Seismic and Rainfall Induced Displacements of an Existing Landslide: Findings from the Continuous Monitoring
Abstract
:1. Introduction
2. Material and Methods
2.1. Case History Description
2.2. Rainfall Regime of the Area
2.3. Seismic Data
2.4. Inclinometer Monitoring Systems
2.4.1. Manual Inclinometer System
2.4.2. Automatic Inclinometer System
3. Results
3.1. Data of the Manual Inclinometer System
3.2. Data of the Automatic Inclinometer System
4. Discussion
4.1. Overall Scenario from Inclinometer Measurements
4.2. Rainfall-Induced Displacements
4.3. Seismic-Induced Displacements
Estimation of Critical Acceleration from Measured Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herrera, G.; Herrera, G.; Mateos, R.M.; García-Davalillo, J.C. Landslide databases in the geological surveys of europe. Landslides 2018, 15, 359–379. [Google Scholar] [CrossRef]
- Mainsant, G.; Larose, E.; Brönnimann, C.; Jongmans, D.; Michoud, C.; Jaboyedoff, M. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res. 2012, 117, F01030. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, B.; Picarelli, L.; Leroueil, S.; Vaunat, J. Geotechnical characterization of slope movements in structurally complex clay soils and stiff jointed clays. Riv. Ital. Geotec. 1998, 3, 5–32. [Google Scholar]
- Picarelli, L. Considerations about the mechanics of slow active landslides in clay. In Progress in Landslide Science; Sassa, K., Fukuoka, H., Wang, F., Wang, G., Eds.; Springer: Berlin, Germany, 2007; pp. 27–57. [Google Scholar]
- Urcioli, G.; Picarelli, L.; Leroueil, S. Local soil failure before general slope failure. Geotech. Geol. Eng. 2007, 25, 103–122. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Special Report 247; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Cascini, L.; Calvello, M.; Grimaldi, G.M. Displacement trends of slow-moving landslides: Classification and forecasting. J. Mater. Sci. 2014, 11, 592–606. [Google Scholar] [CrossRef]
- Iverson, R.M.; Major, J.J. Rainfall, groundwater f low, and seasonal motion at minor creek landslide, northwestern California: Physicali nterpretationo f empiricalr elations. Geol. Soc. Am. Bull. 1987, 99, 579–594. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.E.; Gens, A.; Delahaye, C.H. Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: A case study. Hydrogeol. J. 2003, 11, 174–192. [Google Scholar] [CrossRef] [Green Version]
- Calvello, M.; Cascini, L.; Sorbino, G. A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 327–351. [Google Scholar] [CrossRef]
- Schulz, W.H.; McKenna, J.P.; Kibler, J.D. Relations between hydrology and velocity of a continuously moving landslide—Evidence of pore-pressure feedback regulating landslide motion? Landslides 2009, 6, 181–190. [Google Scholar] [CrossRef]
- Tommasi, P.; Boldini, D.; Caldarini, G.; Coli, N. Influence of infiltration on the periodic re-activation in an overconsolidated clay slope. Can. Geotech. J. 2013, 50, 54–67. [Google Scholar] [CrossRef]
- Vassallo, R.; Grimaldi, G.M.; Di Maio, C. Pore water pressures induced by historical rain series in a clayey landslide: 3D modelling. Landslides 2015, 12, 731–744. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Delgado, J.; Garrido, J.; López-Casado, C.; Martino, S.; Peláez, J.A. On far field occurrence of seismically induced landslides. Eng. Geol. 2011, 123, 204–213. [Google Scholar] [CrossRef]
- Martino, S.; Prestininza, A.; Romeo, R.W. Earthquake-induced ground failures in Italy from a reviewed database. Nat. Hazards Earth Syst. Sci. 2014, 14, 799–814. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, P.; Perfettini, H.; Taipe, E.; Guillier, B. Co-and Postseismic motion of a landslide: Observations, modelling and analogy with tectonic faults. Geophys. Res. Lett. 2014, 41, 6676–6680. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, N.; Lacroix, P.; Larose, E.; Jara, J.; Taipe, E. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.N.; Del Prete, M. Landslide at Calitri, southern Apennines, reactivated by the earthquake of 23rd November 1980. Geol. Appl. Idrogeol. 1985, 20, 9–38. [Google Scholar]
