Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco
Abstract
:1. Introduction
2. Site Description
3. Methodology, Results, and Discussion
3.1. Multi-scale Precipitation and Water Storage Variations
3.1.1. Datasets and Processing
3.1.2. Error Analysis
3.1.3. Water Flux Results
3.2. A Remote Sensing-Based Rainfall-Runoff Model
3.2.1. Overview and Model Construction
3.2.2. SWAT Model Inputs
3.2.3. SWAT Model Setup: Oum Er Rbia Basin Model
3.2.4. SWAT Model Setup: Souss Basin Model
3.2.5. Model Calibration
3.2.6. Model Calibration and Results
3.3. Climate Change Projections
3.3.1. Overview and Methodology
3.3.2. Climate Change Results
4. Summary and Conclusions
4.1. Groundwater/Precipitation Trends and Statistics
- The climate (e.g., precipitation) has not significantly changed or impacted this area from 2002–2016, as indicated by a relatively flat trend-line in precipitation for Morocco, and the Oum Er Rbia and Souss Basins (Figure 5). Seasonal variations exist in the precipitation along with anomalous wet (e.g., 2009, 2010, and 2015) and dry years (e.g., 2007, 2014) which further complicates the situation.
- GWSa has decreased in both the Souss Basin and the country of Morocco as a whole from 2002–2016. This result is consistent with decreasing groundwater levels in wells. GWSa actually increased in the Oum Er Rbia Basin by almost 3 cm/yr. This suggests that natural decreases in precipitation are not the major cause of groundwater decline, particularly in the Souss Basin.
- TWSa increased in Morocco overall and both basins. Again, this suggests the sensitivity to anthropogenic impacts is potentially greater than the climate signal.
4.2. Spatiotemporal Relationships of Groundwater/Precipitation
- Anomalous areas of precipitation and groundwater don’t consistently overlap in space or time. These can be seen in both the spatial patterns and temporal trends. Hot spots, areas that receive higher or lower average precipitation or TWSa/GWSa changes, show areas where climate is linked to groundwater (Figure 4A—red oval), as well as areas where high anomalous TWS changes don’t correspond with higher precipitation (Figure 4B—green oval). This can be attributed to the difference in spatial scale of the two datasets and the recharge lag time. Though these trends exist spatially, they don’t persist consistently through time. Figure 5A highlights the close relationship between precipitation and groundwater, however deviating in certain years (e.g., 2009, 2010). The same can be seen in the Souss Basin, where GWS anomalies were lowest in the wettest years (e.g., 2009, 2010 in Figure 5A,B—black bar).
4.3. Modern Water Fluxes and Partitioning
- SWAT model results indicate that the Souss Basin receives an annual average of 4.3 × 108 m3 (~11% of precipitation) of potential groundwater recharge each year.
- The partitioning of the water in Souss is as follows: precipitation is 214.8 mm, runoff is 81.9 mm, and recharge is 24.89 mm.
4.4. Future Climate Change Impacts
- The climate is projected to get dryer and warmer in Northwest Africa. Results show a decrease in precipitation and increase in temperature (Precipitation decrease by 2050: −10.6%, Temperature increase by 2050: +1.2 °C). This is going to place a higher premium on and use of already diminishing groundwater reserves. These results are consistent with previous literature [108,109].
- The magnitude of decreased precipitation (−10.6%) is greater than the decrease in surface runoff (−13.8%) and groundwater recharge (−17.6%). This would result to the annual potential recharge in the Souss Basin being 3.5 × 108 m3. This reinforces the need for more prudent water storage and groundwater management strategies. Previous studies using other downscaled GCM approaches show smaller decreases in precipitation and consistent increases in temperature [42], However, decreases in surface runoff were found to be higher than reported here (e.g., −30% compared to −15%) which can be attributed to the projected changes in precipitation or differences in models.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNDESA. Report on the Global Conference on the Sustainable Development in Small Island Developing States; United Nations: New York, NY, USA, 2006. [Google Scholar]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9 (Suppl. S1), S31–S49. [Google Scholar] [CrossRef]
- Vörösmarty, J.C. Global water assessment and potential contributions from Earth Systems Science. Aquat. Sci. 2002, 64, 328–351. [Google Scholar] [CrossRef]
- Milewski, A.; Sultan, M.; Yan, E.; Becker, R.; Abdeldayem, A.; Soliman, F.; Gelil, K.A. A remote sensing solution for estimating runoff and recharge in arid environments. J. Hydrol. 2009, 373, 1–14. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USAID. Middle East and North Africa Water Center Network; USAID: Washington, DC, USA, 2010.
