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Abstract: A new method to solve thermal conjugacy problems is presented for layered models with
a thermal conductivity jump at their boundaries. The purpose of this method is to approximate
the inverse thermal conductivity coefficient, which has breaks, by using a combination of step functions.
A generalized continuous operator is constructed in a continuous space of piecewise–homogeneous
media. We obtained an analytical solution for the stationary problem of heat conjugacy in the layered
model with finite thickness and with Dirichlet–Neumann conditions at the external boundaries.
An algorithm was constructed for downward continuation of the heat flux to depths that correspond
to the top of the mantle layer. The advantages of this method are illustrated by testing the crustal
seismic, gravity and geothermal data of a study area in the Urals and neighboring regions of Russia.
We examined statistical relations between density and thermal parameters and determined heat flux
components for the crust and the mantle. The method enables a downward continuation of the heat
flux to the base of the upper mantle and allows us to determine the thermal effects of the lateral
and vertical features of deep tectonic structures.

Keywords: layered inhomogeneous media; abrupt change in thermal parameters; problem of thermal
conjugation; mantle heat flux; Urals region

1. Introduction

Heat flux is an important character of the thermal state of the lithosphere. It indicates conductive
heat exchange in solid bodies and defines the direction of the evolution of deep tectonic processes.
The use of geothermal data as a part of a complex interpretation scheme (along with gravity, magnetic
or seismic data) lowers the ambiguity of geologic modeling and increases the reliability of the obtained
models [1–3].

Heat flux is measured by temperature and its gradients at deep and ultra-deep parameter wells.
These measurements have unique features. First of all, it is necessary to drill in order to obtain
direct measurements, which significantly increases survey time and resources. In addition, a thermal
equilibrium should be attained in the borehole, and the duration of this process may be up to several
months [4]. The data obtained from the well are averaged, and then the analytic continuation of these
heat flux values to the Earth’s surface is performed for all of the wells. The resulting values constitute
the observed heat flux.

Obtaining a measured data set is very difficult because it is only possible to perform surveys
of thermally stabilized wells. Thus, any three-dimensional (3D) model is an interpolation of several
one-dimensional (1D) data sets, which are measured in such wells. This is why many researchers tend
to utilize data obtained by other geophysical methods (such as seismic and gravity data) for thermal
model construction [2,3]. One-dimensional measurements do not allow for the detailed study of
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structural features of a geothermal 3D model. However, the use of gravity field data along with thermal
data allows us to control the density values of the model. This is especially important at the lower
crust and upper mantle, where thermal parameter amplitudes are quite high and the corresponding
heat flux anomalies can vary widely [2].

Geothermal models of the lithosphere should be enclosed by boundary conditions. The upper
boundary Dirichlet condition corresponds to the constant temperature in the neutral layer.
The lower boundary condition may be either the Dirichlet problem for temperature or the mixed
Dirichlet–Neumann problem for heat flux. The Dirichlet problem is used when the boundary condition
is defined by the temperature of solidus of basalts [5]. The thickness of the thermal lithosphere
(around 200–300 km) is proportional to the value of the observed heat flux at the earth’s surface
level and correlates with the age of the tectonic features [5]. The more flexible lower boundary value
problem condition is the Neumann condition on heat flux [6]. Usually, it is specified on a Mohorovicic
discontinuity surface [7,8] or at a mantle sole [9]. The upper mantle, which is located between Moho
and approximately 80 km, has a block structure [10]. The heat flux from the mantle acts as an unknown
boundary parameter of the forward geothermal problem. By changing this parameter, one can achieve
the required level of match between the observed and calculated values of heat flux at the earth’s
surface [9].

The stationary component of the thermal field is produced by the inner heat sources and deep
(external) flux in the inhomogeneous lithosphere. More accurately, it should be called “quasi-stationary”,
because radiogenic heat production is not constant over time. However, these changes are very slow.
The stationary component should firstly be studied when we interpret regional anomalies and construct
geothermal models [11].

Two factors contribute to the conductive thermal flux that is observed on the earth’s surface.
The first one is the summary power of radiogenic heat production in the earth’s crust per unit squared.
The second one generalizes deep heat loss inside the earth by setting a boundary condition on the mantle
heat flux [6,8,9]. The stationary nature of the subsurface flux is defined by decay heat from long-lived
isotopes of U238, Th232 and K40 in the earth’s crust. Half-lives of these elements are in the range of 1.3
to 12 billion years, so their order of magnitude is equal to the earth’s age [7,9]. The stationary nature of
deep flux is only hypothesized. For example, if a single thermal impulse occurs in a layer at depth
H below the earth’s surface, after the relaxation time τFo (Fourier time interval) this non-stationary
impulse will decay almost completely [12]. For the lithosphere layer of thickness H with thermal
diffusivity � 10−2 cm2/s, the relaxation time can be evaluated by formula τFo =

[
H2/4

]
≥ 0.8× 104 H2,

where H is given in kilometers and τFo in years. As we can see, the relaxation time of the deep heat
flux perturbations is quite sensitive to the layer thickness. For the layer with H of 80 km, the relaxation
time τFo will be not less than 50 million years (Cenozoic Era), while for the layer with H in the range
of 200 to 300 km, it will span over 0.3 to 0.7 billion years (Paleozoic Era). In our scheme, we assume
that the stationarity of the thermal conditions prevails for the heat flux from a level of 80 km. We only
study conductive heat flux in solid bodies; this is why we do not consider the influence of thermal
convection [13].

Under certain conditions, boundary value problems involving steady state thermal fields may
be considered as belonging to a specific type of potential. In cases where the basal heat flux is small,
only two physical parameters are taken into account: the power of radiogenic heat generation sources
(Q), and the thermal conductivity coefficient (λ). However, the distribution of thermal flux becomes
inhomogeneous when heat transfer in the medium is controlled by a thermal conductivity contrast
parameter. Heat flux from the mantle may be considered a deep boundary condition.

Temperature, T, as a potential function, satisfies the Poisson equation with a special type of
volume and surface heat sources. In the case of constant thermal conductivity, the inhomogeneous
distribution of heat sources, Q, does not introduce any serious difficulty to solving thermal problems,
because they are algorithmically similar to known problems of gravity potential associated with mass
density 4πQ/λ [14,15]. The solution to such problems, designated here as the gravithermal type, is of
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the volume Poisson integral type and can be calculated numerically. This is one of the reasons why
gravithermal models are widespread in theoretical and practical geophysical research [5].

In the case of non-homogeneous thermal conductivity, a refracted component of the thermal
flow appears, and the heat is transferred along the path of least thermal resistance.
In piecewise–homogeneous models, abrupt changes in thermal conductivity are allowed. The normal
component of the temperature gradient at a thermal contact boundary also undergoes abrupt changes.
The contact boundary of media with different thermal conductivity values is the place of material
discontinuity. A break in normal temperature gradients forms the equivalent simple layer of inducted
sources [15,16].

A determination of heat transfers across this simple layer is obtained from boundary conditions of
the thermal conjugacy (conditions of the fourth order). The problems of thermal conjugacy may only
be solved by numerical methods using a conservative difference scheme for keeping the energy balance
for every discrete element [14]. This problem is algorithmically difficult and requires a significant
amount of resources, even for two-dimensional cases [8,9].