- Kefeer, D.K.; Manson, M.W. Regional distribution and characteristics of landslides generated by the earthquake. In The Loma Prieta, California, Earthquake of October 17, 1989-Landslides; U.S. Geological Survey Professional Paper 1551-C; Kefeer, D.K., Ed.; U.S. Geological Survey: Reston, VA, USA, 1998; pp. 7–32. [Google Scholar]
- Al-Homoud, A.S.; Tahtamoni, W. Comparison between predictions using different simplified Newmark’s block-on-plane models and field values of earthquake induced displacements. Soil Dyn. Earthq. Eng. 2000, 19, 73–90. [Google Scholar] [CrossRef]
- Pradel, D.E.; Smith, P.M.; Stewart, J.P.; Raad, G. Case history of landslide movement during the Northridge earthquake. J. Geotech. Geoenviron. Eng. 2005, 131, 1360–1369. [Google Scholar] [CrossRef]
- Urcioli, G.; Picarelli, L. Interaction between landslides and man-made works. In Landslides and Engineered Slopes—From the Past to the Future, Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, Xi’an, China, 30 June–4 July 2008; Chen, Z., Zhang, J., Li, Z., Wu, F., Ho, K., Eds.; CRC Press: Boca Raton, FL, USA, 2008; Volume 2, pp. 1301–1307. [Google Scholar]
- Mansour, M.F.; Morgenstern, N.R.; Martin, C.D. Expected damage from displacement of slow-moving slides. Landslides 2011, 8, 117–131. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M. Carta Inventario dei fenomeni franosi della regione dell’umbria ed aree limitrofe. CNR GNDCI 1989, 204, 2. [Google Scholar]
- Guerrera, F.; Tramontana, M.; Donatelli, U. Space/time tectono-sedimentary evolution of the Umbria Romagna-Marche Miocene Basin (North Apennines, Italy). Swiss J. Geosci. 2012, 105, 325–341. [Google Scholar] [CrossRef]
- Assefa, S.; Graziani, A.; Lembo-Fazio, A. A slope movement in a complex rock formation: Deformation measurements and DEM modelling. Eng. Geol. 2017, 219, 74–91. [Google Scholar] [CrossRef]
- Scarpelli, G.; Segato, D.; Sakellariadi, E.; Vita, A.; Ruggeri, P.; Fruzzetti, V.M.E. Slope instability problems in Jonica highway construction. In Landslide Science and Practice: Risk Assessment; Springer: Berlin, Germany, 2013; pp. 275–282. [Google Scholar]
- Segato, D.; Scarpelli, G.; Fruzzetti, V.M.E.; Ruggeri, P.; Vita, A.; Paternesi, A. Excavation works in stiff jointed clay material: Examples from the trubi formation, southern Italy. Landslides 2015, 12, 721–730. [Google Scholar] [CrossRef]
- Ruggeri, P.; Fruzzetti, V.M.E.; Vita, A.; Paternesi, A.; Scarpelli, G.; Segato, D. Deep-seated landslide triggered by tunnel excavation. In Landslides and Engineered Slopes, Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2016; Volume 3, pp. 1759–1766. [Google Scholar]
- Ruggeri, P.; Fruzzetti, V.M.E.; Scarpelli, G. Lessons Learnt from the SS 106 Jonica Highway Construction Works. Lect. Notes Civ. Eng. 2020, 40, 734–742. [Google Scholar]
- Ruggeri, P.; Fruzzetti, V.M.E.; Scarpelli, G. Design Strategies to Mitigate Slope Instabilities in Structurally Complex Formations. Geosciences 2020, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, P.; Segato, D.; Fruzzetti, V.M.E.; Scarpelli, G. Evaluating the shear strength of a natural heterogeneous soil using reconstituted mixtures. Géotechnique 2016, 66, 941–946. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.; Bonano, M.; Calcaterra, S. Geodetic model of the 2016 central italy earthquake sequence inferred from insar and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- Meletti, C.; Visini, F.; D’Amico, V.; Rovida, A. Seismic hazard in central Italy and the 2016 Amatrice earthquake. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Green, G.E.; Mikkelsen, P.E. Deformation measurements with inclinometers. In Transportation Research Record 1169, TRB; National Research: Council, China, 1988; pp. 1–15. [Google Scholar]
