A New Landslide Inventory for the Armenian Lesser Caucasus: Slope Failure Morphologies and Seismotectonic Influences on Large Landslides
Abstract
:1. Introduction
2. Geohazard Context of the Lesser Caucasus
2.1. Seismotectonic Context and Historical Earthquakes
2.2. Volcanic Activity in the Lesser Caucasus
2.3. Mass Movement Hazards
3. The Landslide Inventories
- Changes of curvature and landscape slope: convex, gently sloping parts generally represent the main body of a landslide and the concave, steeper part the scarp/source zone;
- In some cases, the presence of minor, internal scarps or cracks within the landslide body, or even beyond the scarp, correspond to crown cracks and small gravitational grabens;
- Vegetation changes: the absence of vegetation may indicate recent landslide activity, especially where forest cover is important (as in northern Armenia, near Dilijan);
- Hummocky landforms tend to mark the presence of a mass movement (see discussion in Section 5.1);
- Lakes in valleys behind landslide dams or within landslide deposits due to the existence of counter-slopes and hummocky landforms;
- The presence of destroyed houses could indicate recent landslide activity, as in the cases of the Noubarachen and Vokhjaberd landslides (Figure 5; some damaged houses are visible in GE satellite imagery).
4. Landslide Size-Frequency and First Spatial Distribution Analyses
4.1. Landslide Size-Frequency Analysis
4.2. The Influence of the Distance to Active Faults on Landslide Occurrence
4.3. The Influence of the Slope Orientation and Angle on Slope Stability
5. Discussion
5.1. Landslide Size-Frequency Analysis
5.2. Differences in Landslide Extents Recorded in the Matossian and Georisk Catalogues
5.3. Direct and Indirect Influence of the Distance to Active Faults on Landslide Occurrence
5.4. The Influence of Slope Orientation and Angle on Slope Stability, Considering Changed Morphologies
5.5. The Sizes, Morphologies, and Origins of the Largest Mass Movements: Seismotectonic Influence
6. Conclusions
- Although they both cover all of Armenia, the Georisk and Matossian catalogues include 2257 and 1036 landslides, respectively, likely due to the resolution of Google Earth® imagery and soil cover;
- The spatial distribution of landslides throughout Armenia is similar in both catalogues;
- Both catalogues were created with different objectives: the Georisk catalogue outlines landslide deposits but does not include source or main scarp areas in landslide extents, whereas the Matossian catalogue includes both. Landslides in the Matossian catalogue were mapped more carefully, as it is intended to be used for landslide morphological and susceptibility analyses;
- Moraine deposits were excluded from the Matossian catalogue at elevations >3000 m.
- The distance to active faults has direct and indirect influences on landslide density. The direct influence is related to the triggering of slope failures by earthquakes occurring along nearby faults (mostly vertical strike–slip faults; e.g., the Garni and Vokhjaberd landslides). We estimate that earthquakes in the Lesser Caucasus have a relatively wide effect on landslides, and can trigger them within 10–15 km of activated fault segments. Within 2–3 km of active faults, landslides are indirectly influenced by the presence of deep and steep along-fault valleys. These valleys are induced by fault activity and are prone to landslides due to their steep, deep morphology and the presence of locally weakened fault rocks (e.g., along the northern part of the Garni Fault);
- Climatic effects, such as increased average precipitation, may increase slope instabilities. For example, the relatively wet area around the city of Dilijan (northern Armenia) is characterized by softer soils, and a large proportion of landslides there occur far from known active faults. The high landslide density in this area, and the preferential occurrence of slope failures on wetter northwestern slopes, may be at least partially explained by climatic effects.
- Lithology, particularly weaker rocks in fault zones or soft volcanic deposits, could also explain the occurrence of landslides on gentler slopes (e.g., the Garni and Vokhjaberd landslides).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Boynagryan, V. Landslides in Armenia. Rom. J. Geogr. 2008, 53, 197–208. [Google Scholar]
- Grigoryan, M.A.; Aleksanyan, G.M.; Boyakhchyan, T.N.; Gevorgyan, L.A.; Lazarov, A.D.; Minchev, D.P. Digital Elevation Models of territories under risk in Caucasus Region-Armenia. In Proceedings of the International Research Conference on Interaction of Theory and Practice: Key Problems and Solutions, Burgas, Bulgaria, 24–25 June 2011. [Google Scholar]
- JICA; MoUD. Landslides in Armenia; Technical Bulletin of Landslides in Armenia: Yerevan, Armenia, 2005; p. 81.