We developed a new analytical method for the thermal conjugacy formulation as a boundary
value problem for the potential fields, which utilize the similarity in interpretation schemes of steady
state thermal and gravity fields. Its main idea was presented earlier in [13], while in the current
paper we provide a complete theoretical framework of the method. Following this, we construct
an algorithm for its numerical solution, which is similar to the methods employed in calculations of
gravity anomalies. These results are presented in the Methods section of the current work. In the Case
Study section, we test it on a three-dimensional density distribution model, which was developed
earlier [17]. The problem domain extends to 80 km, which is the first regional level of the isostatic
compensation. Using statistical correlation of density versus heat production and density versus
thermal conductivity, we build an earth’s crust and upper mantle model to solve the forward geothermal
problem for density distributions given on a three-dimensional grid. Contribution of a deep thermal
flux is evaluated by the method of analytical continuation to the Moho discontinuity.

2. Methods

The boundary value problem for the stationary heat conductivity in piecewise–homogeneous
models is defined by second order differential equations. They have a strong break when the required
constrains on the continuity of first derivatives are not satisfied in a space of solutions [14,16]. The contact
boundaries of the neighbor media are the surfaces where the thermal conductivity coefficient has
a break and, thus, a temperature gradient breaks too. Their functions have no value at these surfaces;
however, the left side and right side limits exist. Such problems belong to a class of linear conjugacy
with the implicitly defined boundary values (boundary conditions of the fourth kind), which are equal
to the conditions of continuity of temperature and normal components of the heat flux in a 2-sided
neighborhood of an ideal thermal contact [12].

In the space of generalized functions (i.e., in the linear space of continuous functionals), it is
possible to avoid the construction of partial solutions for every homogeneous area and its subsequent
stitching on the boundaries. A singular generalized continuous operator for an arbitrary point of
the inhomogeneous space can be obtained both for the areas of continuity and the break boundaries.

The method for constructing an analytical solution to the conjugation problem in the space of
generalized functions was briefly described in [13]. In Sections 2.1–2.4 (with additions in Appendices A
and B), we present it in a complete form.

2.1. Generalized Continuous Operator of the Conjugacy Problem

The models of stationary thermal fields include a distribution of two parameters: the strength
of radiogenic heat generation sources Q, and the thermal conductivity λ. They are connected with



Geosciences 2020, 10, 199 4 of 24

an energy balance condition, namely summary flow through the closed surface S, which limits the area
Dτ, is equal to a summary strength of the heat sources inside this area [12]:

x

S

q(Ps)dSp =
y

D

Q(τD)dτD, (1)

or the same in a differential form is as follows:

div(q) = Q. (2)

For the non-homogeneously heated body, in which the temperature gradient is not large, the heat
flow is proportional to the first degree of the temperature gradient [12]. This is Fourier’s law of heat
conduction, which characterizes a conductive (or molecular) mechanism of heat transfer in a stationary
media from areas with higher temperature to areas with lower temperatures. For isotropic bodies,
the heat flow vector q points oppositely to the temperature gradient vector as follows:

q = −λ∇T. (3)

The T temperature refers to the “spreading” potential of the temperature gradients vector field
(or the heat flux field). If the thermal conductivity λ is constant, the formula for the temperature
matches the representation for the gravity potential with the equivalent mass density 4πQ/λ [14,15].
If the thermal conductivity is not constant, then the refracted component is added to the field of sources.
At last, if the λ has an abrupt change on some boundary, then the temperature gradient component
will change in the same direction. The flow q (more accurate, its normal component) is continuous
on the boundary; however, every function in production (λ∇T) has a first order continuity break.
In the neighborhood of such discontinuities, the boundary derivatives are replaced by the integral
conditions of thermal conjugation [12].

A correctness of the continuous formulation of the conjugacy problem is ensured by a step
approximation of the inverse thermal conductivity function in the area of the break surface. We can
expand the operator definition area in Equations (2) and (3) by expressing its coefficients in terms of
a valid combination of the inverse thermal conductivity break functions 1/λ and its gradient ∇

(
1
λ

)
as

follows:
∇

2T +∇
( 1
λ

)
·q +

( 1
λ
·Q

)
= 0. (4)

Here the production of one break function (the inverse thermal conductivity and its gradient)
and the continuous density function of sources Q and the normal component of the flux q exist as
a valid functional combination [16,18]. Equation (2) is true not only at the points of continuity, but
also at the inverse thermal conductivity coefficient break points. It corresponds to the continuous
formulation of the conjugacy problem without boundary conditions.

Consider the layered media D with a flat top boundary S0 at the earth’s surface and a flat bottom
boundary SH (Figure 1). Inner boundaries Sk (k = 1 . . .M) separate D to (M + 1) curvilinear layers Dk.
Above the Sk boundary, the thermal conductivity of the layer is constant and equal to λk; the density of
sources Qk is continuous or at least integrable.

Let (X) = (x, y, z) be the Cartesian coordinate system. The vertical axis (oz) is directed
downwards, and the (xoy) plane acts as the top boundary S0. The inner boundaries Sk are defined
implicitly by the function Φk(X) = z− zk(x, y) = 0. Let Nk denote a unit normal vector for the surface
Sk. The vector Nk is proportional to the gradient Φk, and downward normal direction is selected
(Figure 1).

Nk(Sk) =
∇Φk
||∇Φk ||

=
−i(zk)

′

x − j(zk)
′

y + k√
1 +

[
(zk)

′

x

]2
+

[
(zk)

′

y

]2
. (5)
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Figure 1. Layered media model of thermophysical parameter distribution in lower semispace. A 
fragment of layers is shown on the right; position vectors are shown for the boundary points. 
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Figure 1. Layered media model of thermophysical parameter distribution in lower semispace.
A fragment of layers is shown on the right; position vectors are shown for the boundary points.

Now we introduce Heaviside step functions H(Φk). The linear combination of these step functions
forms the heuristic relation of a discontinuous coefficient of the inverse thermal conductivity versus
coordinates of the media.

1
λ(X)

=
1
λ1

+
M∑

k = 1

((
1

λk+1
−

1
λk

)
·H(Φk(X))

)
.

The generalized derivative of H(Φk) is equal to the Dirac delta function δ(Φk), which is supported
on the surface Sk, and, thus, Φk(Sk) = 0 [18]. Therefore,

∇

(
1

λ(X)

)
=

M∑
k = 1

(
1

λk+1
−

1
λk

)
·‖∇Φk‖·Nk(Sk)

⊗
δ(Φk). (6)

The gradient member ∇
(

1
λ

)
·q in Equation (4) can be converted into a form of simple layer sources

as follows:

∇
2T =

M∑
k = 1

νk(Sk)·‖∇Φk‖
⊗

δ(Φk) −
Q(X)

λ(X)
. (7)

A surface density of the sources νk(Sk) is equal to the jump of normal components of
the temperature gradient.

νk(Sk) = −Nk·

(
q

λk+1
−

q
λk

)
= Nk·(∇Tk+1 −∇Tk).