- Ireson, A.; Makropoulos, C.; Maksimovic, C. Water Resources Modelling under Data Scarcity: Coupling MIKE BASIN and ASM Groundwater Model. Water Resour. Manag. 2006, 20, 567–590. [Google Scholar] [CrossRef]
- Lezzaik, K.; Milewski, A.; Mullen, J. The groundwater risk index: Development and application in the Middle East and North Africa region. Sci. Total Environ. 2018, 628, 1149–1164. [Google Scholar] [CrossRef]
- Milewski, A.; Elkadiri, R.; Durham, M. Assessment and Comparison of TMPA Satellite Precipitation Products in Varying Climatic and Topographic Regimes in Morocco. Remote Sens. 2015, 7, 5697–5717. [Google Scholar] [CrossRef] [Green Version]
- Milewski, A.; Sultan, M.; Jayaprakash, S.M.; Balekai, R.; Becker, R. RESDEM, a tool for integrating temporal remote sensing data for use in hydrogeologic investigations. Comput. Geosci. 2009, 35, 2001–2010. [Google Scholar] [CrossRef]
- Ritzema, H.; Froebrich, J.; Raju, R.; Sreenivas, C.; Kselik, R. Using participatory modelling to compensate for data scarcity in environmental planning: A case study from India. Environ. Model. Softw. 2010, 25, 1450–1458. [Google Scholar] [CrossRef]
- Brakensiek, D.L.; Osborn, H.B.; Rawls, W.J. Field manual for research in agricultural hydrology. In Agriculture Handbook; Science and Education Administration, US Department of Agriculture: Washington, DC, USA, 1979. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Lakshmi, V. Remote Sensing of the Terrestrial Water Cycle; John Wiley & Sons: Hoboken, NJ, USA, 2014; Volume 206. [Google Scholar]
- Becker, D.; Sultan, M.; Milewski, A.; Becker, R.; Sauck, W.; Soliman, F.; Rashed, M.; Ahmed, M.; Yan, E.; Wagdy, A.; et al. Integrated solutions for hydrologic investigations in arid lands. Geosphere 2012, 8, 1588–1605. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, W.M.; Milewski, A.M.; Durham, M.C. Understanding the relative impacts of natural processes and human activities on the hydrology of the Central Rift Valley lakes, East Africa. Hydrol. Process. 2015, 29, 4312–4324. [Google Scholar] [CrossRef]
- Sultan, M.; Ahmed, M.; Sturchio, N.; Yan, Y.; Milewski, A.; Becker, R.; Wahr, J.; Becker, D.; Chouinard, K. Assessment of the Vulnerabilities of the Nubian Sandstone Fossil Aquifer, North Africa; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Jiang, D.; Wang, K. The Role of Satellite-Based Remote Sensing in Improving Simulated Streamflow: A Review. Water 2019, 11, 1615. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, W.M.; Milewski, A.M. Monitoring and comparison of terrestrial water storage changes in the northern high plains using GRACE and in-situ based integrated hydrologic model estimates. Adv. Water Resour. 2016, 94, 31–44. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Tolson, B.A. Progress in integrating remote sensing data and hydrologic modeling. Prog. Phys. Geogr. 2014, 38, 464–498. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E.; Milewski, A.; Sauck, W.; Becker, R.; Welton, B. Integration of GRACE (Gravity Recovery and Climate Experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning in African watersheds. Geology 2011, 39, 479–482. [Google Scholar] [CrossRef] [Green Version]
- Al-Dousari, A.M.; Saif, U. Remote sensing inputs to SWAT model for groundwater recharge estimates in Kuwait. Adv. Nat. Appl. Sci. 2010, 4, 71–77. [Google Scholar]
- Kehew, A.E.; Milewski, A.; Soliman, F. Reconstructing an extreme flood from boulder transport and rainfall-runoff modelling: Wadi Isla, South Sinai, Egypt. Glob. Planet. Chang. 2010, 70, 64–75. [Google Scholar] [CrossRef]
- Sagintayev, Z.; Sultan, M.; Khan, S.D.; Khan, S.A.; Mahmood, K.; Yan, E.; Milewski, A.; Marsala, P. A remote sensing contribution to hydrologic modelling in arid and inaccessible watersheds, Pishin Lora basin, Pakistan. Hydrol. Process. 2011, 26, 85–99. [Google Scholar] [CrossRef]
