Tidal Flood Risk on Salt Farming: Evaluation of Post Events in the Northern Part of Java Using a Parametric Approach
Abstract
:1. Introduction
2. Conceptual Considerations
2.1. Concept and Definition of Hazard, Vulnerability, and Risk
2.1.1. Hazard (H)
2.1.2. Vulnerability (V)
2.1.3. Risk (R)
2.2. Flood Risk Assessment Using a Physical-Based and Multicriteria Approach
3. Description of the Case Study Area
4. Research Materials and Methodology
4.1. Model Framework
4.2. Tidal Flood Hazard Components
4.3. Vulnerability Components
4.4. AHP and Variable Weighting Procedure
4.5. Estimating H, V and R Tidal Flood Indices
4.6. Relationship between the Multi-Criteria and Physical-Based Approach
5. Results and Discussion
5.1. Tidal Hazard on Salt Ponds
5.2. Tidal Flood Vulnerability of Salt Ponds
5.3. Tidal Flood Risk of Salt Ponds
5.4. Validation
5.5. Discussion
5.5.1. Implementation of AHP for Tidal Flood Mapping in Salt Farming
5.5.2. Combined Parametric and Physical-Based Approaches
5.5.3. Possible Uncertainties
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munji, C.A.; Bele, M.Y.; Nkwatoh, A.F.; Idinoba, M.E.; Somorin, O.A.; Sonwa, D.J. Vulnerability to coastal flooding and response strategies: The case of settlements in Cameroon mangrove forests. Environ. Dev. 2013, 5, 54–72. [Google Scholar] [CrossRef]
- Dasgupta, A. Floods and poverty traps: Evidence from Bangladesh. Econ. Polit. Wkly. 2007, 42, 3166–3171. [Google Scholar] [CrossRef]
- Pacetti, T.; Caporali, E.; Rulli, M.C. Floods and food security: A method to estimate the effect of inundation on crops availability. Adv. Water Resour. 2017, 110, 494–504. [Google Scholar] [CrossRef]
- Domeneghetti, A.; Gandolfi, S.; Castellarin, A.; Brandimarte, L.; Di Baldassarre, G.; Barbarella, M.; Brath, A. Flood risk mitigation in developing countries: Deriving accurate topographic data for remote areas under severe time and economic constraints. J. Flood Risk Manag. 2015, 8, 301–314. [Google Scholar] [CrossRef]
- Potts, W.M.; Götz, A.; James, N. Review of the projected impacts of climate change on coastal fishes in southern Africa. Rev. Fish Biol. Fish. 2015, 25, 603–630. [Google Scholar] [CrossRef]
- Gunawan, B.I. Shrimp Fisheries and Aquaculture: Making a Living in the Coastal Frontier of Berau. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2012. [Google Scholar]
- Howlader, M.S.; Akanda, M.G.R. Problems in Adaptation to Climate Change Effects on Coastal Agriculture by the Farmers of Patuakhali District of Bangladesh. Am. J. Rural Dev. 2016, 4, 10–14. [Google Scholar] [CrossRef]
- Oren, A. Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat. Microb. Ecol. 2009, 56, 193–204. [Google Scholar] [CrossRef]
- De Medeiros Rocha, R.; Costa, D.F.; Lucena-Filho, M.A.; Bezerra, R.M.; Medeiros, D.H.; Azevedo-Silva, A.M.; Araújo, C.N.; Xavier-Filho, L. Brazilian solar saltworks—ancient uses and future possibilities. Aquat. Biosyst. 2012, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Apriani, M.; Hadi, W.; Masduqi, A. Physicochemical properties of sea water and bittern in Indonesia: Quality improvement and potential resources utilization for marine environmental sustainability. J. Ecol. Eng. 2018, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Willemsen, P.; van der Lelij, A.C.; Wesenbeeck, B. Van Risk Assessment North Coast Java; Wetlands International: Wageningen, The Netherlands, 2019. [Google Scholar]
- Dede, M.; Widiawaty, M.A.; Pramulatsih, G.P.; Ismail, A.; Ati, A.; Murtianto, H. Integration of participatory mapping, crowdsourcing and geographic information system in flood disaster management (case study Ciledug Lor, Cirebon). J. Inf. Technol. Its Util. 2019, 2, 44. [Google Scholar] [CrossRef]
- Quinn, N.; Lewis, M.; Wadey, M.P.; Haigh, I.D. Assessing the temporal variability in extreme storm-tide time series for coastal flood risk assessment. J. Geophys. Res. Ocean. 2014, 119, 4983–4998. [Google Scholar] [CrossRef]
- Lyddon, C.; Brown, J.M.; Leonardi, N.; Plater, A.J. Flood Hazard Assessment for a Hyper-Tidal Estuary as a Function of Tide-Surge-Morphology Interaction. Estuaries Coasts 2018, 1565–1586. [Google Scholar] [CrossRef] [Green Version]
- Lia, E. Puluhan Ribu Ton Garam di Cirebon Tersapu Banjir Rob page-2: Okezone News. Available online: https://news.okezone.com/read/2016/06/17/525/1418255/puluhan-ribu-ton-garam-di-cirebon-tersapu-banjir-rob?page=2 (accessed on 10 June 2019).
