Permafrost and Gas Hydrate Stability Zone of the Glacial Part of the East-Siberian Shelf
Abstract
:1. Introduction
- (1)
- To create a scenario of geological development of the area of study.
- (2)
- To test the created scenario.
- (3)
- Mathematical modeling of evolution and modern distribution of permafrost and GHSZ, their upper and bottom boundaries within the glacial area and under nonglacial conditions.
- (4)
- Analysis and verification of the results obtained.
2. Study Area
3. Methods
3.1. Description of the Numerical Model
3.2. Methods for Generating a Scenario of Geological Development for Research Area
3.3. Geological Model
4. Development Scenario for the Region
4.1. Sea Level Dynamics Scenario
4.2. Paleotemperature Scenario
5. Results of Modeling
5.1. Testing of Geological Development Scenario
5.2. Permafrost Distribution and Thickness
5.3. Evolution of Permafrost
5.4. Current State of Gas Hydrate Stability Zone
5.5. Evolution of Gas Hydrate Stability Zone
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Lithology | Lower Layer Boundary, m | Volumetric Heat Capacity, Thawed, MJ/°C·m3 | Volumetric Heat Capacity, Frozen, MJ/°C·m3 | Thermal Conductivity, W/°C·m | Thermal Conductivity, W/°C·m | Dry Soil Density, kg/m3 | Total Water Content, Unit Fractions | Soil Salinity Degree, % | Freezing Temperature, °C |
---|---|---|---|---|---|---|---|---|---|
Cth | Cf | λth | λf | ρD | WTot | DSal | TF | ||
Sand | 2 | 2.65 | 2.1 | 1.74 | 2.27 | 1190 | 0.312 | 0.103 | −0.27 |
Sandy silt | 5 | 3.12 | 2.3 | 1.1 | 1.3 | 1550 | 0.275 | 0.65 | −1.40 |
Clayey silt | 12 | 2.68 | 2.14 | 1.58 | 1.97 | 1370 | 0.42 | 0.34 | −0.58 |
Silt | 25 | 3.12 | 2.3 | 1.1 | 1.3 | 1500 | 0.214 | 0.4 | −1.14 |
Clayey silt | 59 | 3.06 | 2.91 | 1.15 | 1.15 | 1550 | 0.269 | 0.6 | −1.33 |
Clayey silt | 75 | 2.68 | 2.14 | 1.58 | 1.97 | 1370 | 0.269 | 0.34 | −0.87 |
Sand | 135 | 1.84 | 2.28 | 2.75 | 2.95 | 1650 | 0.245 | 0.10 | −0.15 |
Pebble, sand, brown coal | 160 | 2.72 | 1.95 | 1.82 | 1.95 | 1490 | 0.223 | 0 | 0 |
Sandy silt | 165 | 2.8 | 2.16 | 1.4 | 1.82 | 1830 | 0.217 | 0 | −0.10 |
Sand (tuffaceous) | 210 | 2.5 | 2.02 | 2 | 2.29 | 1610 | 0.213 | 0 | 0 |
Brown coal with clay interlayers (15–20 m) | 280 | 3.42 | 2.71 | 1.3 | 1.3 | 1550 | 0.216 | 0 | 0 |
Clay (85%), silt, and sand (15%) | 345 | 2.96 | 2.38 | 1.57 | 1.8 | 1800 | 0.229 | 0 | −0.2 |
Clay (>50%), mudstone, sand | 500 | 2.9 | 2.15 | 1.36 | 2.11 | 1820 | 0.18 | 0 | −0.2 |
Sandstone (>50%), mudstone, siltstone | 1500 | 2.15 | 2.1 | 2.33 | 2.76 | 2670 | 0.0151 | 0 | 0 |
References
- Fartyshev, A.I. Features of Offshore Permafrost on the Laptev Sea shelf; Nauka: Novosibirsk, Russia, 1993; p. 136. [Google Scholar]
- Yakovlev, D.V.; Yakovlev, A.G.; Valyasina, O.A. Permafrost study in the northern margin of the Siberian platform based on regional geoelectrical survey data. J. Earth’s Cryosph. 2018, 12, 67–84. [Google Scholar] [CrossRef]
- Molochushkin, E.N. Thermal regime of rocks in the southeastern part of the Laptev Sea. Ph.D. Thesis, Moscow State University, Moscow, Russia, 1970. [Google Scholar]