- Ahmed, M.; Wiese, D.N. Short-term trends in Africa’s freshwater resources: Rates and drivers. Sci. Total Environ. 2019, 695, 133843. [Google Scholar] [CrossRef]
- Lezzaik, K.; Milewski, A. A quantitative assessment of groundwater resources in the Middle East and North Africa region. Hydrogeol. J. 2018, 26, 251–266. [Google Scholar] [CrossRef]
- Milewski, A.; Thomas, M.; Seyoum, W.; Rasmussen, T. GRACE-based Groundwater Level Anomalies in the Flint River System, Georgia. Remote Sens. 2019, 11, 2756. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, W.M.; Kwon, D.; Milewski, A.M. Downscaling GRACE TWSA Data into High-Resolution Groundwater Level Anomaly Using Machine Learning-Based Models in a Glacial Aquifer System. Remote Sens. 2019, 11, 824. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Sultan, M.; Ahmed, M.; Yan, E.; Ahmed, E. Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, geochemical, and geophysical data. GSA Bull. 2016, 129, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, W.M.; Milewski, A.M. Improved methods for estimating local terrestrial water dynamics from GRACE in the Northern High Plains. Adv. Water Resour. 2017, 110, 279–290. [Google Scholar] [CrossRef]
- Wehbe, Y.; Ghebreyesus, D.; Temimi, M.; Milewski, A.; Al Mandous, A. Assessment of the consistency among global precipitation products over the United Arab Emirates. J. Hydrol. Reg. Stud. 2017, 12, 122–135. [Google Scholar] [CrossRef]
- Lo Conti, F.; Hsu, K.-L.; Noto, L.V.; Sorooshian, S. Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos. Res. 2014, 138, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Wehbe, Y.; Temimi, M.; Ghebreyesus, D.T.; Milewski, A.; Norouzi, H.; Ibrahim, E. Consistency of precipitation products over the Arabian Peninsula and interactions with soil moisture and water storage. Hydrol. Sci. J. 2018, 63, 408–425. [Google Scholar] [CrossRef]
- Zeng, H.; Li, L.; Li, J. The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang River Basin. J. Geogr. Sci. 2012, 22, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Ait-Hssaine, A. Mutation d’un espace en bordure du désert par surexploitation de ses ressources hydriques: La dépression du Souss au Maroc/Changes triggered by the over exploitation of water resources in an area bordering the desert: The Souss Valley, Morocco. Rev. De Géographie Alp. 2004, 92, 29–38. [Google Scholar] [CrossRef]
- Bouchaou, L.; Michelot, J.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.; Bullen, T.; Zuppi, G. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. J. Hydrol. 2008, 352, 267–287. [Google Scholar] [CrossRef]
- Brunner, P.; Hendricks Franssen, H.J.; Kgotlhang, L.; Bauer-Gottwein, P.; Kinzelbach, W. How can remote sensing contribute in groundwater modeling? Hydrogeol. J. 2007, 15, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Silliman, S. Development of Reliable Hydrologic Data Sets in Difficult Environments: Case Studies from Benin, West Africa; Darcy Lecturer; NGWA: Westerville, OH, USA, 2011. [Google Scholar]
- Sophocleous, M. Global and Regional Water Availability and Demand: Prospects for the Future. Nat. Resour. Res. 2004, 13, 61–75. [Google Scholar] [CrossRef]
- Tramblay, Y.; Ruelland, D.; Somot, S.; Bouaicha, R.; Servat, E. High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: A first evaluation of the ALADIN-Climate model in Morocco. Hydrol. Earth Syst. Sci. 2013, 17, 3721–3739. [Google Scholar] [CrossRef] [Green Version]
- Benassi, M. Drought and climate change in Morocco. Analysis of precipitation field and water supply. Options Méditerranéennes 2008, 80, 83–87. [Google Scholar]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Schilling, J.; Freier, K.P.; Hertig, E.; Scheffran, J. Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- d’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B.; Aït Hssaïne, A. Monitoring soil erosion in the Souss Basin, Morocco, with a multiscale object-based remote sensing approach using UAV and satellite data. In Proceedings of the 1st World Sustainability Forum; Sciforum Electronic Conference Series; MDPI: Basel, Switzerland, 2011. [Google Scholar] [CrossRef] [Green Version]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Chang. 2011, 104, 599–627. [Google Scholar] [CrossRef]