- Metrotv 700 Hectares of Salt Pond in Cirebon Submerged Coastal Flood (In Bahasa). Available online: http://m.metrotvnews.com/jabar/peristiwa/JKR4MYQb-700-hektare-tambak-garam-di-cirebon-terendam-banjir-rob (accessed on 29 September 2017).
- radarcirebon.com Waspada Rob Susulan, Ini Sebabnya. Available online: http://www.radarcirebon.com/waspada-rob-sususlan-ini-sebabnya.html (accessed on 26 March 2021).
- Nirwansyah; Braun Mapping Impact of Tidal Flooding on Solar Salt Farming in Northern Java using a Hydrodynamic Model. ISPRS Int. J. Geo-Information 2019, 8, 451. [CrossRef] [Green Version]
- Budiyono, Y. Flood Risk Modeling in Jakarta Development: Development and Usefulness in a Time of Climate Change; Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Budiyono, Y.; Aerts, J.; Brinkman, J.J.; Marfai, M.A.; Ward, P. Flood risk assessment for delta mega-cities: A case study of Jakarta. Nat. Hazards 2015, 75, 389–413. [Google Scholar] [CrossRef]
- Suroso, D.S.A.; Firman, T. The role of spatial planning in reducing exposure towards impacts of global sea level rise case study: Northern coast of Java, Indonesia. Ocean Coast. Manag. 2018, 153, 84–97. [Google Scholar] [CrossRef]
- Apel, H.; Aronica, G.T.; Kreibich, H.; Thieken, A.H. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49, 79–98. [Google Scholar] [CrossRef]
- Ward, P.J.; De Moel, H.; Aerts, J.C.J.H. How are flood risk estimates affected by the choice of return-periods? Nat. Hazards Earth Syst. Sci. 2011, 11, 3181–3195. [Google Scholar] [CrossRef] [Green Version]
- Merz, B.; Thieken, A.H. Flood risk curves and uncertainty bounds. Nat. Hazards 2009, 51, 437–458. [Google Scholar] [CrossRef]
- Ganji, Z.; Shokoohi, A.; Samani, J.M. V Developing an agricultural flood loss estimation function (case study: Rice). Nat. Hazards 2012, 64, 405–419. [Google Scholar] [CrossRef]
- Bhakta Shrestha, B.; Sawano, H.; Ohara, M.; Yamazaki, Y.; Tokunaga, Y. Methodology for Agricultural Flood Damage Assessment. In Recent Advances in Flood Risk Management; IntechOpen: London, UK, 2019; Volume i, p. 13. [Google Scholar]
- Chau, V.N.; Cassells, S.; Holland, J. Economic impact upon agricultural production from extreme flood events in Quang Nam, central Vietnam. Nat. Hazards 2015, 75, 1747–1765. [Google Scholar] [CrossRef]
- Huda, F.A. Economic Assessment of Farm Level Climate Change Adaptation Options: Analytical Approach and Empirical Study for the Coastal Area of Bangladesh; Humboldt-Universität zu Berlin: Berlin, Germany, 2015. [Google Scholar]
- Hartini, S. Modeling of Flood Risk of Agriculture land Area in Part of North Coast of Central Java; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2015. [Google Scholar]
- Sianturi, R.; Jetten, V.; Ettema, J.; Sartohadi, J. Distinguishing between Hazardous Flooding and Non-Hazardous Agronomic Inundation in Irrigated Rice Fields: A Case Study from West Java. Remote Sens. 2018, 10, 1003. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Kar, S.K. Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat. Hazards 2018, 94, 349–368. [Google Scholar] [CrossRef]
- Kron, W. Flood Risk = Hazard • Values • Vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Tsakiris, G.; Nalbantis, I.; Pistrika, A. Critical Technical Issues on the EU Flood Directive. Eur. Water 2009, 2526, 39–51. [Google Scholar]