Since the heat flow is continuous,

νk(Sk) = νk(X) = 2εk(Nk·∇T)

∣∣∣∣∣∣ X ∈ Sk
. (8)
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Here, (Nk·∇T)

∣∣∣∣∣∣ X ∈ Sk
is a value of the temperature derivative, which is equal to the half sum

of limit values from both sides; εk = (λk − λk+1)/(λk + λk+1) is the thermal conductivity contrast
between k-th and (k + 1)-th neighbor layers.

The transformed differential operator in Equation (7) is defined in break points of the thermal
conductivity coefficient. Thus, as continuous functional in the generalized integral images space, it
corresponds to a continual definition of the thermal coupling problem without boundary conditions.

2.2. Integral Transforms and Green’s Formula

Merging of a finite number (M + 1) of layers with different thermal conductivity values forms
the geothermal model of layered media with flat boundaries S0 and SH, as shown in Figure 1.
Since the thermal coupling condition on M internal curvilinear boundaries is already included in
the generalized continuous operator of the differential Equation (7), the solution should satisfy
the bounding conditions only on the outer boundaries of the media. The stationary nature of the model
is defined by the mixed Dirichlet–Neumann conditions [12,15]. The upper Dirichlet condition on
the temperature corresponds to a isothermal mode on S0, while the lower Neumann condition on SH

indirectly takes into account the heat flow on the boundary between the crust and the mantle.

T(X)

∣∣∣∣∣∣ X ∈ S0
= θ(S0);

(
NSH ·∇T

)∣∣∣∣∣∣ X ∈ SH
= µ(SH). (9)

Here θ(S0) = θ0 is the constant temperature on the upper boundary of the medium; µ(SH) is
the heat field strength at the lower boundary. It is assumed that the top and the bottom boundaries
cross in infinitely remote points, making the area closed as follows: D = D∪ S0 ∪ SH.

Integral image spaces of the boundary value problem (Equations (7)–(9)) is created by
the convolution of the temperature Laplacian ∇2T(C) and the Green’s function G(A, C), which is
a singular function of two variables A, C ∈ D of a homogeneous boundary value problem [12,14] as
follows:

CG(A, C) = −4πδ(XC −XA)

G(X)

∣∣∣∣∣∣ X ∈ S0
= 0;

(
NSH ·∇G

)∣∣∣∣∣∣ X ∈ SH
= 0

. (10)

Such a transform of the implicit kernel convolution (Equation (10)) is included in Green’s second
identity as follows:

− 4πT(A ) +
y

D

Q(C)
λ(C)

−

M∑
k = 1

νk(X)·‖∇Φk‖
⊗

δ(Φk)

G(A, C) dτC =

θ0

x

S0

∂G(A, P0)

∂(−NP0)
dSP0 −

x

SH

µ(PH) G(A, PH) dSH

Note that the volume integral with the surface delta functions δ(Φk) can be transformed into
a sum of two-dimensional integral forms [18] of all the internal boundaries Sk as follows:

y

D

M∑
k = 1

νk(X)‖∇Φk‖
⊗

δ(Φk)G(A, C) dτC =
M∑

k = 1

y

Dk

νk(x, y, z)δ(z− zk)G(A, C)‖∇Φk‖ dxdydz =

M∑
k = 1

x

Sk<:Dk

νk(x, y, zk(x, y))G(A, Pk)

√
1 +

[
(zk)

′

x

]2
+

[
(zk)

′

y

]2
dxdy =

M∑
k = 1

x

Sk

νk(Sk)G(A, Pk)dSk.
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Now we select the components from Green’s formula, which correspond to the two types of
heat flow field sources. Contribution from the internal (i.e., located inside the volume) sources Q(C)
and the external sources µ(PH) (i.e., located on the lowest plane SH) can be combined into a sum of
the temperatures, which are not distorted by the thermal conductivity contrast.

W(A ) = θ0 +
1

4π

y

D

Q(C)
λ(C)

G(A, C)dτC +
x

SH

µ(PH)G(A, PH)dSH. (11)

These temperatures may be considered as primary potentials. The surface simple layer sources νk,
which are created in the primary field on the inner boundaries Sk, form the secondary potential:

T(A ) = W(A ) −
1

4π

M∑
k = 1

x

Sk

νk(Sk)G(A, Pk)dSk. (12)

The kernel of the integral operator defined by Equations (11) and (12) is Green’s function G,
a known solution of a simpler boundary value problem (Equation (10)) under Dirichlet and Neumann
homogeneous conditions [15]. This ensures a uniqueness of the solution if the energy balance
(Equation (1)) is kept for the layered media. The difference between the integral flows on top
and bottom boundaries is equal to the summary power of the inner heat sources inside the closed area
D, as follows:

x

S0

λ(P0)
∂T
∂N0

dS0 −
x

SH

λ(PH)
∂T
∂NH

dSH =
y

D

Q(C)dτC. (13)

2.3. Low Contrast Approximation

Equation (12) for the inhomogeneous boundary problem defined by Equations (7)–(9) is
a convolution of the density of the simple layer sources νk with Green’s function. Such a form
of equations allows one to separate mixed boundary conditions for the layered media model.
Homogeneous Dirichlet and Neumann conditions on the external boundaries S0 and SH are included
into Green’s function G(A, C). Conditions of the thermal conjugation on the inner boundaries Sk define
the surface density of the simple layer νk(Sk). Normal surface derivatives of Equation (12) can be
substituted into a system defined by Equation (8) as follows:

νi
(
SBi

)
2εi

=
(
Ni·∇Bi

)W(Bi) −
1

4π

M∑
k = 1

x

Sk

νk
(
SPk

)
G(Bi, Pk)dSPk

. (14)

Here, Bi(Si) is a projection of an observation point A by Ni normal to all boundaries Si; i = 1 . . .M
(see Figure 1).

Let low contrast media be defined as the media with a jump in the thermal conductivity on each
Si less than 2 times (λk+1/λk < 2 or λk/λk+1 < 2). In this case the εi in Equation (8) is small (|εi| < 1/3),
and the integral equations system can be replaced with a linear approximation as follows:

νi(Si) = 2εi
(
Ni·∇Bi

)
W(Bi). (15)

The contributions from internal and external thermal sources into the primary potential field
(Equation (11) are separated. In the secondary potential they are separated as well. Substitution of
the density value (Equation (15)) to the integral formula of the intermediate solution (Equation (12))
for the temperature leads us to the following formula:

T(A ) =
1

4π

y
D

Q(τC)

λ(τC)
K(A, C)dτC +

x

SH

µ(PH)K(A, PH)dSH

. (16)
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This substitution does not change the additive structure of the operator (16). However, the kernel
K(A, C) was changed as follows:

K(A, C) = G(A, C) −
1

2π

M∑
k = 1

εk

x

Sk

G(A, Pk)·
(
Nk·∇Pk

)
G(Pk, C)dSPk . (17)

The superposition of Green’s functions (Equation (17)) takes into account not only the homogeneous
Dirichlet and Neumann conditions, but also the heat flow refraction on its internal boundaries.
Thus, the kernel K(A, C) is a full analogue for Green’s function for the layered media and the flat
external boundaries.