- Gavrilov, A.V.; Romanovskii, N.N.; Romanovsky, V.E.; Hubberten, H.-W. Offshore Permafrost Distribution and Thickness in the Eastern Region of Russian Arctic. In Changes in the Atmosphere-Land-Sea System in the Amerasian Arctic. Proc. of the Arctic Regional Center; Dalnauka Publisher: Vladivostok, Russia, 2001; Volume 3, pp. 209–218. [Google Scholar]
- Romanovskii, N.N.; Gavrilov, A.V.; Kholodov, A.L.; Pustovoit, G.P.; Hubberten, H.-W.; Kassens, H.; Niesen, F. The Forecasting Map of Laptev Sea Shelf Off-shore Permafrost. Permafrost. In Proceedings of the Seventh International Conference, Yellowknife, NT, Canada, 23–27 June 1998; pp. 967–972. [Google Scholar]
- Romanovskii, N.N.; Kholodov, A.L.; Gavrilov, A.V.; Tumskoy, V.E.; Hubberten, H.-W.; Kassens, H. Ice-Bonded Permafrost Thickness in the Eastern Part of the Laptev Sea Shelf (Results of Computer Modeling). J. Earth’s Cryosph. 1999, 3, 22–32. [Google Scholar]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Tumskoy, V.E.; Kholodov, A.L. Permafrost of the East Siberian shelf and coastal lowlands. Quat. Sci. Rev. 2004, 23, 1359–1369. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar. Lett. 2005, 25, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Delisle, G. Temporal variability of subsea permafrost and gas hydrate occurrences as function of climate change in the Laptrv Sea, Siberia. Polarforschung 2000, 68, 221–225. [Google Scholar]
- Gavrilov, A.V.; Tumskoy, V.E. Model of mean annual temperature history for the Yakutian coastal lowlands and Arctic shelf during the last 400 thousand years. Permafrost. In Proceedings of the Eighth International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; Volume 1, pp. 287–290. [Google Scholar]
- Gavrilov, A.V. Cryolithozone of the East Siberian Arctic shelf (Current State and History of Development in the Middle Pleistocene—Holocene). Available online: https://istina.msu.ru/dissertations/2826455/ (accessed on 27 October 2020).
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Tumskoy, V.E.; Tipenko, G.S.; Grigoriev, M.N.; Siegert, C. Thermokarst and Land-Ocean Interactions, Laptev Sea region, Russia. Permafr. Periglac. Process 2000, 11, 137–152. [Google Scholar] [CrossRef]
- Tumskoy, V.E. Thermokarst and Its Role in the Development of the Laptev Sea Region During the Late Pleistocene and Holocene. Ph.D. Thesis, Moscow State University, Moscow, Russia, 2002; p. 26. [Google Scholar]
- Gavrilov, A.V.; Romanovskii, N.N.; Hubberten, H.-W. Paleogeographic scenario of the postglacial transgression on the Laptev Sea shelf. J. Earth’s Cryosph. 2006, 10, 39–50. [Google Scholar]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S.; Kholodov, A.L.; Romanovsky, V.E. Permafrost and Gas Hydrate Stability Zone evolution on the Eastern Part of the Eurasia Arctic Sea Shelf in the Middle Pleistocene-Holocene. J. Earth’s Cryosph. 2003, 7, 51–64. [Google Scholar]
- Romanovskii, N.N.; Eliseeva, A.A.; Gavrilov, A.V.; Tipenko, G.S.; Hubberten, H.-W. Evolution and Current State of Frozen Strata and Zones of Stability of Gas Hydrates in the Rifts of the East Arctic Shelf. System of the Laptev Sea and Adjacent Arctic Seas. In Current State and History of Development; MSU: Moscow, Russia, 2009; pp. 292–319. [Google Scholar]