- ADPC. A Primer: Disaster Risk Management in Asia. Apikul, C., Noson, L., Karumaratne, G., Choong, W., Eds.; ADPC: Bangkok, Thailand, 2005; ISBN 9746802313. [Google Scholar]
- UNISDR. 2009 UNISDR Terminology on Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 2009; ISBN 978-600-6937-11-3. [Google Scholar]
- Vozinaki, A.E.K.; Karatzas, G.P.; Sibetheros, I.A.; Varouchakis, E.A. An agricultural flash flood loss estimation methodology: The case study of the Koiliaris basin (Greece), February 2003 flood. Nat. Hazards 2015, 79, 899–920. [Google Scholar] [CrossRef]
- Hadipour, V.; Vafaie, F.; Deilami, K. Coastal flooding risk assessment using a GIS-based spatial multi-criteria decision analysis approach. Water 2020, 12, 2379. [Google Scholar] [CrossRef]
- Dutta, D.; Herath, S.; Musiake, K. A mathematical model for flood loss estimation. J. Hydrol. 2003, 277, 24–49. [Google Scholar] [CrossRef]
- Luu, C.; Von Meding, J.; Kanjanabootra, S. Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Nat. Hazards 2018, 90, 1031–1050. [Google Scholar] [CrossRef]
- Cai, T.; Li, X.; Ding, X.; Wang, J.; Zhan, J. Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. Int. J. Disaster Risk Reduct. 2019, 35, 101077. [Google Scholar] [CrossRef]
- Glaz, B.; Lingle, S.E. Flood Duration and Time of Flood Onset Effects on Recently Planted Sugarcane. Agron. J. 2012, 104, 575–583. [Google Scholar] [CrossRef]
- Cardona, O.-D.; van Aalst, M.K.; Birkmann, J.; Forndham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T. Determinants of Risk: Exposure and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Black, A.R. Flood seasonality and physical controls in flood risk estimation. Scott. Geogr. Mag. 1995, 111, 187–190. [Google Scholar] [CrossRef]
- Ronco, P.; Gallina, V.; Torresan, S.; Zabeo, A.; Semenzin, E.; Critto, A.; Marcomini, A. The KULTURisk Regional Risk Assessment methodology for water-related natural hazards—Part 1: Physical—environmental. Hydrol. Earth Syst. Sci. 2014, 5399–5414. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.A.; Jaimes, M.A.; Reinoso, E.; Ordaz, M. Event-based approach for probabilistic flood risk assessment. Int. J. River Basin Manag. 2014, 12, 377–389. [Google Scholar] [CrossRef]
- Nasiri, H.; Mohd Yusof, M.J.; Mohammad Ali, T.A. An overview to flood vulnerability assessment methods. Sustain. Water Resour. Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Balica, S.F.F.; Popescu, I.; Beevers, L.; Wright, N.G.G. Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environ. Model. Softw. 2013, 41, 84–92. [Google Scholar] [CrossRef]
- UNDP. Reducing Disaster Risk: A Challenge for Development-A Global Report; UNDP: New York, NY, USA, 2004; ISBN 9211261600. [Google Scholar]
- Dandapat, K.; Panda, G.K. Flood vulnerability analysis and risk assessment using analytical hierarchy process. Model. Earth Syst. Environ. 2017, 3, 1627–1646. [Google Scholar] [CrossRef]
- Thouret, J.C.; Ettinger, S.; Guitton, M.; Santoni, O.; Magill, C.; Martelli, K.; Zuccaro, G.; Revilla, V.; Charca, J.A.; Arguedas, A. Assessing physical vulnerability in large cities exposed to flash floods and debris flows: The case of Arequipa (Peru). Nat. Hazards 2014, 73, 1771–1815. [Google Scholar] [CrossRef]
