Responses of Pigs of Different Genotypes to a Variation in the Dietary Indispensable Amino Acid Content in Terms of Their Growth, and Carcass and Meat Quality Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Feeding and Experimental Design
2.2. Slaughter and Data Collection
2.3. Feed Analysis
2.4. Meat Analysis
2.5. Data Editing
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Estimated Lipid and Protein Retention
3.2. Nitrogen Flow
3.3. Carcass and Meat Quality
4. Discussion
4.1. Dietary Supply of Indispensable Amino Acids
4.2. Feed × Genotype Interaction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schinckel, A.P.; de Lange, C.F.M. Characterization of growth parameters needed as inputs for pig growth models. J. Anim. Sci. 1996, 74, 2021–2036. [Google Scholar] [CrossRef] [PubMed]
- Mordenti, A.; Bosi, P.; Corino, C.; Crovetto, G.M.; Della Casa, G.; Franci, O.; Piva, A.; Prandini, A.; Russo, V.; Schiavon, S. A methodological approach to assess nutrient requirements of heavy pigs in Italy. Ital. J. Anim. Sci. 2003, 2, 73–87. [Google Scholar] [CrossRef]
- Gallo, L.; Dalla Montà, G.; Carraro, L.; Cecchinato, A.; Carnier, P.; Schiavon, S. Growth performance of heavy pigs fed restrictively diets with decreasing crude protein and indispensable amino acids content. Livest. Sci. 2014, 161, 130–138. [Google Scholar] [CrossRef]
- Mule, H.R.; Chiba, L.I.; Fabian, J.; Kuhlers, D.L.; Jungst, S.B.; Frobish, L.T.; Nadarajah, K.; Bergen, W.G.; Welles, E.G. Effect of early dietary amino acid restrictions on serum metabolites in pigs selected for lean growth efficiency. Can. J. Anim. Sci. 2006, 86, 489–500. [Google Scholar] [CrossRef]
- He, L.; Wu, L.; Xu, Z.; Li, T.; Yao, K.; Cui, Z.; Yin, Y.; Wu, G. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs. Amino Acids 2016, 48, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Kyriazakis, I. Opportunities to improve nutrient efficiency in pigs and poultry through breeding. Animal 2011, 5, 821–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavon, S.; Carraro, L.; Dalla Bona, M.; Cesaro, G.; Carnier, P.; Tagliapietra, F.; Sturaro, E.; Galassi, G.; Malagutti, L.; Trevisi, E.; et al. Growth performance, and carcass and raw ham quality of crossbred heavy pigs from four genetic groups fed low protein diets for dry-cured ham production. Anim. Feed Sci. Technol. 2015, 208, 170–181. [Google Scholar] [CrossRef]
- Fabian, J.; Chiba, L.I.; Kuhlers, D.L.; Frobish, L.T.; Nadarajah, K.; Kerth, C.R.; McElhenney, W.H.; Lewis, A.J. Degree of amino acid restrictions during the grower phase and compensatory growth in pigs selected for for lean growth efficiency. J. Anim. Sci. 2002, 80, 2610–2618. [Google Scholar] [CrossRef]
- Schiavon, S.; Dalla Bona, M.; Carcò, G.; Carraro, L.; Bunger, L.; Gallo, L. Effects of feed allowance and indispensable amino acid reduction on feed intake, growth performance and carcass characteristics of growing pigs. PLoS ONE 2018, 13, e0195645. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Carcò, G.; Dalla Bona, M.; Carraro, L.; Latorre, M.A.; Fondevila, M.; Gallo, L.; Schiavon, S. Influence of mild feed restriction and mild reduction in dietary amino acid content on feeding behaviour of group-housed growing pigs. Appl. Anim. Behav. Sci. 2018, 198, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Carcò, G.; Gallo, L.; Dalla Bona, M.; Latorre, M.A.; Fondevila, M.; Schiavon, S. The influence of feeding behaviour on growth performance, carcass and meat characteristics of growing pigs. PLoS ONE 2018, 13, e0205572. [Google Scholar] [CrossRef] [PubMed]
- Kloareg, M.; Noblet, J.; Van Milgen, J. Estimation of whole body lipid mass in finishing pigs. J. Anim. Sci. 2006, 82, 241–251. [Google Scholar] [CrossRef]
