Conceptual Models of Gas Accumulation in the Shallow Permafrost of Northern West Siberia and Conditions for Explosive Gas Emissions
Abstract
:1. Introduction
2. Gas Emission from Thermokarst Lakes
3. Gas Sources in Thermokarst Lakes
- (1)
- microbial recycling of organic matter in lake sediments;
- (2)
- the decay of organic matter in thawing permafrost;
- (3)
- migration of intrapermafrost methane from permafrost around the taliks;
- (4)
- migration of deep-seated methane along permeable zones in a deformed crust;
- (5)
- dissociation of metastable (relict) and stable gas hydrates upon a talik expansion.
- the recycling of organic matter supplied from the lake surface;
- the decay of organic matter in unconsolidated bottom sediments, in older lacustrine sediments, and in thawing permafrost at the talik base;
- the migration of gas from permafrost into the talik, and the ascent of deep methane through permeable porous and fractured zones in monolith frozen and thawing rocks (Figure 3a).
4. Role of Gas Hydrates in Gas Accumulation in Sublake Taliks
5. Models of Gas Accumulation in Freezing Sublake Taliks
5.1. Freezing of Sublake Talik with High Contents of Biogenic Gas
5.2. Gas Accumulation in Freezing Taliks by the Dissociation of Intrapermafrost Gas Hydrates
5.3. Gas Accumulation in a Freezing Talik Maintained by the Migration of Deep Gas
6. Conclusions
- Freezing sublake taliks allow for gas storage in shallow permafrost and the related pressure buildup leads to explosive gas emissions and the formation of craters.
- The expanding warming effect from growing taliks can cause the thawing of organic-rich sediments and induce or accelerate the decay of organic matter, dissociation of gas hydrates, and migration of subpermafrost and deeper gases through permeable zones.
- Active gas emission from thermokarst lakes may be due to gas generation in sublake taliks and the migration of deep gases.
- Gas inputs into a freezing talik are maintained by:
- gas generation by the microbial recycling of organic matter;
- the dissociation of metastable relict gas hydrates beneath the talik;
- the migration of gas from a deep subsurface.
- Cryogenic concentration of gas in a freezing talik creates a zone of overpressure, which causes creep (ductile) deformation of the frozen cap and surface heaving as the pressure inside the talik exceeds the overburden pressure.
- The overpressure in the freezing talik may lead to the eruption of the gas–water–soil mixture and formation of a crater as it surpasses the critical limit of the frozen cap strength. In this case, the upper gas pressure limit corresponds to the equilibrium pressure of hydrate formation for the predominant gas (≈2–2.5 MPa for methane).
- Gas accumulation and overpressure in freezing taliks are responsible for explosive gas emissions and the formation of craters can follow different scenarios, which can operate concurrently in a single talik.
Author Contributions
Funding
Conflicts of Interest
References
- Are, F.E. Problem of deep gas emission into the atmosphere. Kriosfera Zemli 1998, II, 42–50. [Google Scholar]
- Yakushev, V.S.; Chuvilin, E.M. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg. Sci. Technol. 2000, 31, 189–197. [Google Scholar]
- Chuvilin, E.; Bukhanov, B.; Davletshina, D.; Grebenkin, S.; Istomin, V. Dissociation and self-preservation of gas hydrates in permafrost. Geosciences 2018, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V.; Kondakov, V.V. Gas component of the frozen rocks within the Bovanenkovo gas condensate field (Yamal Peninsula). Doklady Earth Sci. 1999, 369, 522–524. [Google Scholar]
- Bondarev, V.L.; Mirotvorskiy, M.Y.; Zvereva, V.B.; Oblekov, G.I.; Shaydullin, R.M.; Gudzenko, V.T. Gas-geochemical characteristic of the Yamal Peninsular over-Cenomanian sediments (on example of Bovanenkovo oil-and-gas-condensate field). Geologiya Geofizika i Razrabotka Neftyanykh i Gazovykh Mestorozhdeniy 2008, 5, 22–34. [Google Scholar]