2.4. Mantle Heat Flow

The uprising component of the heat flow at the Si boundary points opposite to the z axis,
which means that its sign matches the sign of the temperature gradient.

q(Bi) = −(Ni·q(Bi)) = +λi
(
Ni·∇Bi

)
T(Bi). (18)

On the earth’s surface S0 (Bi = B0) the heat flow can be seen as a sum of the crustal radiogenic
heat sources Q and the sources µ on the roof of the mantle layer q(B0) = qQ(B0) + qµ(B0):

qQ(B0) =
λ1

4π

(
N0·∇B0

)y

D

Q(C)
λ(C)

K(B0, C)dVC. (19)

qµ(B0) =
λ1

4π

(
N0·∇B0

)x

SH

µ(PH)K(B0, PH)dSH. (20)

Considering qQ(B0) + qµ(B0) = qobserv, we obtain an integral equation for the mantle component
of the heat flow.

qµ(B0) = qobserv − qQ(B0) =
λ1

4π

x

SH

µ(PH)
(
N0·∇B0

)
K(B0, PH)dSH. (21)

This integral equation allows one to solve the problem of a field continuation through
the inhomogeneous (by thermal conductivity) media from the earth’s surface level z = 0 to
the depth z = H. For the upward continuation of the mantle field component to the curvilinear
boundary z = zM(x, y) we have

qµ(BM) = λM
(
NM·∇BM

)
T(BM)

= λM
4π

(
NM·∇BM

)t
D

Q(C)
λ(C) K(BM, C)dVC +

s

SH

µ(PH)K(BM, PH)dSH

 . (22)

Formulas (21) and (22) allow one to exclude the thermal field strength µ(BH) from the foot of
the mantle layer. After this, the heat flow qµ(BM) on the roof of the upper mantle can be represented
through its value qµ(B0) at the earth’s surface level.

3. Case Study

3.1. Initial Data

Now we demonstrate the method using a practical example. Our study area is the Urals
and the neighbor regions of Russia, which are located at 60–68◦ N and 48–72◦ E. This is the near-Arctic
zone of an important Russian geological provinces junction: the northeastern part of the East-European
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platform, the Timan-Pechora plate, the northern part of the Ural Folding System and the northwestern
sector of Western Siberia. Seismic survey data were used for the construction of the build frame of
a 3D density model [17]. These seismic (deep seismic sounding (DSS)) velocity profiles are shown
in Figure 2a, while their geographic positions compared with a map of tectonic structures [19] are
presented in Figure 2b.
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The anomalies of the gravity field were reduced to the quasigeoid surface on a 2′ × 2′

grid [21,22]. A near-surface thermal flux was calculated from the temperature and thermal conductivity
measurements in deep trial wells on a sparse network. This is the observed (measured) flux at the earth’s
surface. At this resolution the unique features of the region, such as the Urals geosyncline [23], may be
seen. These features are invisible in known global databases of the observed heat flux values [24,25],
which have a resolution no more than 2◦ × 2◦. Additionally we used geothermal survey data from
the Urals–Siberian region [8,26], which were interpolated from the resolution 0.5◦ × 0.2◦ (lon × lat).
The data on the eastern edge of the European platform and the Timan–Pechora plate were refined
using earlier publications [7,9,11,27,28]. The resulting map is provided with the current paper in
the Supplementary Materials. Data of gravity and thermal measurements were recalculated to a regular
grid in zone 11 of a Gauss–Kruger projection [29,30]. Figure 3a presents the anomaly gravity field for
our study area on a dense 1 × 1 km2 grid, which we also use for our density model. It is compared
with the thermal flux on a sparse network of 10 × 10 km2, as seen in Figure 3b.

The main Ural fault crosses the eastern side of the Urals at approximately 60 ◦E. It forms the western
edge of the Urals geosyncline, which is the Hercynian tectonic fold. This zone has anomalous low
heat flux values [23]. It corresponds to the regional maximum of the gravity field. The similarities
in morphology are traced in other tectonic zones as well. However, there is no close connection
between gravity and thermal anomalies. A correlation coefficient between these maps is only −0.31,
while a correlation coefficient between the relief grid and the thermal flux grid is 0.76.
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Figure 3. Gravity anomaly field (a) and heat flow map (b) of our study region. Red–white lines show
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3.2. Initial Density Model

Two dimensional velocity data were obtained by profile sections from 10 deep seismic sounding
(DSS) profiles. Velocity cuts down to Mohorovicic discontinuity were constructed using a method
of seismic tomography. Below the Mohorovicic discontinuity, there is an upper mantle, which was
constructed using an isostatic compensation method and has a block structure. The blocks were selected
by residual anomalies of the gravity field and then were refined by the lithostatic pressure anomaly on
the 80 km depth level. This 80 km depth is the first regional level of the isostatic compensation for
the Urals [17].

Velocity data were recalculated to the densities using a known piecewise–linear regression
function [31]. The gravity data can be used to connect the model density with the observed gravity
anomalies. The regression coefficients were clarified during the inverse linear problem solution for
all the velocity profiles of the region. Thus, we obtained a possible density analogue for the velocity
model for deep structures.

Density profiles were bound to a three-dimensional grid (Figure 4a). They form a carcass of
a density model. The vertical resolution of the model is 100 m, so it contains 800 layers between 0
and 80 km. The horizontal step of the discretization is 1 km by 1 km. The profile data were interpolated
in each layer to fill the gaps between the profiles. The average density value σ0 was calculated for
every layer. This set of density values forms the background density function σ0(z) of the model,
which depends on depth only. Figure 4b shows σ0(z) along with minimal and maximal density values
in the layers. As it can be seen, the average density mostly repeats the character of the minimal
and maximal values. There is a sharp rise of the density at around 5–8 km below the earth’s surface
(the sediment cover); at middle and lower crust depths, the gradient of the density change is low,
and at 40–50 km there is a clearly visible step where the mantle blocks start to appear.
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3.3. Refined Density Model

The method of gravity inversion was developed by the authors and was described in [32].
The inversion was performed in layers consequentially; during this process, the model was refined
to satisfy the observed field. The constructed 1D background density σ0(z) was used for the mass
continuation outside the study volume. An absolute density value in every grid element was replaced
with the density jump (excess density), which is relative to the background density. The iterative scheme
of corrective additions calculations in the horizontal layers provides uniqueness of the inverse problem
solution [33]. The resulting density model is presented in Figure 5. It consists of 1336 × 969 × 800
prismatic elements.
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The comparison of the initial distribution of minimum and maximum density values versus
depth (Figure 4b) with the resulting one (Figure 5b) shows that there were almost no corrections
made to the model in the lower crust and upper mantle. Therefore, the morphology of deeper
boundaries (e.g., Moho), which was estimated by seismic data [3,34], cannot be refined in the process
of gravity modeling.