- European Union (EU). Commission Implementing Decision of 24 January 2014 authorising methods for grading pig carcasses in Italy, notified under document C. 2014. Off. J. L. 2014, 23, 279. [Google Scholar]
- European Union (EU). Corrigendum to Commission Implementing Decision 2014/38/EU of 24 January 2014 authorising methods for grading pig carcasses in Italy. Off. J. L. 2014, 54, 28. [Google Scholar]
- Horwitz, W.; Chichilo, P.; Reynolds, H. Official Methods of Analysis of the Association of Official Agricultural Chemists (AOAC), 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Bouchard, J.; Chornet, E.; Overend, R.P. High-performance liquid chromatographic monitoring of carbohydrate fractions in partially hydrolyzed corn starch. J. Agric. Food Chem. 1988, 36, 1188–1192. [Google Scholar] [CrossRef]
- Gallo, L.; Dalla Montà, G.; Carraro, L.; Cecchinato, A.; Carnier, P.; Schiavon, S. Carcass quality and uniformity of heavy pigs fed restrictive diets with progressive reductions in crude protein and indispensable amino acids. Livest. Sci. 2015, 172, 50–58. [Google Scholar] [CrossRef]
- Dalla Bona, M.; Schiavon, S.; Carraro, L.; Gallo, L. Growth performance, carcass traits and meat quality of growing pigs on different feeding regimes slaughtered at 145 kg BW. Ital. J. Anim. Sci. 2016, 15, 419–427. [Google Scholar] [CrossRef]
- Ball, M.E.E.; Magowan, E.; McCracken, K.J.; Beattie, V.E.; Bradford, R.; Gordon, F.J.; Robinson, M.J.; Smyth, S.; Henry, W. The effect of level of crude protein and available lysine on finishing pig performance, nitrogen balance and nutrient digestibility. Asian-Australasian J. Anim. Sci. 2013, 26, 564–572. [Google Scholar] [CrossRef]
- Morales, J.I.; Cámara, L.; Berrocoso, J.D.; López, J.P.; Mateos, G.G.; Serrano, M.P. Influence of sex and castration on growth performance and carcass quality of crossbred pigs from 2 Large White sire lines. J. Anim. Sci. 2011, 89, 3481–3489. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ascacibar, I.; Stoll, P.; Kreuzer, M.; Boillat, V.; Spring, P.; Bee, G. Impact of amino acid and CP restriction from 20 to 140 kg BW on performance and dynamics in empty body protein and lipid deposition of entire male, castrated and female pigs. Animal 2017, 11, 394–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ERM-ABDLO. Livestock Manures–Nitrogen Equivalents; European Commission DG Environment Resources Management Institute: Brussels, Belgium, 2001. [Google Scholar]
- Xiccato, G.; Schiavon, S.; Gallo, L.; Bailoni, L.; Bittante, G. Nitrogen excretion in dairy cow, beef and veal cattle, pig, and rabbit farms in Northern Italy. Ital. J. Anim. Sci. 2005, 4, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Liu, F.; Xu, X.; Xu, J.; Zoccarato, I. Study of the Assessment Method for N Excretion in Sustainable Heavy Pigs Production. Phys. Procedia 2012, 24, 368–374. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Swine, 10th ed.; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Taylor, A.E.; Jagger, S.; Toplis, P.; Wellock, I.L.; Miller, H.M. The effects of genotype and dietary lysine concentration on the production of weaner pigs. Livest. Sci. 2012, 149, 180–184. [Google Scholar] [CrossRef]
- Rossi, R.; Ratti, S.; Pastorelli, G.; Crotti, A.; Corino, C. The effects of dietary vitamin E and verbascoside on meat quality and oxidative stability of longissimus dorsi muscle in medium-heavy pigs. Food Res. Int. 2014, 65, 88–94. [Google Scholar] [CrossRef]
- Bonadonna, A.; Aceto, P.; Peira, G.; Varese, E. Hypothesis for Relaunch of the Pig Farming Sector in Piedmont: Medium/Heavy Pigmeat as the Raw Material in the Production of Cooked Ham. Qual. Access Success 2013, 14, 114–118. [Google Scholar]
- Hypor. Available online: https://www.hypor.com/en/product/maxter/ (accessed on 10 June 2019).