- Yakushev, V.S. Natural Gas and Gas Hydrates in Permafrost; VNIIGAZ: Moscow, Russia, 2009; p. 192, (In Russian). ISBN 978-5-89754-048-8. [Google Scholar]
- Kraev, G.; Schulze, E.-D.; Kholodov, A.; Chuvilin, E.; Rivkina, E. Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 2017, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Kraev, G.; Rivkina, E.; Vishnivetskaya, T.; Belonosov, A.; van Huissteden, J.; Kholodov, A.; Smirnov, A.; Kudryavtsev, A.; Tshebaeva, K.; Zamolodchikov, D. Methane in gas shows from boreholes in epigenetic permafrost of Siberian Arctic. Geosciences 2019, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Glotov, V.E.; Glotova, L.P. Natural sources of atmospheric methane in Circumpacific region of cryolithozone (North-East of Russia). Proc. Samara Sci. Cent. Russ. Acad. Sci. 2015, 17, 26–32. [Google Scholar]
- Streletskaya, I.D.; Vasiliev, A.A.; Oblogov, G.E.; Streletskiy, D.A. Methane content in ground ice and sediments of the Kara Sea coast. Geosciences 2018, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Rivkin, F.M. Gas content in the upper permafrost horizons. In Geocryological Conditions of the Kharasavey and Krusenstern Gas Condensate Fields (Yamal Peninsula); VNIIEgeosystem: Moscow, Russia, 2003; pp. 133–146. (In Russian) [Google Scholar]
- Kuzin, I.L. On the priority in the studies of land gas shows in Western Siberia. Sov. Geol. Geophys. 1990, 31, 142–144. [Google Scholar]
- Kuzin, I.L. On the nature of anomalous lakes, the indicators of hydrocarbons in the deep horizons of the sedimentary cover. In The Issues of Evaluating New Zones of Oil and Gas Accumulation in the Main Product Formations of Western Siberia; VNIGRI: St. Petersburg, Russia, 1992; pp. 129–137. (In Russian) [Google Scholar]
- Kuzin, I.L. The scale of natural gas emissions in Western Siberia. Izvestiya RGO 1999, 131, 24–35. [Google Scholar]
- Bogoyavlensky, V.I.; Sizov, O.S.; Mazharov, A.V.; Bogoyavlensky, I.V.; Nikonov, R.A. Remote detection of the areas of ground gas shows and gas outbursts in Arctic: Yamal Peninsula. Arktika: Ekologiya i Ekonomika 2016, 3, 4–15. [Google Scholar]
- Desyatkin, A.R.; Fedorov, P.P.; Nikolaev, A.N.; Borisov, B.Z.; Desyatkin, R.V. Methane emission during thermokarst lake flood in Central Yakutia. Vestnik NEFU 2016, 2, 5–14. [Google Scholar]
- Badu, Y.B. Gas shows and the nature of cryolithogenesis in marine sediments of the Yamal peninsula. Earth Cryosphere 2017, XXI, 42–54. [Google Scholar] [CrossRef]
- Dvornikov, Y.A.; Leibman, M.O.; Khomutov, A.V.; Kizyakov, A.I.; Semenov, P.B.; Bussmann, I.; Babkin, E.M.; Heim, B.; Portnov, A.; Babkina, E.A.; et al. Gas-emission craters of the Yamal and Gydan peninsulas: A proposed mechanism for lake genesis and development of permafrost landscapes. Permafr. Periglac. Process. 2019, 30, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Savichev, A.; Leibman, M.; Kadnikov, V.; Kallistova, A.; Pimenov, N.; Ravin, N.; Dvornikov, Y.; Khomutov, A. Microbiological study of Yamal lakes: A key to understanding the evolution of gas emission craters. Geosciences 2018, 8, 478. [Google Scholar] [CrossRef] [Green Version]
- Vlasov, A.N.; Khimenkov, A.N.; Volkov-Bogorodskiy, D.B.; Levin, Y.K. Natural explosive processes in the permafrost area. Sci. Technol. Dev. 2017, 3, 41–56. [Google Scholar] [CrossRef]
- Kizyakov, A.; Khomutov, A.; Zimin, M.; Khairullin, R.; Babkina, E.; Dvornikov, Y.; Leibman, M. Microrelief associated with gas emission craters: Remote-sensing and field-based study. Remote Sens. 2018, 10, 677. [Google Scholar] [CrossRef] [Green Version]