- Bouchaou, L.; Tagma, T.; Boutaleb, S.; Hssaisoune, M.; El Morjani, Z.E.A. Climate change and its impacts on groundwater resources in Morocco: The case of the Souss-Massa basin. In Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations; Taylor & Francis Group: Abingdon, UK, 2011. [Google Scholar]
- Ouatiki, H.; Boudhar, A.; Tramblay, Y.; Jarlan, L.; Benabdelouhab, T.; Hanich, L.; El Meslouhi, M.R.; Chehbouni, A. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco. Climate 2017, 5, 1. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco. PLoS ONE 2014, 9, e99705. [Google Scholar] [CrossRef] [PubMed]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R. Updating a Land Surface Model with MODIS-Derived Snow Cover. J. Hydrometeorol. 2004, 5, 1064–1075. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Houborg, R.; Rodell, M.; Li, B.; Reichle, R.; Zaitchik, B.F. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Wahr, J. Monitoring the water balance of Lake Victoria, East Africa, from space. J. Hydrol. 2009, 370, 163–176. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Landerer, F.; Swenson, S. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Zhang, Z.; Ni, S. Long-term groundwater variations in Northwest India from satellite gravity measurements. Glob. Planet. Chang. 2014, 116, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Joodaki, G.; Wahr, J.; Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res. 2014, 50, 2679–2692. [Google Scholar] [CrossRef]
- Konikow, L.F. Long-Term Groundwater Depletion in the United States. Groundwater 2015, 53, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Seyyedi, H.; Anagnostou, E.N.; Beighley, E.; McCollum, J. Satellite-driven downscaling of global reanalysis precipitation products for hydrological applications. Hydrol. Earth Syst. Sci. 2014, 18, 5077–5091. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinisvan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment, Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Chaponnière, A.; Boulet, G.; Chehbouni, A.; Aresmouk, M. Understanding hydrological processes with scarce data in a mountain environment. Hydrol. Process. 2008, 22, 1908–1921. [Google Scholar] [CrossRef] [Green Version]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions; Center for Agricultural and Rural Development, Iowa State University: Heady Hall, IA, USA, 2007. [Google Scholar]
- Hernandez, M.; Miller, S.N.; Goodrich, D.C.; Goff, B.F.; Kepner, W.G.; Edmonds, C.M.; Jones, K.B. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. In Monitoring Ecological Condition in the Western United States; Springer: Berlin/Heidelberg, Germany, 2000; pp. 285–298. [Google Scholar]
- Muttiah, R.S.; Wurbs, R.A. Scale-dependent soil and climate variability effects on watershed water balance of the SWAT model. J. Hydrol. 2002, 256, 264–285. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Williams, J.; Arnold, J.; Kiniry, J. Soil and Water Assessment Tool Theoretical Documentation, version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- FAO; ISRIC; JRC. Harmonized World Soil Database, version 1.2; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2014. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. NCEP Climate Forecast System Reanalysis (CFSR) 6-Hourly Products, January 1979 to December 2010; The National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2010. [Google Scholar]
- SCS. SCS National Engineering Handbook, Section 4: Hydrology; United States Soil Conservation Service: Washington, DC, USA, 1972. [Google Scholar]
- SCS. SCS Engineering Field Manual; US Department of Agriculture: Washington, DC, USA, 1984.
