendrő, Z. Effect of a dietary supplementation with linseed oil and selenium to growing rabbits on their productive performances, carcass traits and fresh and cooked meat quality. J. Anim. Physiol. Anim. Nutr. 2017, 101, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Xiccato, G. Feeding and meat quality in rabbits: A review. World Rabbit Sci. 1999, 7, 75–86. [Google Scholar] [CrossRef]
- Mattioli, S.; Dal Bosco, A.; Szendrő, Z.; Cullere, M.; Gerencsér, Z.; Matics, Z.; Castellini, C.; Dalle Zotte, A. The effect of dietary Digestarom® herbal supplementation on rabbit meat fatty acid profile, lipid oxidation and antioxidant content. Meat Sci. 2016, 121, 238–242. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Skřivanová, V.; Marounek, M. A note on the effect of triacylglycerols of caprylic and capric fatty acid on performance, mortality, and digestibility of nutrients in young rabbits. Anim. Feed Sci. Technol. 2006, 127, 161–168. [Google Scholar] [CrossRef]
- Leiber, F.; Meier, J.S.; Burger, B.; Wettstein, H.R.; Kreuzer, M.; Hatt, J.M.; Clauss, M. Significance of coprophagy for the fatty acid profile in body tissues of rabbits fed different diets. Lipids 2008, 43, 853–865. [Google Scholar] [CrossRef]
- Patten, G.S.; Abeywardena, M.Y.; McMurchie, E.J.; Jahangiri, A. Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J. Nutr. 2002, 132, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Gidenne, T.; Bellier, R. Use of digestible fiber in replacement to available carbohydrates: Effect on digestion, rate of passage and caecal fermentation pattern during the growth of the rabbit. Livest. Prod. Sci. 2000, 63, 141–152. [Google Scholar] [CrossRef]
Fatty Acid | Diet | |
---|---|---|
Control | FO | |
C12:0 | 6.33 | 6.36 |
C14:0 | 5.32 | 6.10 |
C16:0 | 18.3 | 16.62 |
C18:0 | 5.42 | 2.76 |
Total saturated fatty acids | 35.4 | 31.8 |
C16:1n-7 | 1.34 | 1.68 |
C18:1n-9 | 24.1 | 17.7 |
C18:1n-7 | 1.59 | 1.23 |
C20:1n-9 | 1.31 | 1.21 |
Total monounsaturated fatty acids | 28.3 | 21.8 |
C18:2n-6 | 32.7 | 31.5 |
C18:3n-3 | 4.08 | 4.45 |
C18:4 n-3 | 0.51 | 2.16 |
C20:5n-3 | ND 1 | 3.39 |
C22:5n-3 | ND 1 | 0.92 |
C22:6n-3 | ND 1 | 4.00 |
Total polyunsaturated fatty acids PUFA | 36.6 | 46.4 |
n-9 | 25.4 | 18.9 |
n-6 | 33.5 | 32.8 |
n-3 | 4.59 | 14.9 |
n-6/n-3 ratio | 7.29 | 2.20 |
Item | Week of Growing Period | Average | SEMD 2 | SEMT 2 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Diet | Time | Diet × Time | ||||
Average daily feed intake (g/day) | |||||||||||
Control | 49.9 | 103 | 110 | 126 | 144 | 107 | 2.32 | 2.84 | 0.914 | <0.001 | 0.739 |
FO | 50.8 | 105 | 116 | 121 | 140 | 106 | |||||
Average daily gain (g/day) | |||||||||||
Control | 34.2 | 41.6 | 49.1 | 50.7 | 49.8 | 45.0 | 0.87 | 1.14 | 0.049 | <0.001 | 0.879 |
FO | 30.5 | 38.4 | 46.6 | 49.5 | 45.6 | 42.1 | |||||
Feed conversion ratio (g/g) | |||||||||||