- Karakhanian, A.S.; Baghdasaryan, H. Natural dams in Armenia: Landslide hazard and risk assessment. Ital. J. Eng. Geol. Environ. 2006, 1, 93–94. [Google Scholar]
- Strom, A.; Abdrakhmatov, K. Rockslides and Rock Avalanches of Central Asia: Distribution, Morphology and Internal Structure; Elsevier: New York, NY, USA, 2018; p. 458. [Google Scholar]
- Havenith, H.B.; Strom, A.; Torgoev, I.; Torgoev, A.; Lamair, L.; Ischuk, A.; Abdrakhmatov, K. Tien Shan geohazards database: Earthquakes and landslides. Geomorphology 2015, 249, 16–31. [Google Scholar] [CrossRef]
- Avagyan, A.; Sosson, M.; Philip, H.; Karakhanian, A.; Rolland, Y.; Melkonyan, R.; Rebai, S.; Davtyan, V. Neogene to Quaternary stress field evolution in Lesser Caucasus and adjacent regions using fault kinematics analysis and volcanic cluster data. Geodin. Acta 2005, 18, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Sosson, M.; Stephenson, R.; Sheremet, Y.; Rolland, Y.; Adamia, S.; Melkonian, R.; Kangarli, T.; Yegorova, T.; Avagyan, A.; Galoyan, G.; et al. The Eastern Black Sea-Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution. C. R. Geosci. 2016, 348, 23–32. [Google Scholar] [CrossRef]
- McKenzie, D.P. Active tectonics of the Mediterranean region. Geophys. J. R. Astron. Soc. 1972, 30, 109–185. [Google Scholar] [CrossRef] [Green Version]
- Philip, H.; Avagyan, A.; Karakhanian, A.; Ritz, J.-F.; Rebai, S. Slip rates and recurrence intervals of strong earthquakes along the Pambak-Sevan-Sunik Fault (Armenia). Tectonophysics 2001, 343, 205–232. [Google Scholar] [CrossRef]
- Karakhanian, A.S.; Trifonov, V.G.; Philip, H.; Avagyan, A.; Hessami, K.; Jamali, F.; Bayraktutan, S.; Bagdassarian, H.; Arakelian, S.; Davtian, V.; et al. Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics 2004, 380, 189–219. [Google Scholar] [CrossRef]
- Avagyan, A.; Sosson, M.; Karakhanian, A.; Philip, H.; Rebai, S.; Rolland, Y.; Melkonyan, R.; Davtyan, V. Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions. In Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform; Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F., Starostenko, V., Eds.; Geological Society: London, UK, 2010; Volume 340, pp. 393–408. [Google Scholar]
- Paffingolts, K.N. Essay on the Geology of Caucasus; Typography of the Academy of Science of Armenian SSR: Yerevan, Armenia, 1959; p. 506. [Google Scholar]
- Ambraseys, N.N.; Jackson, J.A. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys. J. Int. 1998, 133, 390–406. [Google Scholar] [CrossRef] [Green Version]
- Japan International Cooparation Agency (JICA); Georisk CJSC (Armenia). Joint Project: The Study on Landslide Disaster Management in the Republic of Armenia; Inventory Database Creation: Yerevan, Armenia, 2006. Available online: https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjKp-LP7qfoAhUCD6YKHR4CAqkQFjAAegQIBBAB&url=http%3A%2F%2Fopen_jicareport.jica.go.jp%2Fpdf%2F11834660.pdf&usg=AOvVaw2NbdR_8qaKWvIc0I_6DvpE (accessed on 20 March 2020).