- Cotecchia, V. Experience drawn from the great Ancona landslide of 1982. The second hans cloos lecture. Bull. Eng. Geol. Environ. 2006, 65, 1–41. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. In Landslides, Analysis and Control, Special Report 176: Transportation Research Board; Schuster, R.L., Krizek, R.J., Eds.; National Academy of Sciences: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Jeng, C.-J.; Yo, Y.-Y.; Zhong, K.-L. Interpretation of slope displacement obtained from inclinometers and simulation of calibration tests. Nat. Hazards 2017, 87, 623–657. [Google Scholar] [CrossRef]
- Ferretti, A.; Fruzzetti, V.M.E.; Ruggeri, P.; Scarpelli, G. Seismic induced displacements of “La Sorbella” landslide. In Proceedings of the VII International Conference on Earthquake Geotechnical Engineering, Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, Rome, Italy, 17–20 June 2019; pp. 2373–2380. [Google Scholar]
- Newmark, N.M. Effects of earthquakes on dams and embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Jibson, R.W. Methods for assessing the stability of slopes during earthquakes—A retrospective. Eng. Geol. 2011, 122, 43–50. [Google Scholar] [CrossRef]
- Makdisi, F.I.; Seed, H.B. Simplified procedure for estimating dam and embankment earthquake-induced deformations. ASCE J. Geotech. Eng. Div. 1978, 104, 849–867. [Google Scholar]
- Bray, J.D.; Travasarou, T. Simplified procedure for estimating earthquake-induced deviatoric slope displacements. J. Geotech. Geoenviron. Eng. 2007, 133, 381–392. [Google Scholar] [CrossRef]
- Tropeano, G. Previsione di Spostamenti Di Pendii in Condizioni Sismiche. Ph.D. Thesis, University of Calabria, Rende, Italy, 2010. [Google Scholar]
- Crespellani, T.; Facciorusso, J.; Madiai, C.; Vannucchi, G. Influence of uncorrected accelerogram processing techniques on Newmark’s rigid block displacement evaluation. Soil Dyn. Earthq. Eng. 2003, 23, 415–424. [Google Scholar] [CrossRef] [Green Version]
Characteristics of the Earthquakes | Main Features of the Signals Registered by VAL Station | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Earthquake | Date | hh/mm/ss (UTC) | MW | d [Km] * | Ed [Km] | PGAE [g] | PGAW [g] | PGAN [g] | PGAS [g] | PGAU [g] | PGAD [g] |
Accumoli | 2016-08-24 | 01:36:32 | 6.0 | 8.1 | 71.5 | 0.04 | 0.06 | 0.03 | 0.04 | 0.01 | 0.01 |
Visso | 2016-10-26 | 19:18:05 | 5.9 | 7.5 | 50.7 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 |
Norcia | 2016-10-30 | 06:40:17 | 6.5 | 9.2 | 54.6 | 0.07 | 0.07 | 0.07 | 0.06 | 0.03 | 0.03 |
data taken from http://terremoti.ingv.it/ and http://ran.protezionecivile.it | |||||||||||
Epicentral distance * Depth | PGAX: Peak ground acceleration directed towards “X” direction |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggeri, P.; Fruzzetti, V.M.E.; Ferretti, A.; Scarpelli, G. Seismic and Rainfall Induced Displacements of an Existing Landslide: Findings from the Continuous Monitoring. Geosciences 2020, 10, 90. https://doi.org/10.3390/geosciences10030090
Ruggeri P, Fruzzetti VME, Ferretti A, Scarpelli G. Seismic and Rainfall Induced Displacements of an Existing Landslide: Findings from the Continuous Monitoring. Geosciences. 2020; 10(3):90. https://doi.org/10.3390/geosciences10030090
Chicago/Turabian StyleRuggeri, Paolo, Viviene M. E. Fruzzetti, Antonio Ferretti, and Giuseppe Scarpelli. 2020. "Seismic and Rainfall Induced Displacements of an Existing Landslide: Findings from the Continuous Monitoring" Geosciences 10, no. 3: 90. https://doi.org/10.3390/geosciences10030090
APA StyleRuggeri, P., Fruzzetti, V. M. E., Ferretti, A., & Scarpelli, G. (2020). Seismic and Rainfall Induced Displacements of an Existing Landslide: Findings from the Continuous Monitoring. Geosciences, 10(3), 90. https://doi.org/10.3390/geosciences10030090