Control | 1.44 | 2.56 | 2.28 | 2.49 | 2.91 | 2.34 | 0.061 | 0.074 | 0.083 | <0.001 | 0.687 |
FO | 1.68 | 2.72 | 2.49 | 2.45 | 3.07 | 2.48 |
Item | Diet | SEM | p-Value | |
---|---|---|---|---|
Control | FO | |||
Body weight (g) | 1968 | 1861 | 32.1 | 0.080 |
Carcass traits | ||||
Hot carcass weight (g) | 1193 | 1112 | 20.9 | 0.058 |
Hot carcass yield (%) | 60.6 | 59.7 | 0.31 | 0.082 |
Chilled carcass weight (g) | 1158 | 1052 | 20.7 | 0.036 |
pH | ||||
Slaughter time | 7.51 | 7.44 | 0.044 | 0.332 |
30 min | 7.00 | 7.02 | 0.063 | 0.745 |
24 h | 6.06 | 6.03 | 0.048 | 0.684 |
Color | ||||
L * 2 | 51.9 | 52.9 | 0.580 | 0.359 |
a * 3 | 7.56 | 7.46 | 0.522 | 0.898 |
b * 4 | 15.0 | 14.2 | 0.361 | 0.530 |
Drip loss percentage (%) | 3.72 | 5.59 | 0.537 | 0.176 |
Skin weight (g) | 355 | 336 | 7.78 | 0.090 |
Full gastrointestinal tract weight (g) | 361 | 340 | 6.38 | 0.089 |
Fat (g) | ||||
Abdominal | 24.7 | 25.2 | 0.80 | 0.767 |
Scapular | 7.40 | 6.14 | 0.481 | 0.066 |
Perirenal | 13.7 | 11.2 | 0.48 | 0.003 |
Left hind leg (g) | ||||
Total weight (g) | 160 | 147 | 3.0 | 0.079 |
Proportion of (g/100 g): | ||||
Bone | 15.8 | 16.5 | 0.218 | 0.083 |
Muscle | 73.9 | 74.2 | 0.992 | 0.880 |
Fat | 5.34 | 5.41 | 0.292 | 0.886 |
Ileal morphology | ||||
Crypt depth (µm) | 142 | 131 | 3.2 | 0.012 |
Villus length (µm) | 585 | 550 | 16.6 | 0.169 |
Villus length/crypt depth | 4.12 | 4.20 | 0.102 | 0.386 |
Item | Diet | SEM | p-Value | |
---|---|---|---|---|
Control | FO | |||
Total lipids (g/100 g) | 1.63 | 1.52 | 0.034 | 0.439 |
Fatty acid profile (g/100 g of total methyl esters) | ||||
C12:0 | 0.32 | 0.44 | 0.028 | 0.022 |
C14:0 | 2.05 | 2.69 | 0.121 | 0.017 |
C16:0 | 21.6 | 22.9 | 0.322 | 0.013 |
C18:0 | 6.53 | 6.48 | 0.093 | 0.892 |
C20:0 | 0.15 | 0.17 | 0.031 | 0.636 |
Total saturated fatty acids | 37.9 | 39.5 | 0.205 | <0.001 |
C16:1n-7 | 2.41 | 2.62 | 0.145 | 0.463 |
C18:1n-9 | 19.0 | 18.9 | 0.284 | 0.877 |
C18:1n-7 | 1.18 | 1.30 | 0.033 | 0.025 |
Total monounsaturated fatty acids | 24.7 | 24.9 | 0.403 | 0.784 |
C18:2n-6 | 20.4 | 16.0 | 0.226 | <0.001 |
C18:3n-3 | 0.75 | 1.01 | 0.048 | 0.008 |
C20:3n-9 | 0.73 | 0.59 | 0.022 | 0.002 |
C20:4n-6 | 4.94 | 4.07 | 0.132 | 0.019 |
C20:5n-3 | 0.85 | 1.57 | 0.069 | <0.001 |
C22:5n-3 | 3.30 | 4.67 | 0.193 | 0.018 |
C22:6n-3 | 1.28 | 4.58 | 0.107 | <0.001 |
Total polyunsaturated fatty acids | 37.4 | 36.0 | 0.437 | 0.058 |
n-6 | 25.4 | 20.1 | 0.272 | <0.001 |
n-3 | 6.17 | 11.7 | 0.241 | <0.001 |
n-6/n-3 ratio | 4.32 | 1.73 | 0.198 | < 0.001 |
Fatty Acid | Diet | SEM | p-Value | |
---|---|---|---|---|
Control | FO | |||
C12:0 | 1.19 | 1.46 | 0.021 | 0.006 |
C14:0 | 4.43 | 4.86 | 0.037 | <0.001 |
16:0 | 28.8 | 27.6 | 0.304 | 0.016 |
C18:0 | 5.06 | 4.84 | 0.084 | 0.190 |
C20:0 | 0.11 | 0.10 | 0.002 | 0.017 |
Total saturated fatty acids | 40.9 | 40.3 | 0.297 | 0.203 |
