Use of Aerial Laser Scanning to Assess the Effect on C Sequestration of Oak (Quercus ilex L. subsp. ballota [Desf.]Samp-Q. suber L.) Afforestation on Agricultural Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Biomass Samples and Calculation
2.3. Soil Carbon Stock Samples and Calculation
2.4. Tree Biomass and Soil Organic Carbon (SOC) Equations
2.5. Aerial Laser Scanning (ALS) Data and Processing
2.6. Laser Imaging Detection and Ranging (LiDAR) Analysis and Height Models
2.7. Cartography of C Stocks
3. Results
3.1. C Stock in Biomass after Afforestation
3.2. SOC Stock after Afforestation
3.3. Individual Biomass and SOC Equations
3.4. Prediction of Height from LiDAR Data
3.5. Total On-Site C Stock in the Plantation
4. Discussion
4.1. Effects of Afforestation on Biomass Carbon and Soil Organic Carbon Stocks
4.2. Individual Biomass Equations
4.3. SOC Equations
4.4. Prediction of Height from ALS Data
4.5. Total On-Site C Stock and Cartography
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lawson, G.J.; Dupraz, C.; Herzog, F.; Moreno, G.; Pisanelli, A.; Thomas, T.H. Incentives for Tree Planting on Farms in the European Union: Is Agroforestry Supported? SAFE Project (Silvoarable Agroforestry for Europe) First Year Report WP9 Annex. 2002. Available online: https://www1.montpellier.inra.fr/safe/english/results/annual_report/SAFE-first-year-report-WP9-annex1.pdf (accessed on 22 January 2020).
- Navarro-Cerrillo, R.M.; Pemán-García, J.; del Campo-García, A.; Moreno-Sánchez, J.; Lara-Gómez, M.A.; Díaz-Hernández, J.L.; Pousa-Salvador, F.; Piñón-Castillo, F. Manual de Especies Para la Forestación de Tierras Agrarias en Andalucía. Junta de Andalucía; Consejería de Agricultura y Pesca: Sevilla, Spain, 2009. [Google Scholar]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T. How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas? Sci. Total Environ. 2016, 566–567, 741–752. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Ye, X.; Chu, Y.; Wang, X. Profile storage of organic/inorganic carbon in soil: From forest to desert. Sci. Total Environ. 2010, 408, 1925–1931. [Google Scholar] [CrossRef]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Waring, R.H.; Running, S.W. Carbon Cycle. In Forest Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2007; Volume Chapter 3. [Google Scholar]
- Wäldchen, J.; Schulze, E.-D.; Schöning, I.; Schrumpf, M.; Sierra, C. The influence of changes in forest management over the past 200 years on present soil organic carbon stocks. For. Ecol. Manag. 2013, 289, 243–254. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Piñeiro, G.; Jobbágy, E.G.; Jackson, R.B. Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol. Appl. 2012, 22, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Lal, R.; Wielopolski, L.; Martin, M.Z.; Ebinger, M.H. Evaluation of Different Soil Carbon Determination Methods. Crit. Rev. Plant Sci. 2009, 28, 164–178. [Google Scholar] [CrossRef]
- Díaz-Pinés, E.; Rubio, A.; Van Miegroet, H.; Montes, F.; Benito, M. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For. Ecol. Manag. 2011, 262, 1895–1904. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Getino, A.P.F.; Ruiz-Peinado, R.; González, G.M.; Palomares, O.S. Estimación del CO2 fijado en suelos y árboles de los rebollares de Quercus pyrenaica en la provincia de Ourense. Cuadernos de la Sociedad Española de Ciencias Forestales 2008, 25, 179–184. [Google Scholar]
- Næsset, E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J. For. Res. 2004, 19, 164–179. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Duque-Lazo, J.; Rodríguez-Vallejo, C.; Varo-Martínez, M.Á.; Palacios-Rodríguez, G. Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus halepensis Plantations. Remote Sens. 2018, 10, 1660. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.; Lundblad, M.; Petersson, H. Reforming the EU approach to LULUCF and the climate policy framework. Environ. Sci. Policy 2014, 40, 1–15. [Google Scholar] [CrossRef] [Green Version]
- C.S.I.C-I.A.R.A. Mapa de suelos de Andalucía (E. 1:400000); C.S.I.C-I.A.R.A: Sevilla, Spain, 1989. [Google Scholar]
- Montero, G.; Ruiz-Peinado, R.; Muñoz, M. Producción de Biomasa y Fijación de CO2Por Los Bosques Españoles; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria: Madrid, Spain, 2005; ISBN 978-84-7498-512-2. [Google Scholar]
- USDA-NRCS. Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report No. 42, Version 4.0; United States Department of Agriculture: Washington, DC, USA, 2004.