3.4. Grid Approximation of Thermal Physical Parameters of Geothermal Model

Petrophysics surveys evaluate the dependency between rock densities and their heat production
and thermal conductivity [5,6,8,9,11]. For igneous rocks, the dependency of the density values versus
heat production is most visible and was estimated by Rybach [35,36]. For sedimentary and metamorphic
rocks, the dependency for the concrete region should be used [2,8,27]. Usually it is in the form of
heat production variation intervals for specified density values (e.g., [5,7]). Bulashevich performed
a generalization of these dependencies for the Urals region [23] (Figure 6b). It is satisfactory because
for acidic to ultra-alkaline rocks, the minimum and maximum values of the heat production variation
intervals are close. Using this density versus heat production dependency, the 3D density model was
recalculated into a corresponding thermal model of inner sources of the radiogenic heat production
field. Figure 6a presents this 3D distribution of the crustal field sources.Geosciences 2019, 9, x FOR PEER REVIEW 13 of 23 

 

(a) (b) 

Figure 6. Heat production model. Three-dimensional model of thermal sources in the earth’s crust 
above the Moho (a); generalized dependency between rock density and its thermal production for the 
region [23] (b). 

Another important parameter of stationary thermal models is the thermal conductivity λ. 
Unfortunately, there is no stable and clearly visible relation between the thermal conductivity and 
the rock density. This happens because, in the first place, thermal conductivity depends on 
temperature and pressure, which partially compensate each another [23]. In addition, it depends on 
structural tectonic factors such as a geological age and type of stratification [5,6,9,11,37]. At this stage 
of research, we used values of thermal conductivity taken from a collection of rocks examples for the 
Urals and Siberian regions obtained by Duchkov et al. [26] and Golovanova [8]. This dependency, 
which takes the structural tectonic factors into account, is shown in Figure 7b.  

  

(a) (b) 

Figure 7. Thermal conductivity distribution for elements of 3D density model of the earth’s crust and 
upper mantle (a); dependency between thermal conductivity λ and model density σ values (b). 

3.5. Forward Geothermal Problem 

The formulas for the stationary temperatures and heat flux for three-dimensional geothermal 
models of such a layered media were obtained for the condition of low contrast thermal conductivity 
[7,9,11]. Under this condition the calculated gravity and thermal fields are additive. This fact is the 
basis of our complex interpretation method for gravity and geothermal fields in inhomogeneous 

Figure 6. Heat production model. Three-dimensional model of thermal sources in the earth’s crust
above the Moho (a); generalized dependency between rock density and its thermal production for
the region [23] (b).

Another important parameter of stationary thermal models is the thermal conductivity λ.
Unfortunately, there is no stable and clearly visible relation between the thermal conductivity
and the rock density. This happens because, in the first place, thermal conductivity depends on
temperature and pressure, which partially compensate each another [23]. In addition, it depends on
structural tectonic factors such as a geological age and type of stratification [5,6,9,11,37]. At this stage
of research, we used values of thermal conductivity taken from a collection of rocks examples for
the Urals and Siberian regions obtained by Duchkov et al. [26] and Golovanova [8]. This dependency,
which takes the structural tectonic factors into account, is shown in

3.5. Forward Geothermal Problem

The formulas for the stationary temperatures and heat flux for three-dimensional geothermal models
of such a layered media were obtained for the condition of low contrast thermal conductivity [7,9,11].
Under this condition the calculated gravity and thermal fields are additive. This fact is the basis
of our complex interpretation method for gravity and geothermal fields in inhomogeneous media.



Geosciences 2020, 10, 199 13 of 24

The calculation schemes for the heat flux (Equations (19)–(20)) and field continuation (Equations (21)–(22))
were implemented using the field grid step of 10 × 10 km2. Figure 7b.
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4. Results

Three dimensional distributions of the heat production sources Q in the earth’s crust and thermal
conductivityλ in crust and mantle in the form of a 3D array are shown in Figures 6 and 7 correspondingly.
The heat flux field was calculated from these data using Equation (19). The Q/λ component
of Equation (19) was precalculated by an elementwise division of Q(xk, yk, zk) array (Figure 6a) by
λ(xk, yk, zk) array (Figure 7a). The corrections for the thermal conductivity contrast from the simple layer
sources ν(Sk) were calculated for the model of two boundaries, and, thus, three layers [34]: a sediments
layer with low thermal conductivity (λ ≈ 2 w·m/K), and crustal (λ ≈ 2.6 w·m/K) and mantle layers
with high thermal conductivity (λ ≈ 4.2 w·m/K). Green’s function G for the two flat boundaries
(Equation (A10), Appendix A) and the function K for the layered media (Equation (A17), Appendix B)
correspond to the function of inverse distances in the gravity problem. Figure 8 presents the solution
of the forward thermal flux calculation for the model using Equations (19) and (20). The heat flux
for the earth’s crust is calculated at the earth’s surface level z = 0. The mantle component of
the flow (Equation (20)) is calculated from the difference between the observed and calculated values
of the heat flow.

The mantle component of the flux at the upper boundary of the mantle is changing in wide
interval from the normal (average) values of 20–30 mW/m2 at shields and ancient platforms (e.g.,
Eastern European platform and Timan Pechora plate) [2,5,27]; to high values of 40–50 mW/m2 and more
at the western end of the young Western Siberian plate [11,37]. The mantle flux at the Urals is partially
negative. On the one hand this is connected to the extremely low values of the measured temperature
gradients and, thus, the calculated heat flux, in wells of the Urals geosyncline [8,23]. On the other
hand, the relatively high thermal production at the mountain roots of the Urals Folding System may be
the reason [9]. The negative values of stationary thermal flux at the earth’s surface level are against
the physics of geothermal processes and require a reasonable adjustment of measured data taking
the paleoclimate into account [38,39].
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Inverse Problem of Analytical Fields Continuation

A deep heat flux, which is given through the Neumann boundary problem (Equation (9)),
is a component of the solution of the forward problem for the temperatures (Equation (16)) and heat
flux (Equation (20)). However, it is not an a priori known function. Nevertheless, a “trace” of this
function can be clearly seen in the field flux difference (observed minus radiogenic) at the upper
boundary z = 0 (Figure 8c). The lower bounding surface z = H is a helpful carrier of simple field sources
with a density of µ(xH, yH). Thus, the right hand part of Equation (21) is a convolutional integral
operator for a direct recalculation of the field from the level z = H to the level z = 0. An inversion of
the operator of Equation (21) gives us the solution of the inverse problem of the analytical continuation
of the mantle component of the heat flux down through layered inhomogeneous media in the direction
of field sources.

The inverse problem of the fields continuation is unstable with respect to irregular noise in
the input data. This is why the algorithm for the analytical continuation should include a regularization
parameter. Its value is selected that way so the continuation of the regularized solution to the initial
height level matches (with some error) the initial field. The uprising heat flux at the upper isothermal
surface has a vertical component only. The heat component of earth crust sources is excluded,
and the remaining mantle component is recalculated to a vertical gradient of temperature µ(x, y)
at the lower bounding surface z = H. This is enough for the ability to correct geothermal parameters of
boundary function and calculation of the temperature and heat flux vector components at every point
of the layered inhomogeneous media.

To match the deep mantle component of heat flux with the relief of the upper mantle roof,
the components of the temperature gradient vector were calculated as well as the uprising heat flux
(Equation (22)) at the depths, which correspond to the Mohorovicic boundary position M (x,y). Figure 9
presents the results of the vertical component of mantle flux recalculation to the curvilinear surface of M
boundary. The morphology of the recalculated fields repeats, in general, the relief of mantle structures,
and they have a good match each with the other. The correlation coefficient between the mantle relief
grid and thermal flux grid is 0.76, which was calculated by 133 × 97 grid elements on qobserv(x, y, 0)
field grid.