- Malakhova, V.V.; Golubeva, E.N. Modeling of the dynamics subsea permafrost in the East Siberian Arctic Shelf under past and future climate change. In Proceedings of the 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 23–27 June 2014; p. 92924D. [Google Scholar] [CrossRef]
- Malakhova, V.V. Estimation of the subsea permafrost thickness in the Arctic Shelf. In Proceedings of the 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russia, 2–5 July 2018; p. 108337T. [Google Scholar] [CrossRef]
- Malakhova, V.V.; Eliseev, A.V. Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments. Glob. Planet. Chang. 2020, 192, 103249. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Salyuk, A.; Rekant, P.; Kosmach, D. Geochemical and geophysical evidence of methane release over the East Siberian Shelf. J. Geophys. Res. 2010, 115, C08007. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Romanovsky, V.; Pipko, I. Methan Climate Forcing and Methane Observation in the Siberian Arctic Land-Shelf System. World Resour. Rev. 2004, 16, 503–541. [Google Scholar]
- Shakhova, N.; Semiletov, I. Methane release and coastal environment in the East Siberian Arctic shelf. J. Mar. Syst. 2007, 66, 227–243. [Google Scholar] [CrossRef]
- Dmitrenko, I.; Kirillov, S.; Tremblay, L.; Kassens, H.; Anisimov, O.; Lavrov, S.; Razumov, S.; Grigoriev, M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. J. Geophys. Res. Oceans 2011, 116, C10027. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernikh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Nicolsky, D.; Shakhova, N. Modeling subsea permafrost in the East Siberian Arctic Shelf: The Dmitry Laptev Strait. Environ. Res. Lett. 2010, 5, 015006. [Google Scholar] [CrossRef]
- Nicolsky, D.J.; Romanovsky, V.E.; Romanovskii, N.N.; Kholodov, A.L.; Shakhova, N.T.; Semiletov, I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. J. Geophys. Res. Earth Surface 2012, 117. [Google Scholar] [CrossRef]
- Malakhova, V.V.; Eliseev, A.V. Influence of rift zones and thermokarst lakes on the formation of subaqueous permafrost and the stability zone of methane hydrates of the Laptev sea shelf in the Pleistocene. Ice Snow 2018, 58, 231–242. [Google Scholar] [CrossRef]
- Anisimov, O.A.; Borzenkova, I.I.; Lavrov, S.A.; Strel’chenko, Y.G. The current dynamics of the submarine permafrost and methane emissions on the shelf of the Eastern Arctic seas. Ice Snow 2012, 52, 97–105. [Google Scholar] [CrossRef]
- Kuzin, V.I.; Platov, G.A.; Golubeva, E.N.; Malakhova, V.V. Certain Results of Numerical Simulation of Processes in the Arctic Ocean. Izv. Atmos. Ocean. Phys. 2012, 48, 102–119. [Google Scholar] [CrossRef]
- Afanasenko, V.E.; Buldovich, S.N.; Romanovskii, N.N. On the manifestation of mineral waters in the northern part of the Kular ridge. Bull. Mos. Society Nat. Inv. 1973, 48, 91–102. [Google Scholar]
- GRID-Arendal. Available online: https://www.grida.no/resources/13519 (accessed on 27 October 2020).