- Nelson, D.W.; Sommers, L.E. Methods of Soil Analysis. Part 3. Chemical Methods; Soil Science Society of America: Madison, WI, USA; Series 5; 1996. [Google Scholar]
- Buell, G.R.; Markewich, H.W. Data Compilation, Synthesis, and Calculations Used for Organic-Carbon Storage and Inventory Estimates for Mineral Soils of the Mississippi River Basin; US Geological Survey: Reston, VA, USA, 2004.
- Soil Survey Staff. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45, Version 2.0.; Burt, R., Ed.; United States Department of Agriculture: Washington, DC, USA, 2011.
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Peña, E.A.; Slate, E.H. Global Validation of Linear Model Assumptions. J. Am. Stat. Assoc. 2006, 101, 341. [Google Scholar] [CrossRef]
- Martin, D.; Vázquez-Piqué, J.; Alejano, R. Efectos del clima sobre las variaciones diarias del radio del tronco y el crecimiento diametral de la encina durante siete años en una dehesa del suroeste de España (Huelva). In Proceedings of the Congreso Forestal Español, Plasencia, Cáceres, 26–30 June 2017. [Google Scholar]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M.; Wang, T.; Hussin, Y.A. Generating pit—Free canopy height models from airborne lidar. Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [Google Scholar] [CrossRef]
- Isenburg, M. LAStools: Software for rapid converting, filtering, viewing, gridding, and compressing of LIDAR. 2016. Available online: http://www.cs.unc.edu/~isenburg/lastools/ (accessed on 29 November 2016).
- Varo-Martínez, M.Á.; Navarro-Cerrillo, R.M.; Hernández-Clemente, R.; Duque-Lazo, J. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. Discuss. 2015, 8, 2271–2312. [Google Scholar] [CrossRef] [Green Version]
- Næsset, E.; Gobakken, T. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 2008, 112, 3079–3090. [Google Scholar] [CrossRef]
- González-Ferreiro, E.; Diéguez-Aranda, U.; Miranda, D. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry (Lond.) 2012, 85, 281–292. [Google Scholar] [CrossRef]
- Mcgaughey, R. FUSION/LDV: Software for LiDAR Data Analysis and Visualization—V3.10; USDA Forest Service: Washington, DC, USA, 2009.
- Roussel, J.-R.; Auty, D. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. 2018. Available online: https://CRAN.R-project.org/package=lidR (accessed on 18 May 2018).
- Crookston, N.L.; Finley, A.O. yaImpute: An R Package for kNN Imputation. J. Stat. Softw. 2008, 23, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Naimi, B. usdm: Uncertainty analysis for species distribution models, R package version 1.1-15; 2013. Available online: https://CRAN.R-project.org/package=usdm (accessed on 22 January 2020).