- Buldovicz, S.N.; Khilimonyuk, V.Z.; Bychkov, A.Y.; Ospennikov, E.N.; Vorobyev, S.A.; Gunar, A.Y.; Gorshkov, E.I.; Chuvilin, E.M.; Cherbunina, M.Y.; Kotov, P.I.; et al. Cryovolcanism on the earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Vorobyev, S.; Bychkov, A.; Khilimonyuk, V.; Buldovicz, S.; Ospennikov, E.; Chuvilin, E. Formation of the Yamal crater in northern West Siberia: Evidence from geochemistry. Geosciences 2019, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Bogoyavlensky, V.I.; Bogoyavlensky, I.V.; Sizov, O.S.; Nikonov, R.A.; Kargina, T.N. Earth degassing in the Arctic: Comprehensive studies of the distribution of frost mounds and thermokarst lakes with gas blowout craters on the Yamal peninsula. Arct. Ecol. Econ. 2019, 4, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Khimenkov, A.N.; Sergeev, D.O.; Vlasov, A.N.; Volkov-Bogorodsky, D.B. Explosive processes in the permafrost zone as a new type of geocryological hazard. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2019, 6, 30–41. [Google Scholar] [CrossRef]
- Dean, J.F.; Middelburg, J.J.; Röckmann, T.; Aerts, R.; Blauw, L.G.; Egger, M.; Jetten, M.S.M.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 2018, 56, 207–250. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I. Risk of catastrophic gas blowouts from the arctic cryolithic zone. Yamal and Taimyr craters. Drill. Oil 2014, 10, 4–8. [Google Scholar]
- Chuvilin, E.M.; Perlova, E.V. Forms of location and conditions for the formation of the gas component of frozen rocks. Vestnik Moscow Univ. 4 Geol. 1999, 5, 57–59. [Google Scholar]
- Chuvilin, E.M.; Perlova, E.V.; Yakushev, V.S. Classification of the intrapermafrost sediment gas component. Earth Cryosphere 2005, IX, 73–76. [Google Scholar]
- Chuvilin, E.; Davletshina, D. Formation and accumulation of pore methane hydrates in permafrost: Experimental modeling. Geosciences 2018, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Yakushev, V.S. Genetic types of hydrocarbon gases in permafrost. Earth Cryosphere 2015, XIX, 71–76. [Google Scholar]
- Gresov, A.I.; Yatsuk, A.V. Gas zoning and gas presence of permafrost in the coal-bearing basins of eastern Arctic and adjacent regions. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2013, 5, 387–398. [Google Scholar]
- Kuzin, I.L.; Lyubina, Y.N.; Reinin, I.V. Gas occurrences on the lakes of Western Siberia and their relationship with oil and gas fields. In Tectonic Criteria for the Allocation and Prediction of Oil and Gas Zones (Using Space Information); VNIGRI: Leningrad, Russia, 1990; pp. 117–127. (In Russian) [Google Scholar]
- Sizov, O.S. Remote analysis of the effects of land gas shows in the north of Western Siberia. Geomatika 2015, 1, 53–68. [Google Scholar]
- Golubyatnikov, L.L.; Kazantsev, V.S. Contribution of tundra lakes of Western Siberia to the methane budget of the atmosphere. Proc. RAS Phys. Atmos. Ocean 2013, 49, 430–438. [Google Scholar]
- Yershov, E.D. General Geocryology; Cambridge University Press: Cambridge, UK, 1998; p. 580. [Google Scholar]
- Kravtsova, V.I.; Rodionova, T.V. Investigation of the dynamics in area and number of thermokarst lakes in various regions of Russian cryolithozone, using satellite images. Earth Cryosphere 2016, XX, 81–89. [Google Scholar]
- Kirpotin, S.N.; Polnschuk, Y.M.; Bryksina, N.A. Dynamics of the areas of thermokarst lakes in continuous and discontinuous permafrost zones of Western Siberia during global warming. Vestnik TSU 2008, 311, 185–189. [Google Scholar]
- Smith, L.C.; Sheng, Y.; Macdonald, G.M.; Hinzman, L.D. Disappearing arctic lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [Green Version]
- Kraev, G.N.; Schulze, E.D.; Rivkina, E.M. Cryogenesis as a factor in the distribution of methane in frozen horizons. Doklady Earth Sci. 2013, 451, 684–687. [Google Scholar] [CrossRef]