- Post, J.; Zosseder, K.; Strunz, G.; Birkmann, J.; Gebert, N.; Setiadi, N.; Anwar, H.Z.; Harjono, H. Risk and vulnerability assessment to tsunami and coastal hazards in Indonesia: Conceptual framework and indicator development. In Proceedings of the International Symposium on Disaster in Indonesia, Padang, Indonesia, 26–28 July 2007; pp. 26–29. [Google Scholar]
- Voss, M. The vulnerable can′t speak. An integrative vulnerability approach to disaster and climate change research. Behemoth 2008, 1. [Google Scholar] [CrossRef]
- Mohamed, S.A.; El-Raey, M.E. Vulnerability assessment for flash floods using GIS spatial modeling and remotely sensed data in El-Arish City, North Sinai, Egypt. Nat. Hazards 2020, 102, 707–728. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys. 2019, 67, 215–229. [Google Scholar] [CrossRef]
- Silva, S.F.; Martinho, M.; Capitão, R.; Reis, T.; Fortes, C.J.; Ferreira, J.C. An index-based method for coastal-flood risk assessment in low-lying areas (Costa de Caparica, Portugal). Ocean Coast. Manag. 2017, 144, 90–104. [Google Scholar] [CrossRef]
- Rimba, A.; Setiawati, M.; Sambah, A.; Miura, F. Physical Flood Vulnerability Mapping Applying Geospatial Techniques in Okazaki City, Aichi Prefecture, Japan. Urban Sci. 2017, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.A.A.; Tasfia, S.; Ahmed, N.; Pradhan, B. Assessing spatial flood vulnerability at kalapara upazila in Bangladesh using an analytic hierarchy process. Sensors 2019, 19, 1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satta, A. An Index-Based Method to Assess Vulnerabilities and Risks of Mediterranean Coastal Zones to Multiple Hazards; Ca’ Foscari University of Venice: Venice, Italy, 2014. [Google Scholar]
- UNISDR. Proposed Updated Terminology on Disaster Risk Reduction: A Technical Review; UNISDR: Geneva, Switzerland, 2015; pp. 1–31. [Google Scholar]
- Khazai, B.; Daniell, J.; Apel, H. Risk Analysis Course Manual; Gfdrr: Washington, DC, USA, 2011. [Google Scholar]
- Baky, A.; Islam, M.; Paul, S. Flood Hazard, Vulnerability and Risk Assessment for Different Land Use Classes Using a Flow Model. Earth Syst. Environ. 2020, 4, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V.; Haase, D.; Scheuer, S. GIS-Based Multicriteria Analysis as Decision Support in Flood Risk Management; Helmholz Unweltforschungszentrum (UFZ): Leipzig, Germany, 2007. [Google Scholar]
- Afifi, Z.; Chu, H.J.; Kuo, Y.L.; Hsu, Y.C.; Wong, H.K.; Ali, M.Z. Residential flood loss assessment and risk mapping from high-resolution simulation. Water 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Falconer, R.A.; Lin, B.; Tan, G. Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environ. Model. Softw. 2011, 26, 987–998. [Google Scholar] [CrossRef]
- Sadeghi-Pouya, A.; Nouri, J.; Mansouri, N.; Kia-Lashaki, A. Developing an index model for flood risk assessment in the western coastal region of Mazandaran, Iran. J. Hydrol. Hydromech. 2017, 65, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Kourgialas, N.N.; Karatzas, G.P. A flood risk decision making approach for Mediterranean tree crops using GIS; climate change effects and flood-tolerant species. Environ. Sci. Policy 2016, 63, 132–142. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Meyer, V.; Scheuer, S.; Haase, D. A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat. Hazards 2009, 48, 17–39. [Google Scholar] [CrossRef]