- Trujillo-García, G. Biomasa de las Especies Forestales Pinus halepensis Mill., Ceratonia siliqua L., Quercus ilex L. y Quercus suber L. en Forestación de Tierras Agrarias. Aplicación al Secuestro de Carbono. Bachelor’s Thesis, University of Córdoba, Andalusia, Spain, 2008. [Google Scholar]
- Lambert, M.-C.; Ung, C.; Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; del Rio, M.; Montero, G. New models for estimating the carbon sink capacity of Spanish softwood species. For. Syst. 2011, 20, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Pemán, J.; Voltas, J.; Gil-Pelegrin, E. Morphological and functional variability in the root system of Quercus ilex L. subject to confinement: Consequences for afforestation. Ann. For. Sci. 2006, 63, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Howlett, D.; Moreno, G.; Mosquera-Losada, M.R.; Nair, P.; Nair, V. Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. J. Environ. Monit. 2011, 13, 1897–1904. [Google Scholar] [CrossRef] [Green Version]
- Turrión, M.-B.; Schneider, K.; Gallardo, J.F. Carbon accumulation in Umbrisols under Quercus pyrenaica forests: Effects of bedrock and annual precipitation. Catena 2009, 79, 1–8. [Google Scholar] [CrossRef]
- Fioretto, A.; Di Nardo, C.; Papa, S.; Fuggi, A. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol. Biochem. 2005, 37, 1083–1091. [Google Scholar] [CrossRef]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J. Plant Nutr. Soil Sci. 2014, 177, 651–670. [Google Scholar] [CrossRef] [Green Version]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Galdo, I.D.; Six, J.; Peressotti, A.; Cotrufo, M.F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob. Chang. Biol. 2003, 9, 1204–1213. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Lal, R. Mechanisms of C Sequestration in Soils of Latin America. Crit. Rev. Plant Sci. 2006, 25, 337–365. [Google Scholar] [CrossRef] [Green Version]
- Page-Dumroese, D.S.; Jurgensen, M.; Terry, T. Maintaining soil productivity during forest or biomass-to-energy thinning harvests in the western United States. West. J. Appl. For. 2010, 25, 5–11. [Google Scholar] [CrossRef] [Green Version]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.-S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef]
- Navarro Cerrillo, R.M.; Fragueiro, B.; Ceaceros, C.; del Campo, A.; de Prado, R. Establishment of Quercus ilex L. subsp. ballota [Desf.] Samp. using different weed control strategies in southern Spain. Ecol. Eng. 2005, 25, 332–342. [Google Scholar] [CrossRef]
- Kuyah, S.; Dietz, J.; Muthuri, C.; Van Noordwijk, M.; Neufeldt, H. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes. Biomass Bioenergy 2013, 55, 276–281. [Google Scholar] [CrossRef]
- Pereira, H.; Tomé, M. Cork oak. Encyclopedia of Forest Sciences; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Lefsky, M. Regional applicability of forest height and aboveground biomass models for the Geoscience Laser Altimeter System. For. Sci. 2008, 54, 647–657. [Google Scholar]
- Charro, E.; Gallardo, J.F.; Moyano, A. Degradability of soils under oak and pine in Central Spain. Eur. J. For. Res. 2010, 129, 83–91. [Google Scholar] [CrossRef]
- Mueller, K.E.; Hobbie, S.E.; Chorover, J.; Reich, P.B.; Eisenhauer, N.; Castellano, M.J.; Chadwick, O.A.; Dobies, T.; Hale, C.M.; Jagodziński, A.M.; et al. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 2015, 123, 313–327. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Nabuurs, G.-J.; Verburg, P.H.; de Waal, R.W. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For. Ecol. Manag. 2008, 256, 482–490. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Montealegre, A.; Lamelas, M.; Riva, J.; García-Martín, A.; Escribano, F. Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest. Forestry 2016, 89, cpw008. [Google Scholar] [CrossRef] [Green Version]