The increased heat flux corresponds to the uplift (an increase in elevation) of Moho on the west
side of the Western-Siberian plate [37], while the low flux values correspond to the boundary depression
along the Urals mountain belt (approximately 59◦ E) and neighbor foreland basins [9]. On the contrary
to these anomalous geothermal regions, the mantle flux at the eastern edge of the Eastern European
platform and northern part of the Timan–Pechora plate is close to its background average values.
This is usual for ancient shields and platforms [7,11,27].

The heat flux and the vertical component of the calculated temperature gradient at Moho
(Figure 9b) correlates with the age of the geological structures of the earth’s crust as well as with
the seismic waves velocity change at the Mohorovicic discontinuity [5,7]. Such a velocity inhomogeneity
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must be accompanied with inhomogeneous temperature distribution [10,36]. The lower the seismic
waves velocity along the mantle boundary M is, the higher the temperature values of the mantle
blocks [2,3,11,37].
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An isostasy, which has been taken into account in the mathematic model, the change of the density
value is controlled. The blocks in the model of the mantle in Figure 4 were selected taking the isostatic
compensation hypothesis into account. The density of mantle blocks depends on the Moho boundary
relief. Uplifts in the Moho correspond to the increase in thickness of the isostatic compensation
layer and the decrease of the density (and the velocity) in a mantle block. The converse is also true;
a decreased Moho relief corresponds to increased values of density and velocity in underlying mantle
blocks [17].

All the required elements for the evaluation of the mantle heat flux were clarified by authors
earlier during the construction of the velocity and density models for the region [17,31–34]. The inner
agreement of the results obtained by gravity and thermal fields does not contradict with the deep
seismic sounding data. Thus, this presented method is a simple and quite informative technique for
the joint interpretation of geothermal, gravity and seismic data for three dimensional mathematical
modeling for the earth’s lower crust and upper mantle studies.

5. Conclusions

The theory of thermal conjugacy problems solution is based on an analytical approximation
of the inverse thermal conductivity coefficient, which has breaks, at the thermal contact surfaces.
A differential operator for the equation of stationary thermal conductivity in the space of generalized
functions is continuous. A transformation of this continuous operator convolution has given us
the solution of the thermal conjugacy problem in the form of a single integral formula.

An analytical form solution for the Dirichlet–Neumann mixed edge value problem was obtained
for the model of the layer with thermal conductivity jumps on boundaries in the case of an integrable
function of radiogenic heat flow sources distribution. At the break surfaces of the thermal conductivity,
the equivalent sources of the simple layer are formed. Their densities are found from the Fredholm
integral equation system of second order. For the media, which have low contrast in thermal
conductivity, a density of simple layer sources is found in the analytical form and the solution for
the heat flow becomes additive.

We have developed and implemented the algorithms for forward and inverse problems of
stationary thermal conduction for layered media. The principle of field superposition is the basis for
interpretation of thermal and gravity anomalies.
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Using these algorithms, the modeling of thermal parameter distribution in the earth’s crust was
performed. The forward thermal problem solution was obtained. The heat flux and temperature
calculations were made for the model of the density distribution of the Ural region’s upper lithosphere.

The mantle component of the heat flux at the earth’s surface was estimated. An algorithm
for the continuation of this mantle component of the heat flux from the earth’s surface level down
to the Mohorovicic discontinuity surface was developed. A tectonic zoning was performed for
the obtained map of the mantle component of heat flow. The relief of the Moho boundary was
compared to the mantle heat flux anomalies.

Thus, the correctly chosen strategy of a continuum approach to the boundary problem conjugation
for the models of piecewise–homogeneous media (the edge value problems with conditions of the fourth
order) allows one to obtain the solution for quite a complex media geometry in the form of explicit
mathematical expression. At the end, it allowed us to construct the unified additive algorithm for
the stationary thermal field calculation in inhomogeneous media. Joint usage of gravity and thermal
field data in the interpretation improves the reliability of the modeling and reduces the degree of
non-uniqueness of the results of gravity and geothermal data inversion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/10/5/199/s1,
Grid S1: heat flow map for the Urals and neighboring regions (Surfer Binary Grid format, coordinates are in
the Gauss–Kruger zone 11).
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Software, D.D.B.; Visualization, A.G.T.; Writing—Original Draft Preparation, I.V.L., D.D.B., A.G.T. All authors
have read and agreed to the published version of the manuscript.
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Appendix A

Green’s function G is a solution for the Poisson equation with singularity in the right hand part as
follows:

G(X −X0) = −4πδ(X −X0). (A1)

Here, X = (x, y, z) is the Cartesian coordinates of current parameter point, and X0 = (x0, y0, z0)

is the Cartesian coordinates of source point. The solution is sought in the horizontal strip X ∈
(−∞;+∞) × (−∞;+∞) × [0; H] for the inner localization of the source X0 = (x0, y0; 0 < z0 < H).
Homogeneous boundary conditions corresponds to the mixed Dirichlet–Neumann boundary value
problem as follows:

G(x, y, z)

∣∣∣∣∣∣ z = 0
= 0,

∂G(x, y, z)
∂z

∣∣∣∣∣∣ z = H
= 0. (A2)

Let X = (ρ,φ, z); X0 = (ρ0,φ0, z0) be the auxiliary cylindrical coordinate system with depth
axis z located at the same position as depth axis of the source.

x− x0 = (ρ− ρ0)cosφ,
y− y0 = (ρ− ρ0)sinφ.

z = z.

The density of the singular source in Equation (A1) can be transformed into an axially symmetric
function as follows:

δ(X −X0) =
1

2π
δ(ρ− ρ0) δ(z− z0).

http://www.mdpi.com/2076-3263/10/5/199/s1
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With these new variables (ρ− ρ0) = η; z = z, the problem has an axial symmetry, and the G
function does not depend on the angle φ. Therefore,

1
η
∂
∂η

(
η
∂G
∂η

)
+
∂2G
∂z2 = −

2
η
δ(η)δ(z− z0). (A3)

Let F(s, z) be the Hankel transform of G(η, z) with Bessel functions for order 0 [40] as follows:

F(s, z) =

+∞∫
0

G(η, z)J0(ηs)ηdη.

In the space of the integral transformants, Equation (A3) is replaced with the ordinary differential
equation of the second order (J0(0) = 1) :

d2F
dz2 − s2F = −2δ(z− z0). (A4)

In the space of images, the boundary conditions (Equation (A2)) are changed as

F(s, z)

∣∣∣∣∣∣ z = 0
= 0,

∂F(s, z)
∂z

∣∣∣∣∣∣ z = H
= 0. (A5)

The solution of inhomogeneous Equation (A5) is a sum of a complementary solution and the partial
solution, V(s, z), of Equation (A4) as follows:

F(s, z) = A(s)e−sz + B(s)esz + V(s, z),

where A(s) and B(s) are free coefficients, which depend on s, and V(s, z) is a Duhamel integral

V(s, z) = −
2
s

z∫
0

sinhs(z− t) δ(t− z0)dt =

{
0, z ∈ [0; z0)

−
2
s sinh(s(z− z0)), z ∈ (z0; H]

. (A6)

Using boundary conditions (Equation (A5)), we can obtain A(s) and B(s) coefficients

A(s) = −B(s) = −
cos h(s(H − z0))

s·cos h(sH)
.