- Gheith, H.; Sultan, M. Construction of a hydrologic model for estimating Wadi runoff and groundwater recharge in the Eastern Desert. Egypt J. Hydrol. 2002, 263, 36–55. [Google Scholar] [CrossRef]
- Osterkamp, W.R.; Lane, L.J.; Savard, C.S. Recharge estimates using a geomorphic/distributed-parameter simulation approach, amargosa rwer basin1. JAWRA 1994, 30, 493–507. [Google Scholar]
- Burn, D.H.; Boorman, D.B. Estimation of hydrological parameters at ungauged catchments. J. Hydrol. 1993, 143, 429–454. [Google Scholar] [CrossRef]
- Kokkonen, T.S.; Jakeman, A.J.; Young, P.C.; Koivusalo, H.J. Predicting daily flows in ungauged catchments: Model regionalization from catchment descriptors at the Coweeta Hydrologic Laboratory, North Carolina. Hydrol. Process. 2003, 17, 2219–2238. [Google Scholar] [CrossRef]
- Pilgrim, D.H. Some problems in transferring hydrological relationships between small and large drainage basins and between regions. J. Hydrol. 1983, 65, 49–72. [Google Scholar] [CrossRef]
- Abbaspour, K.C. User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs; Swiss Federal Institute of Aquatic Science and Technology: Duebendorf, Switzerland, 2012. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water 2018, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.; Arnold, J.; Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Veith, T.L.; Bosch, D.D.; Arnold, J.G. Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watersheds. J. Hydrol. Eng. 2007, 12, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Kalin, L.; Isik, S.; Schoonover, J.E.; Lockaby, B.G. Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural Networks. J. Environ. Qual. 2010, 39, 1429–1440. [Google Scholar] [CrossRef]
- Warrick, R.; Ye, W.; Kouwenhoven, P.; Hay, J.; Cheatham, C. New Developments of the SimCLIM Model for Simulating Adaptation to Risks Arising from Climate Variability and Change. In MODSIM 2005; Zerger, A., Argent, R.M., Eds.; Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand: Canberra, Australia, 2005. [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Urich, P.; Kouwenhoven, P.; Freas, K.; van der Tak, L. New IPCC climate models released: Understanding the planning implications for water resiliency (PDF). J. Am. Water Work. Assoc. 2014, 106, 51–60. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Amin, A.; Mubeen, M.; Hammad, H.; Nasim, W. Climate Smart Agriculture-a solution for sustainable future. Agric. Res. Commun 2015, 2, 13–21. [Google Scholar]
- Carter, T.R. Developing and Applying Scenarios, Chapter 3 in Climate Change 2001: Impacts, Adaptation, and Vulnerability. In The IPCC WG 2 Third Assessment Report; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hulme, M.; Wigley, T.M.; Barrow, E.; Raper, S.; Centella, A.; Smith, S.; Chipanshi, A. Using A Climate Scenario Generator for Vulnerability and Adaptation Assessments: MAGICC AND SCENGEN: Version 2.4 Workbook; Climatic Research Unit: Norwich, UK, 2000; p. 52. [Google Scholar]