- Surový, P.; Ribeiro, N.A.; Panagiotidis, D. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [Google Scholar] [CrossRef]
- Watt, M.S.; Meredith, A.; Watt, P.; Gunn, A. Use of LiDAR to estimate stand characteristics for thinning operations in young Douglas-fir plantations. N. Z. J. For. Sci. 2013, 43, 18. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.G.; Ferreiro, E.G.; Sarmento, A.; Silva, J.; Nunes, A.; Correia, A.C.; Fontes, L.; Tomé, M.; Díaz-Varela, R. Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal: Short Communication. For. Syst. 2016, 25, 16. [Google Scholar]
- Montealegre, A.; Lamelas, M.; Riva, J.; García-Martín, A.; Escribano, F. Assessment of Biomass and Carbon Content in a Mediterranean Aleppo Pine Forest Using ALS Data. In Proceedings of the 1st International Electronic Conference on Remote Sensing, Basel, Switzerland, 22 June–5 July 2015; MDPI: Basel, Switzerland, 2015; Volume 1, p. d004. [Google Scholar]
- Gaveau, D.L.A.; Hill, R.A. Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can. J. Remote Sens. 2003, 29, 650–657. [Google Scholar] [CrossRef]
- Segura, C.; Jiménez, M.N.; Nieto, O.; Navarro, F.B.; Fernández-Ondoño, E. Changes in soil organic carbon over 20years after afforestation in semiarid SE Spain. For. Ecol. Manag. 2016, 381, 268–278. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M.D. Forest management and carbon sequestration in the Mediterranean region: A review. For. Syst. 2017, 26, 04. [Google Scholar] [CrossRef]
- Coelho, M.B.; Paulo, J.A.; Palma, J.H.N.; Tomé, M. Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. For. Policy Econ. 2012, 17, 59–68. [Google Scholar] [CrossRef]
- Robertson, K.; Loza-Balbuena, I.; Ford-Robertson, J. Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects. Environ. Sci. Policy 2004, 7, 465–475. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T.; Bollandsås, O.M. Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data. Remote Sens. Environ. 2015, 164, 36–42. [Google Scholar] [CrossRef]
Silvicultural Characteristics | |||
Trees Sampled | 199 | 109 | |
D (trees ha−1) | 169 | 39 | |
H (m) | 2.93 (0.07) | 4.11 (0.05) | - |
dm (cm) | 9.71 (0.23) | 13.80 (0.31) | - |
G (m2 ha−1) | 5.83 | 10.24 | - |
Biomass Stock (kg C tree−1) | |||
N | 14 | 14 | |
Aboveground (Wa-S) | 15.15 (1.44) | 31.07 (3.28) *** | - |
Belowground (Wb-S) | 12.38 (1.88) | 10.39 (1.37) * | - |
Total (Wt-S) | 27.98 (3.28) | 41.16 (4.62) *** | - |
SOC-S (Mg ha−1) | |||
N | 14 | 28 | 3 |
Layer | Under crown | Inter-plantation | Agricultural land |
10 | 15.78 (1.12)a | 14.53(1.17)b | 12.21 (0.97)b |
20 | 11.84 (1.31)a | 7.85 (1.35)b | 10.53 (0.63)a |
30 | 6.58 (0.94)a | 4.41 (1.23)ab | 5.37 (0.70)a |
40 | 2.76 (1.07)b | 2.45 (0.54)b | 5.24 (0.62)a |
Total | 36.98 (2.91)a | 29.26 (1.44)b | 33.35 (1.21)a |
Species | Biomass Fraction | Regression Type | Adjusted R2 | F | P-Value | ΔAIC | Equation | P-DW | P-WT |
---|---|---|---|---|---|---|---|---|---|
Quercus ilex-Q. suber | Linear | 0.75 | 198.7 | <0.001 | 371.5 | Wa = −10.844 + 10.466 h | 0.10 | <0.05 | |
Aboveground dry weight biomass | Exponential | 0.79 | 247.4 | <0.001 | 10.9 | Wa = 1.873 e 0.728h | <0.05 | <0.05 | |
Potential | 0.82 | 303.7 | <0.001 | 0 | Wa = 2.729 h1.728 | <0.05 | 0.5 | ||
Logarithmic | 0.64 | 116.8 | <0.001 | 395.9 | Wa = 3.538 + 22.545 (ln h) | 0.02 | <0.05 | ||
Belowground dry weight biomass | Linear | 0.72 | 174 | <0.001 | 360.2 | Wb = −20.487 + 13.411 h | <0.05 | <0.05 | |