The duality of the partial solution (Equation (A6)) leads to the duality of the analytical
representation of a general solution for images as follows:

F(s, z) =


2sin h(sz)·cos h(s(H−z0))

s·cos h(sH)
, z ∈ [0; z0)

2sin h(sz0)·cos h(s(H−z))
s·cos h(sH)

, z ∈ (z0; H]
. (A7)

From the intermediate solution (A7) we can select functions, which do not depend on H as follows:

F(s, z) =
2
s

 e−sz0sinh(sz) + e−sH

cos h(sH)
sin h(sz0)sinh(sz), z ∈ [0; z0)

e−szsinh(sz0) +
e−sH

cos h(sH)
sinh(sz)sinh(sz0), z ∈ (z0; H]

.

Using obvious transformations, hyperbolic functions are converted to exponential series as follows:

e−sH

cos h(sH)
=

2e−2sH

1 + e−2sH = −2
+∞∑

n = 1

(−1)ne−2nsH;
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2e−sz>sinh(sz<) = e−s|z>−z< | − e−s(z>+z<),

where z< = min(z, z0); z> = max(z, z0);

and F(s, z) =
1
s

[
e−s|z−z0 | − e−s(z+z0)

]
−

1
s

−

+∞∑
n = 1

(−1)n
{(

e−s[(2nH+z0)+z]
− e−s[(2nH−z0)+z]

)
−

(
e−s[(2nH+z0)−z]

− e−s[(2nH−z0)−z]
)}

.
(A8)

A preimage of the function, G(η, z), is calculated using the inverse Hankel transformation [40]
as follows:

G(η, z) =

+∞∫
0

F(s, z)J0(ηs)sds.

Each member of the exponential series of images (Equation (A8)) is converted into a series of
corresponding preimages for the inverse distance functions [41] as follows:

G(η, z) =
1√

η2 + (z− z0)
2
−

1√
η2 + (z + z0)

2

+
+∞∑

n = 1

(−1)n

 1√
η2 + [z + (2nH − z0)]

2
−

1√
η2 + [z + (2nH + z0)]

2


−

+∞∑
n = 1

(−1)n

 1√
η2 + [z− (2nH − z0)]

2
+

1√
η2 + [z− (2nH + z0)]

2

.

(A9)

Alternating series for Green’s function for the mixed Dirichlet–Neumann problem can be
interpreted as a series of sequential mirror (or electrostatic) reflections [14]. For the odd reflections
of a source from the isothermal (or conductive) plane, the sign is alternating. The even reflections
are from the thermally isolated (or non-conductive) plane and in this case the sign is kept. Thus, for
every source inside the layer z0 ∈ [0; H], the (4n + 1) images of the sources are formed, which are
located in upper (z < 0) and lower (z > H > 0) semispaces. These images are represented with series in
Equation (A9). If we extend the n index to the negative values, the solution formula (Equation (A9))
will have a universal and compact form as follows:

G(x, y, z) =
+∞∑

n = −∞

(−1)n

 1√
R2 + [z + (2nH − z0)]

2
−

1√
R2 + [z + (2nH + z0)]

2

. (A10)

Here, R is a distance between a source point and the observation point in projection to the horizontal

plane: R =
∣∣∣ρ− ρ0

∣∣∣ =

√
(x− x0)

2 + (y− y0)
2.

It seems that in the form of Equation (A10), Green’s function was initially obtained in the electric
survey problem when a sedimentary structure of colorful Nobili rings was studied [15]. The boundary
conditions of these electric and geothermal problems are equal.

Appendix B

Consider a thermal conjugacy problem for the layered media with inhomogeneous
Dirichlet–Neumann conditions at the external boundaries. Its solution is an integral formula
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(Equation (16)), which is a convolution of the internal (i.e., distributed in the volume), Q(τC),
and the external (i.e., located on the surface), µ(SH), field sources with Green’s function K(A, C).
K(A, C) is a solution (Equation (17)) of the same conjugacy problem, but for the singular density
of sources.

K(A, C) = G(A, C) −
1

2π

M∑
k = 1

εk

x

Sk

G(A, Pk)·
(
Nk·∇Pk

)
G(Pk, C)dSPk . (A11)

Equation (A11) in this form separates mixed boundary conditions for the layered model.
The Dirichlet–Neumann conditions at the external boundaries S0 and SH are used in Green’s
function G(A, C), while the conditions of the thermal conjugacy at the thermal contact surfaces Sk are
implemented by convolution of Green’s function and its normal derivative at the internal boundaries.

At the isothermal boundary z = 0 (earth’s surface), an uprising heat flux (Equations (19) and (20))
is proportional to the vertical component of the temperature gradient. The latter is calculated as
a vertical gradient of Green’s function K at point A.

Here, εk is the thermal conductivity contrast at Sk.

∂
∂zA

K(A, C)

∣∣∣∣∣∣ zA = 0
=

 ∂
∂zA

G(A, C) −
1

2π

M∑
k = 1

εk

x

Sk

∂
∂zA

G(A, Pk)·
(
Nk·∇Pk

)
G(Pk, C)dSPk

 zA = 0

(A12)
Using the Cartesian coordinate system (X) = (x, y, z), we define the distances between a source

(or its image) point, C, and two points, namely an observation point, A, and a contact surface Sk point,
Pk = P.

XAC(zA − zC) = |XC −XA| =
√

RAC + (zA − zC);

XPC(zP − zC) = |XC −XP| =
√

RPC + (zP − zC).

Here, RAC, RPC are the distances between corresponding points in the horizontal projection:

RAC =

√
(xA − xC)

2 + (yA − yC)
2 ; RPC =

√
(xP − xC)

2 + (yP − yC)
2.

Let us rewrite a series (Equation (A10)) of Green’s function G(A, C) using this new notation.

G(A, C) =
+∞∑

n = −∞

(−1)n
[

1
XAC(zA + 2nH − zC)

−
1

XAC(zA + 2nH + zC)

]
A vertical derivative G(A, C) with respect to A point (n→ m) yields the following:

∂
∂zA

G(A, C)

∣∣∣∣∣∣ zA = 0
=

2zC

X3
AC(zc)

− 2
+∞∑

m = 1

(−1)m
 (2mH − zC)

X3
AC(2mH − zC)

−
(2mH + zC)

X3
AC(2mH + zC)

. (A13)

A similar method is used for the calculation of the Green’s function G(Pk, C) gradient with respect
to the observation point Pk = P. However, at the curvilinear surface Sk, there are all three components
of the gradient vector, so the convolution of normal Green’s function derivatives can be, in the general
case, found numerically only.