- Santer, B.D.; Wigley, T.M.; Schlesinger, M.E.; Mitchell, J.F. Developing climate scenarios from equilibrium GCM results. In Max-Planck-Institut für Meteorologie Report; Max Planck Institute for Meteorology: Hamburg, Germany, 1990. [Google Scholar]
- Coquard, J.; Duffy, P.; Taylor, K.; Iorio, J. Present and future surface climate in the western USA as simulated by 15 global climate models. Clim. Dyn. 2004, 23, 455–472. [Google Scholar] [CrossRef]
- Amin, A.; Nasim, W.; Mubeen, M.; Kazmi, D.H.; Lin, Z.; Wahid, A.; Sultana, S.R.; Gibbs, J.; Fahad, S. Comparison of future and base precipitation anomalies by SimCLIM statistical projection through ensemble approach in Pakistan. Atmos. Res. 2017, 194, 214–225. [Google Scholar] [CrossRef]
- Brahim, Y.A.; Seif-Ennasr, M.; Malki, M.; N’da, B.; Choukrallah, R.; El Morjani, Z.E.A.; Sifeddine, A.; Abahous, H.; Bouchaou, L. Assessment of Climate and Land Use Changes: Impacts on Groundwater Resources in the Souss-Massa River Basin. In The Souss-Massa River Basin; Springer International Publishing: Cham, Switzerland, 2017; pp. 121–142. [Google Scholar]
- Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y. Trends in indices of daily temperature and precipitations extremes in Morocco. Theor. Appl. Climatol. 2016, 124, 959–972. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Boutaleb, S.; Benssaou, M.; Bouaakkaz, B.; Bouchaou, L. Physical Geography, Geology, and Water Resource Availability of the Souss-Massa River Basin. In The Souss-Massa River Basin; Springer International Publishing: Cham, Switzerland, 2017; pp. 27–56. [Google Scholar]
- N’da, A.B.; Bouchaou, L.; Reichert, B.; Hanich, L.; Brahim, Y.A.; Chehbouni, A.; Beraaouz, E.H.; Michelot, J.-L. Isotopic signatures for the assessment of snow water resources in the Moroccan high Atlas mountains: Contribution to surface and groundwater recharge. Environ. Earth Sci. 2016, 75, 755. [Google Scholar] [CrossRef]
- Knutti, R.; Abramowitz, G.; Collins, M.; Eyring, V.; Gleckler, P.J.; Hewitson, B.; Mearns, L. Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections. In Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Midgley, P.M., Eds.; IPCC Working Group I Technical Support Unit, University of Bern: Bern, Switzerland, 2010. [Google Scholar]
- Pulido-Velazquez, D.; García-Aróstegui, J.L.; Molina, J.L.; Pulido-Velazquez, M. Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? Hydrol. Process. 2015, 29, 828–844. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Alvarez-Mendiola, E.; Andreu, J. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plan. Manag. 2013, 139, 583–592. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Andreu, J.; Sahuquillo, A.; Pulido-Velazquez, D. Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecol. Econ. 2008, 66, 51–65. [Google Scholar] [CrossRef]
- Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Chang. 2000, 26, 137–158. [Google Scholar] [CrossRef]
- Speth, P.; Christoph, M.; Diekkrüger, B. Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Pulido-Velazquez, D.; Garrote, L.; Andreu, J.; Martin-Carrasco, F.-J.; Iglesias, A. A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. J. Hydrol. 2011, 405, 110–122. [Google Scholar] [CrossRef]
- Malki, M.; Bouchaou, L.; Hirich, A.; Brahim, Y.A.; Choukr-Allah, R. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci. Total Environ. 2017, 574, 760–770. [Google Scholar] [CrossRef]
Precipitation | TWS Anomaly | GWS Anomaly | |
---|---|---|---|
Morocco | |||
Slope | 0.00116 | −0.0127 | −0.3998 |
t-value | 0.039 | −0.282 | −3.117 |
p-value | 0.969 * | 0.778 * | 2.38 × 10−3 |
Souss Basin | |||
Slope | 0.06042 | −0.068 | −0.4085 |
t-value | 1.127 | −2.42 | −5.269 |
p-value | 0.26153 * | 0.0167 * | 7.91 × 10−7 |
OER Basin | |||
Slope | −0.044 | 0.11317 | 0.1 |
t-value | −0.9 | 1.233 | 1.77 |
p-value | 0.369 * | 0.219 * | 0.0787 * |
Variable Name | Initial | Sensitivity | Best Variable Values | ||
---|---|---|---|---|---|
Minimum | Maximum | t-Stat | p-Value | ||
v__GW_DELAY.gw | 30 | 450 | 38.91299 | 0 | 43.04 |
r__SOL_K(1).sol | −0.8 | 0.8 | −35.9575 | 0 | 0.64 |
v__RCHRG_DP.gw | 0 | 1 | 29.64671 | 0 | 0.00 |
v__ALPHA_BNK.rte | 0 | 1 | −28.3595 | 0 | 0.39 |
r__CN2.mgt | −0.2 | 0.2 | 14.59158 | 0 | −0.19 |
v__GWQMN.gw | 0 | 2 | 13.18215 | 0 | 0.01 |
v__CH_N2.rte | 0 | 0.3 | 9.827674 | 1.17 × 10−22 | 0.02 |
v__CH_K2.rte | 5 | 130 | 9.065615 | 1.56 × 10−19 | 7.89 |
v__CH_K1.sub | 0 | 300 | 8.907304 | 6.48 × 10−19 | 37.99 |
v__ALPHA_BF.gw | 0 | 1 | −8.80199 | 1.65 × 10−18 | 0.78 |
v__CH_N1.sub | 0.01 | 30 | −3.56627 | 0.000364 | 27.93 |
v__OV_N.hru | 0.01 | 30 | 3.392818 | 0.000695 | 19.13 |
r__SOL_AWC(1).sol | −0.2 | 0.4 | −1.837 | 0.066249 | −0.19 |
v__ESCO.hru | 0.8 | 1 | 1.707687 | 0.087736 | 0.86 |
v__EPCO.hru | 0 | 1 | 1.603297 | 0.108911 | 0.00 |
v__GW_REVAP.gw | 0 | 0.2 | 1.155803 | 0.247799 | 0.12 |
v__SFTMP.bsn | −5 | 5 | −0.61932 | 0.535726 | 3.97 |
v__GW_SPYLD.gw | 0 | 0.4 | −0.57895 | 0.562638 | 0.26 |
v__REVAPMN.gw | 0 | 500 | 0.550393 | 0.582066 | 0.08 |
Hydrologic Parameters | RCP2.6 | RCP4.5 | RCP6.0 | RCP8.5 | Average | |
---|---|---|---|---|---|---|
Baseline values | Precipitation (mm) | ---- | ---- | ---- | ---- | 214.8 |
Runoff (mm) | ---- | ---- | ---- | ---- | 81.89 | |
Recharge (mm) | ---- | ---- | ---- | ---- | 24.89 | |
2020 | Precipitation (mm) | 204.0 (−5.0) | 203.8 (−5.1) | 204.6 (−4.7) | 203 (−5.5) | 203.9 (−5.1) |
∆Temperature (°C) | 0.56 | 0.56 | 0.52 | 0.61 | 0.6 | |
Runoff (mm) | 76.4 (−6.7) | 76.3 (−6.8) | 76.7 (−6.3) | 75.9 (−7.3) | 76.3 (−6.8) | |
Recharge (mm) | 22.7 (−8.7) | 22.7 (−8.8) | 22.9 (−8.2) | 22.5 (−9.5) | 22.7 (−8.8) | |