- The Pig Site. Available online: https://thepigsite.com/focus/pic/3508/pic-uk-337 (accessed on 11 June 2019).
- Chiba, L.I.; Kuhlers, D.L.; Frobish, L.T.; Jungst, S.B.; Huff-Lonergan, E.J.; Lonergan, S.M.; Cummins, K.A. Effect of dietary restrictions on growth performance and carcass quality of pigs selected for lean growth efficiency. Livest. Prod. Sci. 2002, 74, 93–102. [Google Scholar] [CrossRef]
- de Greef, K.H.; Kemp, B.; Verstegen, M.W.A. Performance and body composition of fattening pigs of two straines during protein deficiency and subsequent realimentation. Livest. Prod. Sci. 2002, 30, 141–153. [Google Scholar] [CrossRef]
Ingredients | Acclimation (0–28 d) | Growing (29–70 d) | Finishing (71–118 d) | ||
---|---|---|---|---|---|
High Amino Acid (HAA) | Low Amino Acid (LAA) | HAA | LAA | ||
Corn grain | 317.2 | 400.0 | 440.7 | 374.6 | 440.9 |
Wheat | 280.0 | 280.0 | 280.0 | 350.0 | 350.0 |
Soybean Meal | 135.0 | 120.0 | 75.0 | 110.0 | 25.0 |
Barley | 120.0 | - | - | - | - |
Distillers’ dried grains | 40.0 | 60.0 | 60.0 | 50.0 | 60.0 |
Wheat middling | 40.0 | 60.0 | 60.0 | 50.0 | 50.0 |
Beef tallow | 27.0 | 24.0 | 23.0 | 20.0 | 18.0 |
Sunflower | - | 25.0 | 30.0 | 20.0 | 30.0 |
Calcium carbonate | 13.0 | 12.0 | 12.0 | 13.0 | 13.0 |
Sodium chloride | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Organic acids | 5.0 | 4.0 | 4.0 | - | - |
Dicalcium phosphate | 3.4 | - | - | - | - |
Vitamin and mineral premix 1 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
L-Lysine HCl | 7.0 | 5.1 | 5.4 | 3.6 | 4.3 |
DL-Metionine | 1.6 | 0.6 | 0.5 | - | - |
L-Threonine | 2.4 | 1.4 | 1.4 | 1.0 | 1.0 |
L-Tryptophan | 0.4 | 0.1 | 0.2 | - | - |
Choline HCl | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 |
Ingredient | Acclimation (0–28 d) | Growing (29–70 d) | Finishing (71–118 d) | ||
---|---|---|---|---|---|
High Amino Acid (HAA) | Low Amino Acid (LAA) | HAA | LAA | ||
Analysed nutrient composition 1 | |||||
Dry Matter | 898 | 891 | 891 | 889 | 888 |
Crude Protein (N × 6.25) | 160 | 158 | 140 | 150 | 120 |
Starch | 514 | 526 | 548 | 530 | 561 |
NDF | 130 | 103 | 111 | 135 | 134 |
Ether Extract | 59 | 55 | 52 | 44 | 42 |
Ash | 44 | 39 | 36 | 40 | 37 |
Calculated nutrient composition 2 | |||||
Dry Matter | 885 | 883 | 883 | 883 | 882 |
ME, MJ/kg | 13.6 | 13.6 | 13.6 | 13.6 | 13.6 |