- Rincón, D.; Khan, U.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Danumah, J.H.; Odai, S.N.; Saley, B.M.; Szarzynski, J.; Thiel, M.; Kwaku, A.; Kouame, F.K.; Akpa, L.Y. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire). Geoenviron. Disasters 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, J.S.; Lee, H.S. Lee Flood-Prone Area Assessment Using GIS-Based Multi-Criteria Analysis: A Case Study in Davao Oriental, Philippines. Water 2019, 11, 2203. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Mukhopadhyay, S. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application in Coochbehar district of West Bengal, India. Nat. Hazards 2019, 99, 247–274. [Google Scholar] [CrossRef]
- Siddayao, G.P.; Valdez, S.E.; Fernandez, P.L. Analytic Hierarchy Process (AHP) in Spatial Modeling for Floodplain Risk Assessment. Int. J. Mach. Learn. Comput. 2014, 4, 450–457. [Google Scholar] [CrossRef]
- de Brito, M.M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Development Planning Board. Middle Term of Development Plan; Development Planning Board: Cirebon, Indonesia, 2014. [Google Scholar]
- Hadian, M.S.D.; Hardadi, R.R.; Barkah, M.N.; Suganda, B.R.; Putra, D.B.E.; Sulaksana, N. Groundwater Characteristic and Quality of Unconfined Aquifer in Cirebon City. In Proceedings of the 2nd Join Conference of Utsunomiya University and Universitas Pad, Utsunomiya, Japan, 24 November 2017; pp. 48–54. [Google Scholar]
- Suhendra; Amron, A.; Hilmi, E. The pattern of coastline change based on the characteristics of sediment and coastal slope in Pangenan coast of Cirebon, West Java. E3S Web Conf. 2018, 47, 06001. [Google Scholar] [CrossRef]
- BPS Cirebon. Cirebon Cirebon Regency in Figure; BPS-Statistics of Cirebon Regency: Cirebon, Indonesia, 2020.
- Munadi, E.; Ardiyanti, S.T.; Ingot, S.R.; Lestari, T.K.; Subekti, N.A.; Salam, A.R.; Alhayat, A.P.; Salim, Z. Info Komoditi Garam; Salim, Z., Munadi, E., Eds.; Badan Pengkajian dan Pengembangan Perdagangan: Jakarta, Indonesia, 2016; ISBN 9789794618905.
- Luu, C.; Tran, H.X.; Pham, B.T.; Al-Ansari, N.; Tran, T.Q.; Duong, N.Q.; Dao, N.H.; Nguyen, L.P.; Nguyen, H.D.; Ta, H.T.; et al. Framework of spatial flood risk assessment for a case study in quang binh province, Vietnam. sustainability 2020, 12, 3058. [Google Scholar] [CrossRef] [Green Version]
- Nirwansyah, A.W.; Braun, B. Assessing the degree of tidal flood damage to salt harvesting landscape using synthetic approach and GIS—Case study: Cirebon, West Java. Int. J. Disaster Risk Reduct. 2021, 55, 102099. [Google Scholar] [CrossRef]
- Serinaldi, F.; Loecker, F.; Kilsby, C.G.; Bast, H. Flood propagation and duration in large river basins: A data-driven analysis for reinsurance purposes. Nat. Hazards 2018, 94, 71–92. [Google Scholar] [CrossRef] [Green Version]
- Molinari, D.; Ballio, F.; Handmer, J.; Menoni, S. On the modeling of significance for flood damage assessment. Int. J. Disaster Risk Reduct. 2014, 10, 381–391. [Google Scholar] [CrossRef]