C16:1n-7 | 4.09 | 4.03 | 0.109 | 0.851 |
C18:1n-9 | 26.0 | 23.9 | 0.196 | 0.001 |
C18:1n-7 | 1.34 | 1.61 | 0.051 | 0.018 |
Total monounsaturated fatty acids | 32.7 | 31.5 | 0.292 | 0.084 |
C18:2n-6 | 23.9 | 22.3 | 0.356 | 0.009 |
C18:3n-3 | 1.79 | 2.50 | 0.035 | <0.001 |
C20:3n-9 | 0.05 | 0.08 | 0.007 | 0.038 |
C20:4n-6 | 0.15 | 0.18 | 0.006 | 0.001 |
C20:5n-3 | ND2 | 0.67 | 0.018 | <0.001 |
C22:5n-3 | 0.06 | 0.76 | 0.016 | <0.001 |
C22:6n-3 | ND2 | 1.28 | 0.022 | <0.001 |
Total polyunsaturated fatty acids | 26.14 | 27.9 | 0.409 | 0.011 |
n-6 | 24.3 | 22.7 | 0.365 | 0.014 |
n-3 | 1.85 | 5.20 | 0.069 | <0.001 |
n-6/n-3 ratio | 13.2 | 4.38 | 0.199 | <0.001 |
Item | Age (d) | SEMD 2 | SEMT 2 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
25 | 45 | 60 | Diet | Time | Diet × Time | |||
pH | ||||||||
Control | 6.38 | 6.07 | 5.91 | 0.061 | 0.075 | 0.963 | <0.001 | 0.614 |
FO | 6.31 | 6.05 | 5.99 | |||||
Dry matter (%) | ||||||||
Control | 21.4 | 22.4 | 22.8 | 0.90 | 1.10 | 0.510 | 0.023 | 0.287 |
FO | 20.6 | 22.4 | 25.5 | |||||
Total VFA (mmol/g) | ||||||||
Control | 40.9 | 50.8 | 67.4 | 2.29 | 2.80 | 0.510 | <0.001 | 0.667 |
FO | 43.2 | 54.5 | 66.0 | |||||
Molar proportions, mol/100 mol | ||||||||
Acetate | ||||||||
Control | 84.6 | 84.8 | 78.5 | 0.58 | 0.71 | 0.704 | <0.001 | 0.492 |
FO | 84.1 | 85.9 | 78.3 | |||||
Propionate | ||||||||
Control | 7.78 | 4.86 | 5.02 | 0.329 | 0.403 | 0.014 | <0.001 | 0.503 |
FO | 7.07 | 3.47 | 4.56 | |||||
Butyrate | ||||||||
Control | 6.96 | 9.92 | 15.9 | 0.494 | 0.605 | 0.247 | <0.001 | 0.851 |
FO | 7.96 | 10.3 | 16.02 | |||||
Minor VFA 3 | ||||||||
Control | 0.59 | 0.43 | 0.58 | 0.149 | 0.182 | 0.820 | 0.102 | 0.435 |
FO | 0.89 | 0.25 | 0.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, M.; Carro, M.D.; Valiente, V.; Formoso-Rafferty, N.; Rebollar, P.G. Supplementation with Fish Oil Improves Meat Fatty Acid Profile although Impairs Growth Performance of Early Weaned Rabbits. Animals 2019, 9, 437. https://doi.org/10.3390/ani9070437
Rodríguez M, Carro MD, Valiente V, Formoso-Rafferty N, Rebollar PG. Supplementation with Fish Oil Improves Meat Fatty Acid Profile although Impairs Growth Performance of Early Weaned Rabbits. Animals. 2019; 9(7):437. https://doi.org/10.3390/ani9070437
Chicago/Turabian StyleRodríguez, María, María Dolores Carro, Víctor Valiente, Nora Formoso-Rafferty, and Pilar G. Rebollar. 2019. "Supplementation with Fish Oil Improves Meat Fatty Acid Profile although Impairs Growth Performance of Early Weaned Rabbits" Animals 9, no. 7: 437. https://doi.org/10.3390/ani9070437
APA StyleRodríguez, M., Carro, M. D., Valiente, V., Formoso-Rafferty, N., & Rebollar, P. G. (2019). Supplementation with Fish Oil Improves Meat Fatty Acid Profile although Impairs Growth Performance of Early Weaned Rabbits. Animals, 9(7), 437. https://doi.org/10.3390/ani9070437