- Overduin, P.P.; Schneider von Deimling, T.; Miesner, F.; Grigoriev, M.N.; Ruppel, C.; Vasiliev, A.A.; Lantuit, A.H.; Juhls, B.; Westermann, S. Submarine Permafrost Map in the Arctic Modeled Using 1-D Transient Heat Flux (SuPerMAP). J. Geophys. Res. Oceans 2019, 124, 3490–3507. [Google Scholar] [CrossRef] [Green Version]
- Razumov, S.O.; Spektor, V.B.; Grigoriev, M.N. A Model of the Late-Cenozoic Cryolithozone Evolution for the Western Laptev Sea Shelf. Okeanologiya 2014, 54, 679–693. [Google Scholar] [CrossRef]
- Arzhanov, M.M.; Malakhova, V.V.; Mokhov, I.I. Modeling thermal regime and evolution of the methane hydrate stability zone of the Yamal peninsula permafrost. Permafr. Periglac Process 2020, 31, 487–496. [Google Scholar] [CrossRef]
- Anisimov, M.A.; Tumskoy, V.E. The subsurface sheet ice of the New Siberia Island (Novosibirskie Islands, Russia). In Earth Cryosphere as a Life Support Environment; Pushchino, Russia, 2003; pp. 232–233. [Google Scholar]
- Anisimov, M.A.; Tumskoy, V.E.; Ivanova, V.V. The subsurface ice at Novosibirskie Islands as a relic of ancient glaciation. Mater. Glaciol. Res. 2006, 101, 143–145. [Google Scholar]
- Basilyan, A.E.; Nikolsky, P.A.; Anisimov, M.A. Pleistocene glaciation of the New Siberian Islands—No more doubts. IPY News 2007/08 2008, 12, 7–9. [Google Scholar]
- Golionko, B.G.; Basilyan, A.E.; Nikolsky, P.A.; Kostyleva, V.V.; Malyshev, N.A.; Verzhbitsky, V.E.; Obmetko, V.V.; Borodulin, A.A. Fold-thrust deformations of the isl. New Siberia (Novosibirsky islands, Russia): Age, morphology and genesis of structures. Geotektonika 2019, 6, 46–64. [Google Scholar] [CrossRef]
- Tumskoy, V.E. Peculiarities of cryolithogenesis in Northern Yakutia (Middle Neopleistocene to Holocene). J. Earth’s Cryosph. 2012, 16, 12–21. [Google Scholar]
- Basilyan, A.E.; Nikolsky, P.A. Reference section of Quaternary deposits of Cape Kamenny (New Siberia). Bull. Commiss. Study Quat. 2007, 67, 76–84. [Google Scholar]
- Basilyan, A.E.; Nikolskiy, P.A.; Maksimov, F.E.; Kuznetsov, V.Y. Age of cover glaciation of the New Siberian Islands based on 230Th/U-dating of mollusk shells. In The Structure and History of the Development of the Lithosphere; Paulsen: Moscow, Russia, 2010; pp. 506–514. [Google Scholar]
- Moridis, G.J. Numerical Studies of Gas Production from Methane Hydrates. SPE J. 2003, 32, 359–370. [Google Scholar] [CrossRef]
- Tinivella, U.; Giustiniani, M.; Marin-Moreno, H. A Quick-Look Method for Initial Evaluation of Gas Hydrate Stability below Subaqueous Permafrost. Geosciences 2019, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.H. Global map of Solid Earth surface heat flow. Geochem. Geophys. Geosyst. 2013, 14, 4608–4622. [Google Scholar] [CrossRef]
- Pollack, H.N.; Hurter, S.J.; Johnson, J.R. Heat flow from the Earth’s interior: Analysis of the global data set. Rev. Geophys. 1993, 31, 267–280. [Google Scholar] [CrossRef]
- Kaplina, T.N.; Kuznetsova, I.L. Geotemperature and climatic model of the sediment accumulation epoch of the Yedomnaya Suite of the Primorskaya Lowland of Yakutia. In Problems of Paleogeography of Loess and Periglacial Regions; Institute of Geography, USSR Academy of Sciences: Moscow, Russia, 1975; pp. 170–174. [Google Scholar]
- Konishchev, V.N. The cryolithogenic method for estimating paleotemperature conditions during formation of Ice Complex and subaerial periglacial sediments. J. Earth’s Cryosph. 1997, 1, 23–28. [Google Scholar]