- Baig, M.R.I.; Shahfahad; Ahmad, I.A.; Tayyab, M.; Asgher, M.S.; Rahman, A. Coastal Vulnerability Mapping by Integrating Geospatial Techniques and Analytical Hierarchy Process (AHP) along the Vishakhapatnam Coastal Tract, Andhra Pradesh, India. J. Indian Soc. Remote Sens. 2021, 49, 215–231. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Rahman, M.; Ningsheng, C.; Islam, M.M.; Dewan, A.; Iqbal, J.; Washakh, R.M.A.; Shufeng, T. Flood Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-criteria Decision Analysis. Earth Syst. Environ. 2019, 3, 585–601. [Google Scholar] [CrossRef]
- Gozan, M.; Ningsih, Y.; Efendy, M.; Basri, F.H. Hikayat si Induk Bumbu, 1st ed.; Rusi, N., Saripudin, J., Isaiyas, I., Eds.; Kepustakaan Populer Gramedia: Jakarta, Indonesia, 2018; ISBN 9786024247928. (In Indonesia) [Google Scholar]
- Bui, D.T.; Ngo, P.T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 2019, 179, 184–196. [Google Scholar] [CrossRef]
- Mahasin, M.Z.; Rochwulaningsih, Y.; Sulistiyono, S.T. Coastal Ecosystem as Salt Production Centre in Indonesia. E3S Web Conf. 2020, 202. [Google Scholar] [CrossRef]
- Hillel, D. Fundamentals of Soil Physics; Elsevier: Amsterdam, The Netherlands, 1980; ISBN 9780080918709. [Google Scholar]
- Subardja, D.S.; Ritung, S.; Anda, M.; Sukarman; Suryani, E.; Subandiono, R.E. Petunjuk Teknis Klasifikasi Tanah Nasional; Hikmatullah, H., Suparto, S., Tafakresnanto, C., Suratman, S., Nugroho, K., Eds.; Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan: Bogor, Indonesia, 2014; ISBN 9786024362867.
- Sulaeman, Y.; Poggio, L.; Minasny, B.; Nursyamsi, D. (Eds.) Tropical Wetlands—Innovation in Mapping and Management; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429264467. [Google Scholar]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Hsu, T.-W.; Shih, D.-S.; Li, C.-Y.; Lan, Y.-J.; Lin, Y.-C. A Study on Coastal Flooding and Risk Assessment under Climate Change in the Mid-Western Coast of Taiwan. Water 2017, 9, 390. [Google Scholar] [CrossRef]
- Yadollahi, M.; Rosli, M.Z. Development of the Analytical Hierarchy Process (AHP) method for rehabilitation project ranking before disasters. WIT Trans. Built Environ. 2011, 119, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, R. A note on the use of the analytic hierarchy process for environmental impact assessment. J. Environ. Manag. 2001, 63, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Decision making with the Analytic Hierarchy Process. Sci. Iran. 2002, 9, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Goepel, K.D. Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises—A New AHP Excel Template with Multiple Inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, Malaysia, 23–26 June 2013; Volume 2, pp. 1–10. [Google Scholar]
- Komi, K.; Amisigo, B.; Diekkrüger, B. Integrated Flood Risk Assessment of Rural Communities in the Oti River Basin, West Africa. Hydrology 2016, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; Vargas, L.G.; Dellmann, K. The allocation of intangible resources: The analytic hierarchy process and linear programming. Socioecon. Plann. Sci. 2003, 37, 169–184. [Google Scholar] [CrossRef]