- Philip, H.; Cisternas, A.; Gvishiani, A.; Gorshkov, A. The Caucasian actual example of the initial stage of continental collision. Tectonophysics 1989, 161, 1–21. [Google Scholar] [CrossRef]
- Karakhanian, A.S.; Djrbashyan, R.T.; Trifonov, V.G.; Philip, H.; Ritz, J.F. Active faults and strong earthquakes of the Armenian Upland. In Historical and Prehistorical Earthquakes in the Caucasus; Giardini, D., Balassanian, S., Eds.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 1997; pp. 181–187. [Google Scholar]
- Karakhanian, A. The active faults of the Armenian Upland. In Proceedings of the Scientific Meeting on Seismic Protection, Dipartimento per la Geologia e le Attivita estrattive, Venice, Italy, 12–14 May 1993; pp. 88–94. [Google Scholar]
- Shebalin, N.V.; Nikonov, A.A.; Tatevosian, R.E.; Mokrushina, N.G.; Petrossian, A.E.; Kondorskaya, N.V.; Khrometskaya, E.A.; Karakhanian, A.S.; Harutunian, R.A.; Asatrian, A.O.; et al. Caucasus test-area strong earthquake catalogue. In Historical and Prehistorical Earthquakes in the Caucasus; Giardini, D., Balassanian, S., Eds.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 1997; pp. 210–223. [Google Scholar]
- Avagyan, A.; Sosson, M.; Sahakyan, L.; Sheremet, Y.; Vardanyan, S.; Martirosyan, M.; Muller, C. Tectonic evolution of the Northern margin of the Cenozoic Ararat basin, Lesser Caucasus, Armenia. J. Pet. Geol. 2018, 41, 495–512. [Google Scholar] [CrossRef]
- Nikonov, A.; Nikonova, K. The strongest earthquake in the Transcaucasus, September 30, 1139. Vopr. Ingenernoj Seismol. 1986, 27, 152–183. [Google Scholar]
- Karakhanian, A.; Arakelyan, A.; Avagyan, A.; Sadoyan, T. Aspects of the seismotectonics of Armenia: New data and reanalysis. In Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty Years of Research Contributions; Sorkhabi, R., Ed.; Geological Society of America: Boulder, CO, USA, 2016; Volume 525, pp. 1–32. [Google Scholar]
- Balassanian, S.Y.; Melkoumian, M.G.; Arakelyan, A.R.; Azarian, A.R. Seismic risk assessment for the territory of Armenia and strategy of its mitigation. Nat. Hazards 1999, 20, 43–55. [Google Scholar] [CrossRef]
- Aspinall, W.P.; Mallard, D.J.; Skipp, B.O.; Woo, G. Seismic Hazard Assessment for the Armenian Nuclear Power Plant Site; The Armenian Nuclear Power Plant: Yerevan, Armenia, 2007; p. 270. [Google Scholar]
- Karakhanian, A.; Djrbashian, R.; Trifonov, V.; Philip, H.; Arakelian, S.; Avagian, A. Holocene historical volcanism and active faults as natural risk factors for Armenia and adjacent countries. J. Volcanol. Geotherm. Res. 2002, 113, 319–344. [Google Scholar] [CrossRef]
- Stepanian, V. Earthquakes in the Armenian Upland and Adjacent Areas; Publishing House Hayastan: Yerevan, Armenia, 1964; p. 247. [Google Scholar]
- Karakhanian, A.; Jrbashyan, R.; Trifonov, V.; Philip, H.; Arakelian, S.; Avagyan, A.; Baghdasaryan, H.; Davtian, V.; Ghoukassyan, Y. Volcanic hazards in the region of the Armenian Nuclear Power Plant. J. Volcanol. Geotherm. Res. 2003, 126, 31–62. [Google Scholar] [CrossRef]
- Dewey, J.F.; Hempton, M.R.; Kidd, W.S.F.; Saroglu, F.; Sengör, A.M.C. Shortening of continental lithosphere: The neotectonics of Eastern Anatolia–A young collision zone. In Collision Tectonics; Coward, M.P., Riea, A.C., Eds.; Geological Society: London, UK, 1986; Volume 19, pp. 1–36. [Google Scholar]
- Yilmaz, V.; Guner, Y.; Saroglu, F. Geology of the Quaternary volcanic centers of the East Anatolia. J. Volcanol. Geotherm. Res. 1998, 85, 173–210. [Google Scholar] [CrossRef]
- Matossian, A.O. Identification of Giant Mass Movements in the Lesser Caucasus and Assessment of Their Spatial Relationship with Major Fault Zones and Volcanoes. Master’s Thesis, University of Liège, Liège, Belgium, 2017. [Google Scholar]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Turcotte, D.L. Fractals and Chaos in Geology and Geophysics; Cambridge University Press: Cambridge, UK, 1997; p. 398. [Google Scholar]
- Jibson, R.W.; Harp, E.H.; Michael, J.M. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California Area; US Geological Survey: Virginia Reston, VA, USA, 1998; pp. 98–113.