2025 | Precipitation (mm) | 202.5 (−5.7) | 201.7 (−6.1) | 202.8 (−5.6) | 200.1 (−6.8) | 201.8 (−6.1) |
∆Temperature (°C) | 0.63 | 0.67 | 0.62 | 0.75 | 0.7 | |
Runoff (mm) | 75.7 (−7.6) | 75.3 (−8.1) | 75.8 (−7.4) | 74.5 (−9.0) | 75.3 (−8.1) | |
Recharge (mm) | 22.4 (−9.8) | 22.3 (−10.5) | 22.5 (−9.7) | 21.9 (−11.7) | 22.3 (−10.4) | |
2030 | Precipitation (mm) | 201.2 (−6.3) | 199.5 (−7.1) | 200.9 (−6.5) | 197.1 (−8.2) | 199.7 (−7.0) |
∆Temperature (°C) | 0.70 | 0.78 | 0.71 | 0.91 | 0.8 | |
Runoff (mm) | 75.0 (−8.4) | 74.2 (−9.4) | 74.9 (−8.6) | 73.0 (−10.9) | 74.3 (−9.3) | |
Recharge (mm) | 22.2 (−10.8) | 21.9 (−12.1) | 22.1 (−11.1) | 21.4 (−14.0) | 21.9 (−12.0) | |
2035 | Precipitation (mm) | 200.2 (−6.8) | 197.5 (−8.1) | 199.1 (−7.3) | 193.9 (−9.7) | 197.7 (−8.0) |
∆Temperature (°C) | 0.75 | 0.89 | 0.81 | 1.08 | 0.9 | |
Runoff (mm) | 74.5 (−9.0) | 73.2 (−10.6) | 74.0 (−9.7) | 71.4 (−12.8) | 73.3 (−10.5) | |
Recharge (mm) | 22.0 (−11.7) | 21.5 (−13.7) | 21.8 (−12.5) | 20.8 (−16.4) | 21.5 (−13.5) | |
2040 | Precipitation (mm) | 199.3 (−7.2) | 195.5 (−9.0) | 197.3 (−8.1) | 190.5 (−11.3) | 195.7 (−8.9) |
∆Temperature (°C) | 0.79 | 0.99 | 0.90 | 1.25 | 1.0 | |
Runoff (mm) | 74.1 (−9.5) | 72.2 (−11.8) | 73.1 (−10.7) | 69.8 (−14.8) | 72.3(−11.7) | |
Recharge (mm) | 21.8 (−12.3) | 21.1 (−15.2) | 21.4 (−13.9) | 20.2 (−18.8) | 21.1 (−15.0) | |
2045 | Precipitation (mm) | 198.6 (−7.5) | 193.6 (−9.9) | 195.5 (−9.0) | 186.9 (−13.0) | 193.7 (−9.8) |
∆Temperature (°C) | 0.83 | 1.09 | 0.99 | 1.43 | 1.1 | |
Runoff (mm) | 73.8 (−9.9) | 71.3 (−13.0) | 72.2 (−11.8) | 68.1 (−16.9) | 71.3 (−12.9) | |
Recharge (mm) | 21.7 (−12.8) | 20.8 (−16.6) | 21.1 (−15.2) | 19.6 (−21.3) | 20.8 (−16.5) | |
2050 | Precipitation (mm) | 198.1 (−7.8) | 193.5 (−9.9) | 193.6 (−9.9) | 183.2 (−14.7) | 192.1 (−10.6) |
∆Temperature (°C) | 0.86 | 1.18 | 1.09 | 1.62 | 1.2 | |
Runoff (mm) | 73.5 (−10.3) | 71.2 (−13.0) | 71.3 (−12.9) | 66.3 (−19.0) | 70.6 (−13.8) | |
Recharge (mm) | 21.6 (−13.2) | 20.7 (−16.7) | 20.8 (−16.6) | 19.0 (−23.9) | 20.5 (−17.6) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milewski, A.; Seyoum, W.M.; Elkadiri, R.; Durham, M. Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco. Geosciences 2020, 10, 13. https://doi.org/10.3390/geosciences10010013
Milewski A, Seyoum WM, Elkadiri R, Durham M. Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco. Geosciences. 2020; 10(1):13. https://doi.org/10.3390/geosciences10010013
Chicago/Turabian StyleMilewski, Adam, Wondwosen M. Seyoum, Racha Elkadiri, and Michael Durham. 2020. "Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco" Geosciences 10, no. 1: 13. https://doi.org/10.3390/geosciences10010013
APA StyleMilewski, A., Seyoum, W. M., Elkadiri, R., & Durham, M. (2020). Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco. Geosciences, 10(1), 13. https://doi.org/10.3390/geosciences10010013