- Luu, C.; von Meding, J. A flood risk assessment of Quang Nam, Vietnam using spatial multicriteria decision analysis. Water 2018, 10, 461. [Google Scholar] [CrossRef]
- Jongman, B.; Kreibich, H.; Apel, H.; Barredo, J.I.; Bates, P.D.; Feyen, L.; Gericke, A.; Neal, J.; Aerts, J.C.J.H.; Ward, P.J. Comparative flood damage model assessment: Towards a European approach. Nat. Hazards Earth Syst. Sci. 2012, 12, 3733–3752. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.C.; Pine, J. Comparative Analysis Between Different Flood Assessment Technologies in Hazus-MH. Master’s Thesis, Louisiana State University, Baton Rouge, Louisiana, 2004; p. 72. [Google Scholar]
- Molinari, D.; Scorzini, A.R.; Arrighi, C.; Carisi, F.; Castelli, F.; Gallazzi, A.; Galliani, M.; Grelot, F.; Kellermann, P.; Kreibich, H.; et al. Are flood damage models converging to reality ? Lessons learnt from a blind test. Nat. Hazards Earth Syst. Sci. 2020, 1–32. [Google Scholar] [CrossRef]
- Moftakhari, H.R.; Aghakouchak, A.; Sanders, B.F.; Matthew, R.A. Earth’s Future Special Section: Cumulative hazard: The case of nuisance flooding Earth’ s Future. Earth’s Futur. 2017, 214–223. [Google Scholar] [CrossRef]
- Karegar, M.A.; Dixon, T.H.; Malservisi, R.; Kusche, J.; Engelhart, S.E. Nuisance Flooding and Relative Sea-Level Rise: The Importance of Present-Day Land Motion. Sci. Rep. 2017, 7, 11197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, W.; Martínez-Amador, M.; Salles, P.; Mendoza, E.T.; Trejo-Rangel, M.A.; Franklin, G.L.; Ruiz-Salcines, P.; Appendini, C.M.; Quintero-Ibáñez, J. Assessing different flood risk and damage approaches: A case of study in progreso, Yucatan, Mexico. J. Mar. Sci. Eng. 2020, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Díez-Herrero, A.; Garrote, J. Flood Risk Analysis and Assessment, Applications and Uncertainties: A Bibliometric Review. Water 2020, 12, 2050. [Google Scholar] [CrossRef]
- Mani Murali, R.; Ankita, M.; Amrita, S.; Vethamony, P. Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Nat. Hazards Earth Syst. Sci. 2013, 13, 3291–3311. [Google Scholar] [CrossRef] [Green Version]
- Satta, A.; Snoussi, M.; Puddu, M.; Flayou, L.; Hout, R. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan. Estuar. Coast. Shelf Sci. 2016, 175, 93–105. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Sudha Rani, N.N.V.; Rice, L.; Sur, K.; Thayaparan, M.; Kulatunga, U.; Rege, R.; Yenneti, K.; Campos, L. A Systematic Review of Coastal Vulnerability Assessment Studies along Andhra Pradesh, India: A Critical Evaluation of Data Gathering, Risk Levels and Mitigation Strategies. Water 2019, 11, 393. [Google Scholar] [CrossRef] [Green Version]
- Anh, N.L. Climate Proofing Aquaculture: A case Study on Pangasius Farming in the Mekong Delta. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2014. [Google Scholar]
- Ruane, A.C.; Major, D.C.; Yu, W.H.; Alam, M.; Hussain, S.G.; Khan, A.S.; Hassan, A.; Al Hossain, B.M.T.; Goldberg, R.; Horton, R.M.; et al. Multi-factor impact analysis of agricultural production in Bangladesh with climate change. Glob. Environ. Chang. 2013, 23, 338–350. [Google Scholar] [CrossRef] [Green Version]
- Parker, B.B. Tidal Analysis and Prediction; NOAA Special Publication NOS CO-OPS 3; NOAA: Silver Spring, ML, USA, 2007.