NE, MJ/kg | 10.2 | 10.1 | 10.1 | 10.1 | 10.1 |
Crude Protein (CP) | 164 | 163 | 146 | 158 | 126 |
Starch | 439 | 442 | 467 | 457 | 503 |
Ca | 6.6 | 5.4 | 5.3 | 5.8 | 5.6 |
P | 4.4 | 4.0 | 3.9 | 4.0 | 3.8 |
Lysine | 12.0 | 10.5 | 9.5 | 9.0 | 7.3 |
Methionine | 4.0 | 3.1 | 2.8 | 2.5 | 2.1 |
Threonine | 7.7 | 6.8 | 6.1 | 6.3 | 5.0 |
Tryptophan | 2.3 | 2.0 | 1.8 | 1.9 | 1.4 |
SID Lysine, mg/g CP 3 | 67 | 58 | 58 | 51 | 52 |
SID Methionine, mg/g CP 3 | 23 | 17 | 17 | 14 | 14 |
SID Threonine, mg/g CP 3 | 41 | 36 | 36 | 34 | 33 |
SID Tryptophan, mg/g CP 3 | 12 | 10 | 10 | 10 | 10 |
Traits | Feed (F) | Genetic Line (GL) | F × GL | ||||||
---|---|---|---|---|---|---|---|---|---|
HAA | LAA | SEM | p | Hypor Maxter | PIC 337 | SEM | p | p | |
Body weight, kg: | |||||||||
0 d arrival | 30.2 | 30.7 | 0.29 | 0.24 | 30.1 | 30.8 | 0.29 | 0.13 | 0.25 |
29 d (start of growing) | 59.9 | 59.0 | 0.59 | 0.95 | 59.3 | 58.6 | 0.53 | 0.28 | 0.98 |
70 d (start of finishing) | 104.0 | 103.7 | 0.77 | 0.76 | 103.6 | 104.5 | 0.72 | 0.65 | 0.46 |
118 d (end of trial) | 145.6 | 144.5 | 1.04 | 0.48 | 144.3 | 145.9 | 0.98 | 0.19 | 0.63 |
Growth rate, kg/d: | |||||||||
Growing | 1.07 | 1.07 | 0.009 | 0.57 | 1.06 | 1.08 | 0.009 | 0.025 | 0.43 |
Finishing | 0.87 | 0.85 | 0.015 | 0.50 | 0.85 | 0.87 | 0.013 | 0.08 | 0.16 |
Overall | 0.96 | 0.95 | 0.008 | 0.35 | 0.94 | 0.97 | 0.008 | 0.022 | 0.95 |
Feed intake, kg/d: | |||||||||
Growing | 2.61 | 2.60 | 0.015 | 0.70 | 2.61 | 2.60 | 0.013 | 0.57 | 0.21 |
Finishing | 2.77 | 2.75 | 0.027 | 0.67 | 2.76 | 2.76 | 0.021 | 0.89 | 0.25 |
Overall | 2.69 | 2.68 | 0.017 | 0.60 | 2.69 | 2.68 | 0.014 | 0.86 | 0.15 |
Gain:feed: | |||||||||
Growing | 0.412 | 0.410 | 0.003 | 0.78 | 0.405 | 0.417 | 0.003 | 0.008 | 0.91 |
Finishing | 0.313 | 0.310 | 0.003 | 0.43 | 0.307 | 0.316 | 0.003 | 0.039 | 0.43 |
Overall | 0.358 | 0.355 | 0.003 | 0.52 | 0.351 | 0.362 | 0.003 | 0.005 | 0.19 |
Final body lipid mass, kg | 43.9 | 44.3 | 1.25 | 0.63 | 43.7 | 44.5 | 1.09 | 0.60 | 0.09 |
Final body protein mass, kg | 21.9 | 21.5 | 0.21 | 0.81 | 21.6 | 21.8 | 0.21 | 0.52 | 0.28 |
Lipid retention1, g/d | |||||||||
Growing | 300 | 304 | 32 | 0.78 | 302 | 302 | 30 | 0.97 | 0.66 |
Finishing | 411 | 422 | 110 | 0.75 | 405 | 428 | 95 | 0.28 | 0.26 |
Overall | 359 | 368 | 119 | 0.66 | 352 | 374 | 103 | 0.10 | 0.06 |