- Walter, K.M.; Smith, L.C.; Chapin, F.S., III. Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Phil. Trans. R. Soc. A 2007, 365, 1657–1676. [Google Scholar] [CrossRef] [PubMed]
- Valyayev, B.M. Tectonic control over oil and gas accumulation and of hydrocarbon degassing of the earth. In Tectonic and Regional Problems of Geodynamics; Nauka: Moscow, Russia, 1999; pp. 222–241. (In Russian) [Google Scholar]
- Istomin, V.A.; Yakushev, V.S. Naturally Occurring Gas Hydrates; Nedra: Moscow, Russia, 1992; p. 235. ISBN 5-247-02442-7. (In Russian) [Google Scholar]
- Max, M. Natural Gas Hydrate in Oceanic and Permafrost Environments; Kluwer Academic Publishers: Washington, DC, USA, 2000; p. 419. ISBN 978-1-4020-1362-1. [Google Scholar] [CrossRef]
- Max, M.D.; Johnson, A.H.; Dillon, W.P. Natural Gas Hydrate—Arctic Ocean Deepwater Resource Potential; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; p. 113. ISBN 9783319025070. [Google Scholar] [CrossRef]
- Yershov, E.D.; Lebedenko, Y.P.; Chuvilin, E.M.; Istomin, V.A.; Yakushev, V.S. Features of gas hydrate occurrence in permafrost. USSR Acad. Sci. 1991, 321, 788–791. [Google Scholar]
- Yakushev, V.S.; Perlova, E.V.; Makhonina, N.A.; Chuvilin, E.M.; Kozlova, E.V. Gas hydrates in deposits on continents and islands. Rossiiskiy Khimicheskiy Zhurnal 2003, 3, 80–90. [Google Scholar]
- Dallimore, S.R.; Chuvilin, E.M.; Yakushev, V.S.; Grechischev, S.E.; Ponomarev, V.; Pavlov, A. Field and laboratory characterization of intrapermafrost gas hydrates, Mackenzie Delta, N.W.T., Canada. In Proceedings of the 2nd International Conference on Natural Gas Hydrates, Toulouse, France, 2–6 June 1996; pp. 525–531. [Google Scholar]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. Polarforschung 2000, 68, 215–219. [Google Scholar]
- Chuvilin, E.M.; Guryeva, O.M. Experimental study of self-preservation effect of gas hydrates in frozen sediments. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, AK, USA, 23 June–3 July 2008; pp. 263–267. [Google Scholar]
- Istomin, V.A.; Chuvilin, E.M.; Sergeeva, D.V.; Bukhanov, B.A.; Badetz, C.; Stanilovskaya, Y.V. hermodynamics of freezing soil closed system saturated with gas and water. Cold Reg. Sci. Technol. 2020, 170, 2. [Google Scholar] [CrossRef]
- Chuvilin, E.; Stanilovskaya, J.; Titovsky, A.; Sinitsky, A.; Sokolova, N.; Bukhanov, B.; Spasennykh, M.; Cheremisin, A.; Grebenkin, S.; Davletshina, D.; et al. A Gas-Emission Crater in the Erkuta River Valley, Yamal Peninsula: Characteristics and Potential Formation Model. Geosciences 2020, 10, 170. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvilin, E.; Sokolova, N.; Davletshina, D.; Bukhanov, B.; Stanilovskaya, J.; Badetz, C.; Spasennykh, M. Conceptual Models of Gas Accumulation in the Shallow Permafrost of Northern West Siberia and Conditions for Explosive Gas Emissions. Geosciences 2020, 10, 195. https://doi.org/10.3390/geosciences10050195
Chuvilin E, Sokolova N, Davletshina D, Bukhanov B, Stanilovskaya J, Badetz C, Spasennykh M. Conceptual Models of Gas Accumulation in the Shallow Permafrost of Northern West Siberia and Conditions for Explosive Gas Emissions. Geosciences. 2020; 10(5):195. https://doi.org/10.3390/geosciences10050195
Chicago/Turabian StyleChuvilin, Evgeny, Natalia Sokolova, Dinara Davletshina, Boris Bukhanov, Julia Stanilovskaya, Christian Badetz, and Mikhail Spasennykh. 2020. "Conceptual Models of Gas Accumulation in the Shallow Permafrost of Northern West Siberia and Conditions for Explosive Gas Emissions" Geosciences 10, no. 5: 195. https://doi.org/10.3390/geosciences10050195
APA StyleChuvilin, E., Sokolova, N., Davletshina, D., Bukhanov, B., Stanilovskaya, J., Badetz, C., & Spasennykh, M. (2020). Conceptual Models of Gas Accumulation in the Shallow Permafrost of Northern West Siberia and Conditions for Explosive Gas Emissions. Geosciences, 10(5), 195. https://doi.org/10.3390/geosciences10050195