Thermal conductivity altering between layers causes effects of the thermal shielding. Its value
can be estimated by a simplified model of horizontal layers. Let Sk be the horizontal plane z = zk.
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A normal to this plane is directed towards the depth axis. The directional derivative of G with respect
to this normal has the vertical component only:

(NP·∇P)G(P, C) =
∂G(P, C)
∂zP

= −
∂
∂zC

+∞∑
n = −∞

(−1)n
[

1
(XPC(zP + 2nH − zC))

+
1

XPC(zP + 2nH + zC)

]
(A14)

For the flat boundaries Sk the integral convolution (Equation (A12)) is calculated analytically. Now
we introduce the auxiliary cylindrical coordinate system, whose vertical axis goes through the point A.
In the plane (x, A, y), let us switch to the polar coordinates (ρ, φ) for P and C points. Polar angle φ is
counted starting from RAC interval direction. Therefore,

xP = xA + ρ cos(φ); yP = yA + ρ sin(φ); RAP = ρ; RPC =
√
ρ2 + R2

AC − 2ρRAC cos(φ)

The convolution of Equations (A13) and (A14) series production is reduced to the calculation of
(2m + 1)·2(2n + 1) integrals of the same type as follows:

Im,n =

+∞x

−∞

ηmdxPdyP

X3
AP(ηm)XPC(ζn)

=

+∞∫
0

2π∫
0

ηm ρdρdφ[
R2

AP + η2
m

] 3
2
·

√
R2

PC + ζ2
n

.

Index parameter ηm can take two possible values, and parameter ζn can take four values as
follows:

ηmη
∓
m = (2mH ∓ zC); m ∈ [0,+∞) , ζn : = ζ∓n = (zP + 2nH ∓ zC); n ∈ (−∞,+∞) (A15)

Distances RAP and RPC depend on polar coordinates ρ and φ. The following transformation can
be performed:

Im,n =

+∞∫
0

ηm
ρdρ[

%2 + η2
m

]3/2

2π∫
0

dφ√
ρ2 + R2

AC − 2ρRAC cos(φ) + ζ2
n

. (A16)

The function of inverse distance may be written using the Bessel integral as

1√
ρ2 + R2

AC − 2ρRAC cos(φ) + ζ2
n

=

+∞∫
0

e−s|ζn | J0

(
s
√
ρ2 + R2

AC − 2ρRAC cos(φ)
)
ds.

To calculate the inner integral of Equation (A16) with respect to the angle φ, we use a formula for
the Bessel functions with integer order [41] as follows:

2π∫
0

dφ

+∞∫
0

e−s|ζn | J0

(
s
√
ρ2 + R2

AC − 2ρRAC cos(φ)
)
ds =

+∞∫
0

e−s|ζn |ds

2π∫
0

J0(sρ)J0(sRAC) + 2
∞∑

α = 1

Jα(sρ)Jα(sRAC) cos(αφ)

dφ =

2π

+∞∫
0

e−s|ζn | J0(sρ)J0(sRAC)ds.

So,
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Im,n = 2π ηm

+∞∫
0

e−s|ζn | J0(sRAC)ds

+∞∫
0

ρdρ
J0(sρ)[

%2 + η2
m

]3/2
=

2π
ηm∣∣∣ ηm

∣∣∣
+∞∫
0

e−s (| ηm |+|ζn |) J0(sRAC)ds = 2π sgn( ηm)·
1√

R2
AC +

(∣∣∣ ηm

∣∣∣+ |ζn|
)2

.

Here, sgn( ηm) is a symmetric function of its variable, ηm, sign:

sgn(ηm) =


+1, ηm > 0
−1, ηm < 0
0, ηm = 0.

The result of the convolution calculation in Equation (A12) for the derivative K′z can be compactly
written using symbolic from Equation (A15) as follows:

K
′

z(m, n) =
∂
∂zA

K(A, C)

∣∣∣∣∣∣ zA = 0
= 2

+∞∑
m = 0

δm(−1)m ηm[
R2

AC + ηm2
]3/2

∣∣∣∣∣∣∣∣∣
η−m

η+m

+ 2
∂
∂zC

M∑
k(P) = 1

εk×


+∞∑

m = 0

(−1)mδm

+∞∑
n = −∞

(−1)n sgn( ηm)
∂
∂zC

 1√
R2

AC +
(∣∣∣ηm

∣∣∣+ ∣∣∣ζ−n ∣∣∣)2
+

1√
R2

AC +
(∣∣∣ηm

∣∣∣+ ∣∣∣ζ+n ∣∣∣)2


η−m

η+m


(A17)

The substitution of ηm = η∓m values results in the sum of [(2m + 1) + (2m + 1)2(2n + 1)] = (2m +

1)(4n + 3) series elements. δm here means that the element at m = 0 is taken with the coefficient 1/2:

δm =

{
1/2, m = 0

1, m ≥ 1
.

The series (Equation (A17)) for the K
′

z(m, n) derivative is a kernel for the integral operator of
forward problem (Equations (19) and (20)) and the problem of analytical field continuation downwards
to the depth H (Equation (21)). If zP ≤ H/2 then we can ignore the lower boundary effect and get
a simpler formula by setting m = n = 0 in Equation (A17) as follows:

K
′

z(0, 0) = 2 zC

[R2
AC+zC

2]
3/2−2

M∑
k = 1

εk

 2zPk+zC

[R2
AC+(2zPk+zC)

2]
3/2 − sgn(zPk − zC)

(zPk+|zPk−zC|)[
R2

AC+(zPk+|zPk−zC|)
2
]3/2

. (A18)

From Equation (A18), it is clearly seen that zC sources below and above the contact surface
zPk behave differently in the field of temperature gradients K

′

z. For example, an income from µ(zH)

component into the subsurface heat flow (Equation (20)) is calculated from the deep level only, i.e.,
zH = zC > zPk. In this case an effect of the thermal shielding is explicit:

K′z(0, 0)

∣∣∣∣∣∣ zC = zH
= 2

1−
M∑

k = 1

εk

 zH[
R2

AC + zH2
]3/2
− 2

M∑
k = 1

εk

 2zPk + zH[
R2

AC + (2zPk + zH)
2
]3/2


Depending on the εk sign, the temperature gradient on the isothermal plane is higher (for negative)

or lower (for positive) than that of the homogeneous media. The same scheme (Equation (A18))
describes the shielding of the thermal field from sources zC by upper thermal contact boundaries zPk.
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Appendix C

Table A1. List of formula symbols with units.

Name Symbol Unit Comment

Calculated temperature T(x, y.z) ◦K Celsius scale is
acceptable too

P-waves velocity V(x, y.z) km/s

Mass density σ(x, y.z) g/cm3

Temperature at earth’s surface level T(x, y, 0) = θ0
◦C

Thermal conductivity coefficient (x, y.z) W·m/◦K

Thermal diffusivity coefficient cm2/s

Power of thermal sources Q (x, y.z) µW/m3

Calculated heat flux at earth’s surface qz = q(x, y, 0) mW/m2

Model layer thickness H km

Thermal contact surface Sk km2 Element of square

Equation of boundary surface z = zk(x, y) km k = 1, 2, . . . , Mk

Implicit form of boundary surface equation Φk = z− zk(x, y)

Unit normal for the contact surface Nk(x, y, zk(x, y)) k = 1, 2, . . . , Mk

Parameter of neighbor surfaces contrast εk

Function for the area H(Φk)

Density of simple layer νkδ(Φk)
◦K/km2 Defined for layer

Delta function δ(Φk) km−1

Green’s function for two planes G(A, C) km−1

Green’s function for media with M layers K(A, C) km−1
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