- Lein, J.K.; Abel, L.E. Hazard vulnerability assessment: How well does nature follow our rules? Environ. Hazards 2010, 9, 147–166. [Google Scholar] [CrossRef]
- Yunus, A.; Avtar, R.; Kraines, S.; Yamamuro, M.; Lindberg, F.; Grimmond, C. Uncertainties in Tidally Adjusted Estimates of Sea Level Rise Flooding (Bathtub Model) for the Greater London. Remote Sens. 2016, 8, 366. [Google Scholar] [CrossRef] [Green Version]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Skianis, G.A.; Chousianitis, K.G. Assessment of rural community and agricultural development using geomorphological–geological factors and GIS in the Trikala prefecture (Central Greece). Stoch. Environ. Res. Risk Assess. 2013, 27, 573–588. [Google Scholar] [CrossRef]
Intensity Importance | Definition | Description |
---|---|---|
1 |
|
|
3 |
|
|
5 |
|
|
7 |
|
|
9 |
|
|
2, 4, 6, 8 |
|
|
Reciprocals |
|
|
Risk Components | Indicators | Functional Relation | Classes | Unit | Rank | Normalized Score |
---|---|---|---|---|---|---|
Hazard (H) | Depth (H1) | Direct | >150 100–150 50–100 15–50 <15 | cm | 1 2 3 4 5 | 0.33 0.27 0.20 0.13 0.07 |
Duration (H2) | Direct | >5 2–5 <2 | day | 1 2 3 | 0.50 0.33 0.17 | |
Timing (H3) | Conditional | Harvesting period Post-production period Construction period | 1 2 3 | 0.50 0.33 0.17 | ||
Vulnerability (V) | Elevation (V1) | Inverse | <0.5 0.5–1 1–1.5 1.5–2 >2 | meter | 1 2 3 4 5 | 0.33 0.27 0.20 0.13 0.07 |
Coastal slope (V2) | Inverse | <0.025 0.025–0.04 0.04–0.07 0.07–0.2 >0.2 | % | 1 2 3 4 5 | 0.33 0.27 0.20 0.13 0.07 | |
Geology feature (V3) | Direct | Flood plain deposits Sand with silts and clay Mountain formation Younger volcanic | 1 2 3 4 | 0.40 0.30 0.20 0.10 | ||
Soil type (V4) | Inverse | Alluvial Gleic Gleysol Cambisol Latosol | 1 2 3 4 | 0.40 0.30 0.20 0.10 | ||
Distance to channel (V5) | Inverse | <200 200–400 400–600 600–800 >800 | meter | 1 2 3 4 5 | 0.33 0.27 0.20 0.13 0.07 | |
Distance to shore (V6) | Inverse | <250 250–500 500–750 750–1000 >1000 | meter | 1 2 3 4 5 | 0.33 0.27 0.20 0.13 0.07 |
Number of criteria | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
RI | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 |
2016 Event | 2018 Event | |||
---|---|---|---|---|
Parametric | Physical-Based | Parametric | Physical-Based | |
Minimum loss (on an individual parcel) | 0.00 | 0.00 | 0.00 | 0.00 |
Maximum loss (on an individual parcel) | 13,287.28 | 13,322.72 | 2.491.73 | 2528.72 |
Mean | 6500.68 | 6912.17 | 1240.87 | 1286.23 |
Estimated total damage | 77,290,054 | 74,105,354 | 13,596,499 | 13,789,773 |
Sample (n = 270 parcels) | ||||
Pearson coefficient (r) | 0.81 | 0.84 | ||
Type of correlation | Strongly positive | Strongly positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nirwansyah, A.W.; Braun, B. Tidal Flood Risk on Salt Farming: Evaluation of Post Events in the Northern Part of Java Using a Parametric Approach. Geosciences 2021, 11, 420. https://doi.org/10.3390/geosciences11100420
Nirwansyah AW, Braun B. Tidal Flood Risk on Salt Farming: Evaluation of Post Events in the Northern Part of Java Using a Parametric Approach. Geosciences. 2021; 11(10):420. https://doi.org/10.3390/geosciences11100420
Chicago/Turabian StyleNirwansyah, Anang Widhi, and Boris Braun. 2021. "Tidal Flood Risk on Salt Farming: Evaluation of Post Events in the Northern Part of Java Using a Parametric Approach" Geosciences 11, no. 10: 420. https://doi.org/10.3390/geosciences11100420
APA StyleNirwansyah, A. W., & Braun, B. (2021). Tidal Flood Risk on Salt Farming: Evaluation of Post Events in the Northern Part of Java Using a Parametric Approach. Geosciences, 11(10), 420. https://doi.org/10.3390/geosciences11100420