- Vasilchuk, Y.K.; Kotlyakov, V.M. Principles of Isotope Geocryology and Glaciology; Moscow State University: Moscow, Russia, 2000; p. 616. ISBN 5-211-02557-1. [Google Scholar]
- Opel, T.; Wetterich, S.; Meyer, H.; Dereviagin, A.Y.; Fuchs, M.C.; Schirrmeister, L. Ground-ice stable isotopes at the Oyogos Yar Coast (Dmitry Laptev Strait)—Indications for Late. Clim. Past 2017, 13, 587–611. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.; Opel, T.; Laepple, T.; Dereviagin, A.Y.; Werner, M.; Hoffmann, K. Long-term winter warming trend in the Siberian Arctic during the mid to late Holocene. J. Nat. Geosci. 2015, 8, 122–125. [Google Scholar] [CrossRef] [Green Version]
- Balobayev, V.T. On the Reconstruction of Paleotemperatures of Frozen Rocks. In Development of the Cryolithozone in the Upper Cenozoic; Nauka: Moscow, Russia, 1985; pp. 129–136. [Google Scholar]
- Sher, A.V.; Kuzmina, S.A.; Kuznetsova, T.V.; Sulerzhitsky, L.D. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plaints, and mammals. J. Quat. Sci. Rev. 2005, 24, 533–569. [Google Scholar] [CrossRef] [Green Version]
- Andreev, A.; Schirrmeister, L.; Tarasov, P.E.; Ganopolski, A.; Brovkin, V.; Siegert, C.; Hubberten, H.-W. Vegetation and climate history in the Laptev Sea region (arctic Siberia) during Late Quaternary inferred from pollen records. J. Quat. Sci. Rev. 2011, 30, 2182–2199. [Google Scholar] [CrossRef] [Green Version]
- Gavrilov, A.; Pavlov, V.; Fridenberg, A.; Boldyrev, M.; Khilimonyuk, V.; Pizhankova, E.; Buldovich, S.; Kosevich, N.; Alyautdinov, A.; Ogienko, M.; et al. The current state and 125 kyr history of permafrost in the Kara Sea shelf: Modeling constraints. Cryosphere 2020, 14, 1857–1873. [Google Scholar] [CrossRef]
- State geological map of the Russian Federation. Scale 1: 1,000,000 (new series). In S-53-55—New Siberian Islands. Explanatory Note; VSEGEI: St. Petersburg, Russia, 1999; p. 208. [Google Scholar]
- Dorofeev, V.K.; Blagoveshchensky, M.G.; Smirnov, A.N.; Ushakov, V.I. New Siberian Islands. In Geological Structure and Minerageny; Ushakov, V.I., Ed.; SPb., VNIIOkeanologiya: St. Petersburg, Russia, 1999; p. 130. [Google Scholar]
- Chuvilin, E.M.; Bukhanov, B.A.; Tumskoy, V.E.; Shakhova, N.E.; Dudarev, O.V.; Semiletov, I.P. Thermal conductivity of bottom sediments in the region of Buor-Khaya Bay (shelf of the Laptev Sea). Earth’s Cryosph. 2013, 17, 32–40. [Google Scholar]
- Samoilik, V.G. Physicochemical Properties of Fossil Fuels and Methods of Their Study: Textbook for Universities; Donetsk National Technical University: Donetsk, Germany, 2017; p. 193. [Google Scholar]
- Gavril’ev, R.G. Catalog of Thermophysical Properties of Rocks in the North-East of Russia; Melnikov Institute of Permafrost SB RAS: Yakutsk, Russia, 2013; p. 172. ISBN 978-5-93254-124-1 300. (In Russian) [Google Scholar]
- Thermophysical Properties of Rocks; Ershov, E.D. (Ed.) Moscow State University: Moscow, Russia, 1984; p. 203. [Google Scholar]
- Rohling, E.J.; Grant, K.; Bolshaw, M.; Roberts, A.P.; Siddall, M.; Hemleben, C. and Kucera, M. Antarctic temperature and global sea-level closely coupled over the past five glacial cycles. Nat. Geosci. 2009, 2, 500–504. [Google Scholar] [CrossRef]
- Bauchab, H.A.; Mueller-Lupp, T.; Taldenkovac, E.; Spielhagena, R.F.; Kassensa, H.; Grootesd, P.M.; Thiedeb, J.; Heinemeiere, J.; Petryashovf, V.V. Chronology of the Holocene Transgression at the Northern Siberia margin. Glob. Planet. Chang. 2001, 31, 125–139. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Gavrilov, A.V.; Pustovoit, G.P.; Kholodov, A.L.; Kassens, H.; Hubberten, H.-W.; Nissen, F. Off-shore permafrost distribution on the Laptev Sea shelf. Earth’s Cryosph. 1997, 1, 9–18. [Google Scholar]