Protein retention 1, g/d | |||||||||
Growing | 183 | 181 | 10 | 0.62 | 179 | 184 | 10 | 0.12 | 0.33 |
Finishing | 100 | 103 | 17 | 0.27 | 104 | 109 | 20 | 0.90 | 0.21 |
Overall | 141 | 137 | 21 | 0.28 | 139 | 139 | 21 | 0.88 | 0.14 |
N retention1 g/kg BW gain | 23.5 | 23.1 | 1.5 | 0.58 | 23.6 | 22.9 | 1.3 | 0.45 | 0.66 |
Traits | Feed (F) | Genetic Line (GL) | F × GL | ||||||
---|---|---|---|---|---|---|---|---|---|
HAA | LAA | SEM | p | Hypor Maxter | PIC 337 | SEM | p | p | |
Nitrogen intake 1, kg/pig: | |||||||||
Growing step | 2.84 | 2.54 | 0.014 | <0.001 | 2.68 | 2.70 | 0.014 | 0.36 | 0.27 |
Finishing step | 3.33 | 2.66 | 0.018 | <0.001 | 2.99 | 3.00 | 0.018 | 0.70 | 0.44 |
Overall | 6.17 | 5.20 | 0.032 | <0.001 | 5.67 | 5.70 | 0.030 | 0.46 | 0.97 |
Estimated N retention, kg/pig 2: | |||||||||
Growing step (42 d on feed) | 1.26 | 1.26 | 0.015 | 0.98 | 1.25 | 1.28 | 0.015 | 0.18 | 0.16 |
Finishing step (47 d on feed) | 1.00 | 0.95 | 0.029 | 0.20 | 0.97 | 0.99 | 0.024 | 0.48 | 0.95 |
Overall (89 d on feed) | 2.27 | 2.21 | 0.030 | 0.21 | 2.22 | 2.27 | 0.030 | 0.25 | 0.94 |
Estimated N excretion, kg/pig 3 | |||||||||
Growing step | 1.58 | 1.28 | 0.020 | <0.001 | 1.44 | 1.43 | 0.020 | 0.70 | 0.09 |
Finishing step | 2.32 | 1.71 | 0.042 | <0.001 | 2.02 | 2.01 | 0.035 | 0.83 | 0.56 |
Overall | 3.90 | 2.98 | 0.052 | <0.001 | 3.45 | 3.44 | 0.047 | 0.75 | 0.20 |
N efficiency | 0.368 | 0.417 | 0.003 | < 0.001 | 0.390 | 0.395 | 0.003 | 0.12 | 0.57 |
Traits | Feed (F) | Genetic Line (GL) | F × GL | ||||||
---|---|---|---|---|---|---|---|---|---|
HAA | LAA | SEM | p | Hypor Maxter | PIC 337 | SEM | p | p | |
Carcass: | |||||||||
Weight, kg | 115.0 | 114.9 | 0.65 | 0.92 | 114.7 | 115.2 | 0.65 | 0.60 | 0.99 |
Yield, % | 79.0 | 79.5 | 0.01 | 0.16 | 79.6 | 79.0 | 0.002 | 0.08 | 0.15 |
Lean percentage 1, % | 53.3 | 53.0 | 0.54 | 0.65 | 53.4 | 52.9 | 0.54 | 0.49 | 0.42 |
Untrimmed lean and fat cuts, kg: | |||||||||
Loin | 13.1 | 12.8 | 0.12 | 0.11 | 12.8 | 12.9 | 0.13 | 0.55 | 0.99 |
Ham | 29.2 | 29.3 | 0.25 | 0.86 | 29.3 | 29.2 | 0.25 | 0.77 | 0.72 |
Total lean cuts | 57.9 | 57.6 | 0.43 | 0.65 | 57.6 | 57.9 | 0.43 | 0.68 | 0.64 |
Total fat cuts | 23.8 | 24.3 | 0.35 | 0.31 | 23.9 | 24.2 | 0.35 | 0.31 | 0.74 |
Yield of untrimmed lean and fat cuts, % of carcass: | |||||||||
Loin | 11.3 | 11.1 | 0.09 | 0.06 | 11.2 | 11.2 | 0.09 | 0.72 | 0.99 |