- Havenith, H.B.; Strom, A.; Caceres, F.; Pirard, E. Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: Statistical and geotechnical approach. Landslides 2006, 3, 39–50. [Google Scholar] [CrossRef]
- Tanyas, H. Rapid Assessment of Earthquake-Induced Landslides. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Lombardo, L.; Bakka, H.; Tanyas, H.; van Westen, C.; Mai, P.M.; Huser, R. Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. J. Geophys. Res. Earth Surf. 2019, 124, 1958–1980. [Google Scholar] [CrossRef]
- Ledworowska, A. Analysis of the Landslide Susceptibility in Armenia with GIS and Data Mining Methods. Master’s Thesis, Technical University of Berlin, Berlin, Germany, 2019. [Google Scholar]
- Schlögel, R.; Torgoev, I.; de Marneffe, C.; Havenith, H.-B. Evidence of a changing distribution of landslides in the Kyrgyz Tien Shan, Central Asia. Earth Surf. Process. Landf. 2011, 36, 1658–1669. [Google Scholar] [CrossRef]
- Havenith, H.B.; Torgoev, A.; Schlögel, R.; Braun, A.; Torgoev, I.; Ischuk, A. Tien Shan Geohazards Database: Landslide susceptibility analysis. Geomorphology 2015, 249, 32–43. [Google Scholar] [CrossRef]
- Gorum, T.; Fan, X.M.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G.H. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
Inventory/Parameter | Matossian/Georisk | Northridge Inventory | Mailuu-Suu Valley Inventory 1 | Tien Shan Inventory |
---|---|---|---|---|
Probability density value (1/m2) for landslide size 105 m2 | ~10−5/ ~10−5 | ~ 3 × 10−8 | =0.0002/208 =10−6 | ~ 5 × 10−6 |
Total number of landslides | 1036/ 2257 | 11111 | ~208 | 3460 |
Total investigated surface area (km2) | ~30,000 | ~10,000 | ~150 | ~400,000 |
Total landslide area (km2) | 605/ 1220 | 23 | 6.5 | 1330 |
Mean landslide area (km2) | 0.5/ 0.5 | 0.002 | 0.03 | 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matossian, A.O.; Baghdasaryan, H.; Avagyan, A.; Igityan, H.; Gevorgyan, M.; Havenith, H.-B. A New Landslide Inventory for the Armenian Lesser Caucasus: Slope Failure Morphologies and Seismotectonic Influences on Large Landslides. Geosciences 2020, 10, 111. https://doi.org/10.3390/geosciences10030111
Matossian AO, Baghdasaryan H, Avagyan A, Igityan H, Gevorgyan M, Havenith H-B. A New Landslide Inventory for the Armenian Lesser Caucasus: Slope Failure Morphologies and Seismotectonic Influences on Large Landslides. Geosciences. 2020; 10(3):111. https://doi.org/10.3390/geosciences10030111
Chicago/Turabian StyleMatossian, Alice O., Hayk Baghdasaryan, Ara Avagyan, Hayk Igityan, Mikayel Gevorgyan, and Hans-Balder Havenith. 2020. "A New Landslide Inventory for the Armenian Lesser Caucasus: Slope Failure Morphologies and Seismotectonic Influences on Large Landslides" Geosciences 10, no. 3: 111. https://doi.org/10.3390/geosciences10030111
APA StyleMatossian, A. O., Baghdasaryan, H., Avagyan, A., Igityan, H., Gevorgyan, M., & Havenith, H. -B. (2020). A New Landslide Inventory for the Armenian Lesser Caucasus: Slope Failure Morphologies and Seismotectonic Influences on Large Landslides. Geosciences, 10(3), 111. https://doi.org/10.3390/geosciences10030111