Exponential | 0.84 | 348.7 | <0.001 | 0 | Wb = 0.323 e 1.189h | 0.01 | 0.17 | ||
Potential | 0.81 | 279.8 | <0.001 | 11.9 | Wb = 0.651 h2.718 | <0.05 | <0.05 | ||
Logarithmic | 0.58 | 91.9 | <0.001 | 387.8 | Wb = −10.448 + 28.075 (ln h) | <0.05 | <0.05 | ||
Total dry weight biomass | Linear | 0.76 | 205.1 | <0.001 | 475.9 | Wt = −31.326 + 23.848 h | 0.054 | <0.05 | |
Exponential | 0.87 | 432.1 | <0.001 | 1.7 | Wt = 0.507 e 0.903h | 0.02 | 0.33 | ||
Potential | 0.87 | 444.5 | <0.001 | 0 | Wt = 3.234 h2.106 | 0.04 | 0.01 | ||
Logarithmic | 0.62 | 109.1 | <0.001 | 504.6 | Wt = −13.986 + 50.621 (ln h) | <0.05 | <0.05 |
Layers | Regression Type | Adjusted R² | F | P-Value | ΔAIC | Equation | P-DW | P-WT |
---|---|---|---|---|---|---|---|---|
Linear | 0.71 | 33.22 | <0.001 | 19.8 | SOC40 = −3.8128 + 2.1335 h | 0.07 | 0.68 | |
0–40 cm | Exponential | 0.69 | 27.53 | <0.001 | 0 | SOC40 = 0.3052 e 0.6705h | <0.05 | <0.05 |
Potential | 0.61 | 21.61 | <0.001 | 2.3 | SOC40 = 0.2715 h1.9699 | <0.05 | <0.05 | |
Logarithmic | 0.62 | 22.48 | <0.001 | 33.6 | SOC40 = −4.054 + 6.145 (ln h) | 0.62 | <0.05 | |
Linear | 0.38 | 8.99 | 0.011 | 4.9 | SOC10 = −0.020 + 0.414 h | <0.05 | 0.74 | |
Exponential | 0.35 | 8.28 | 0.013 | 0 | SOC10 = 0.4302 e 0.3329h | <0.05 | 0.51 | |
0–10 cm | Potential | 0.35 | 8.05 | 0.014 | 0.1 | SOC10 = 0.3925 h1.0093 | <0.05 | 0.59 |
Logarithmic | 0.36 | 8.59 | 0.012 | 5.2 | SOC10 = −0.054 + 1.249 (ln h) | 0.06 | 0.76 |
Species | Regression Type | Adjusted R² | F | P-Value | Equation | RMSE | MAPE | BIAS |
---|---|---|---|---|---|---|---|---|
Quercus ilex-Q. suber | Stepwise, forward-backward | 0.80 | 51.357 | <0.001 | H = −1.764−0.829(Elev.mean)−1.152(Elev.AAD) + 0.299(Elev.MAD) + 1.832(P90) + 2.382(bin70) | 3.98 | 0.14 | 0.01 |
Species | Height (m) | N (trees) | Biomass Stock in Forest Plantation (Mg ha−1) | SOC Stock under Tree Crown (Mg ha−1) (12.72%) | SOC Stock in Inter-Plantation (Mg ha−1) (87.27%) | On-Site C Stock in Forest Plantation (Mg ha−1) | Total C Stock in Forest Plantation (Mg) |
---|---|---|---|---|---|---|---|
Quercus ilex-Q. suber | 2.53 | 51,093 | 4.89 | 36.9 | 29.26 | 35.11 | 8779.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Gómez, M.A.; Navarro-Cerrillo, R.M.; Ceacero, C.J.; Ruiz-Goméz, F.J.; Díaz-Hernández, J.L.; Palacios Rodriguez, G. Use of Aerial Laser Scanning to Assess the Effect on C Sequestration of Oak (Quercus ilex L. subsp. ballota [Desf.]Samp-Q. suber L.) Afforestation on Agricultural Land. Geosciences 2020, 10, 41. https://doi.org/10.3390/geosciences10020041
Lara-Gómez MA, Navarro-Cerrillo RM, Ceacero CJ, Ruiz-Goméz FJ, Díaz-Hernández JL, Palacios Rodriguez G. Use of Aerial Laser Scanning to Assess the Effect on C Sequestration of Oak (Quercus ilex L. subsp. ballota [Desf.]Samp-Q. suber L.) Afforestation on Agricultural Land. Geosciences. 2020; 10(2):41. https://doi.org/10.3390/geosciences10020041
Chicago/Turabian StyleLara-Gómez, Miguel A., Rafael M. Navarro-Cerrillo, Carlos J. Ceacero, Francisco J. Ruiz-Goméz, José Luis Díaz-Hernández, and Guillermo Palacios Rodriguez. 2020. "Use of Aerial Laser Scanning to Assess the Effect on C Sequestration of Oak (Quercus ilex L. subsp. ballota [Desf.]Samp-Q. suber L.) Afforestation on Agricultural Land" Geosciences 10, no. 2: 41. https://doi.org/10.3390/geosciences10020041
APA StyleLara-Gómez, M. A., Navarro-Cerrillo, R. M., Ceacero, C. J., Ruiz-Goméz, F. J., Díaz-Hernández, J. L., & Palacios Rodriguez, G. (2020). Use of Aerial Laser Scanning to Assess the Effect on C Sequestration of Oak (Quercus ilex L. subsp. ballota [Desf.]Samp-Q. suber L.) Afforestation on Agricultural Land. Geosciences, 10(2), 41. https://doi.org/10.3390/geosciences10020041