Ham | 25.4 | 25.5 | 0.17 | 0.75 | 25.5 | 25.3 | 0.17 | 0.28 | 0.66 |
Total lean cuts | 50.3 | 50.1 | 0.30 | 0.65 | 50.2 | 50.2 | 0.29 | 0.97 | 0.33 |
Total fat cuts | 20.7 | 21.2 | 0.27 | 0.29 | 21.0 | 20.9 | 0.27 | 0.55 | 0.79 |
Traits | Feed (F) | Genetic Line (GL) | F × GL | ||||||
---|---|---|---|---|---|---|---|---|---|
HAA | LAA | SEM | p | Hypor Maxter | PIC 337 | SEM | p | p | |
pH of LL 1: | |||||||||
45 m | 6.1 | 6.0 | 0.03 | 0.54 | 6.0 | 6.1 | 0.03 | 0.85 | 0.06 |
24 h | 5.5 | 5.5 | 0.01 | 0.12 | 5.5 | 5.5 | 0.01 | 0.15 | 0.90 |
LL content of: | |||||||||
Moisture, % | 72.3 | 72.6 | 0.36 | 0.65 | 72.5 | 72.5 | 0.28 | 0.84 | 0.56 |
Protein, % | 22.8 | 22.8 | 0.31 | 1.00 | 22.8 | 22.8 | 0.23 | 0.65 | 0.61 |
Intramuscular fat, % | 3.5 | 3.2 | 0.16 | 0.33 | 3.5 | 3.3 | 0.15 | 0.39 | 0.88 |
Ash, % | 1.17 | 1.17 | 0.02 | 1.00 | 1.16 | 1.17 | 0.01 | 0.26 | 0.23 |
LL cooking losses, % | 34.0 | 35.2 | 0.53 | 0.17 | 34.6 | 34.6 | 0.44 | 0.80 | 0.83 |
LL shear force, kg | 3.2 | 3.5 | 0.16 | 0.21 | 3.20 | 3.53 | 0.13 | 0.16 | 0.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiavon, S.; Dalla Bona, M.; Carcò, G.; Sturaro, E.; Gallo, L. Responses of Pigs of Different Genotypes to a Variation in the Dietary Indispensable Amino Acid Content in Terms of Their Growth, and Carcass and Meat Quality Traits. Animals 2019, 9, 508. https://doi.org/10.3390/ani9080508
Schiavon S, Dalla Bona M, Carcò G, Sturaro E, Gallo L. Responses of Pigs of Different Genotypes to a Variation in the Dietary Indispensable Amino Acid Content in Terms of Their Growth, and Carcass and Meat Quality Traits. Animals. 2019; 9(8):508. https://doi.org/10.3390/ani9080508
Chicago/Turabian StyleSchiavon, Stefano, Mirco Dalla Bona, Giuseppe Carcò, Enrico Sturaro, and Luigi Gallo. 2019. "Responses of Pigs of Different Genotypes to a Variation in the Dietary Indispensable Amino Acid Content in Terms of Their Growth, and Carcass and Meat Quality Traits" Animals 9, no. 8: 508. https://doi.org/10.3390/ani9080508
APA StyleSchiavon, S., Dalla Bona, M., Carcò, G., Sturaro, E., & Gallo, L. (2019). Responses of Pigs of Different Genotypes to a Variation in the Dietary Indispensable Amino Acid Content in Terms of Their Growth, and Carcass and Meat Quality Traits. Animals, 9(8), 508. https://doi.org/10.3390/ani9080508