- Kovalenko, F.Y.; Kuptsova, I.A. Cenozoic marine sediments of the East Siberian Sea. In Proceedings of the XIV Pacific Scientific Congress, Khabarovsk, Russia, 20 August–1 September 1979; pp. 64–66. [Google Scholar]
- Winterfeld, M.; Schirrmeister, L.; Grigoriev, M.N.; Kunitsky, V.V.; Andreev, A.; Murray, A.; Overduin, P.P. Coastal permafrost landscape development since the Late Pleistocene in the Western Laptev Sea. Sib. Boreas 2011, 40, 697–713. [Google Scholar] [CrossRef] [Green Version]
- State Geological Map of the Russian Federation. Scale 1:1,000,000 (New Series). R(55)-57—Nizhnekolymsk, Explanatory Note; VSEGEI: St. Petersburg, Russia, 2000; p. 16. [Google Scholar]
- Ushakov, S.A.; Krass, M.S. Gravity and Questions of the Mechanics of the Earth’s Interior; Nedra: Moscow, Russia, 1972; p. 157. [Google Scholar]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Gutenberg, B. Changes in sea level, postglacial uplift, and mobility of the Earth’s interior. Geol. Soc. Amer. Bull. 1941, 52, 721–772. [Google Scholar] [CrossRef]
- Bylinsky, E.N. Causes of Pleistocene marine transgressions in the north of Eurasia. Bul. Com. Study Quat. 1980, 50, 35–57. [Google Scholar]
- Zaitsev, V.A. Yano-Kolyma Region. Geocryology of the USSR. Eastern Siberia and the Far East; Nedra: Moscow, Russia, 1989; pp. 240–279. [Google Scholar]
- Kos’ko, M.K.; Sobolev, N.N.; Korago, E.A.; Proskurnin, V.F.; Stolbov, N.M. Geology of Novosibirskian islands—A basis for interpretation of geophysical data on the eastern Arctic shelf of Russia. Neftegasovaà Geol. Teor. Pract. 2013, 8. [Google Scholar] [CrossRef]
- Solov’ev, V.A.; Ginsburg, G.D.; Telepnev, E.V.; Mikhalyuk, Y.N. Cryogeothermy and Natural Gas Hydrates in the Bowels of the Arctic Ocean; Sevmorgeologiya: Leningrad, Russia, 1987; p. 151. [Google Scholar]
- Malakhova, V.V.; Eliseev, A.V. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles. Glob. Planet. Chang. 2017, 157, 18–25. [Google Scholar] [CrossRef]
Isobath | Conditions | 0 ka | Extremum of Time Intervals | ||||
---|---|---|---|---|---|---|---|
MIS-2 | MIS-3 | MIS-4 | MIS-5е | MIS-6 | |||
5 m | Extraglacial area | 780/600 | 770/730 | 750/600 | 770/580 | 800/740 | |
Glaciation area | 530/330 | 590/500 | 400–600/400 | 230/110 | 0 | 390–400/390–400 | |
40 m | Extraglacial area | 780/600 | 770/730 | 750/600 | 800/580 | 800/740 | |
Glaciation area | 530/330 | 590/500 | 230/100 | 370/300 | 0 | 390–400 /390–400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilov, A.; Malakhova, V.; Pizhankova, E.; Popova, A. Permafrost and Gas Hydrate Stability Zone of the Glacial Part of the East-Siberian Shelf. Geosciences 2020, 10, 484. https://doi.org/10.3390/geosciences10120484
Gavrilov A, Malakhova V, Pizhankova E, Popova A. Permafrost and Gas Hydrate Stability Zone of the Glacial Part of the East-Siberian Shelf. Geosciences. 2020; 10(12):484. https://doi.org/10.3390/geosciences10120484
Chicago/Turabian StyleGavrilov, Anatoly, Valentina Malakhova, Elena Pizhankova, and Alexandra Popova. 2020. "Permafrost and Gas Hydrate Stability Zone of the Glacial Part of the East-Siberian Shelf" Geosciences 10, no. 12: 484. https://doi.org/10.3390/geosciences10120484
APA StyleGavrilov, A., Malakhova, V., Pizhankova, E., & Popova, A. (2020). Permafrost and Gas Hydrate Stability Zone of the Glacial Part of the East-Siberian Shelf. Geosciences, 10(12), 484. https://doi.org/10.3390/geosciences10120484