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Abstract: The purpose of the work presented in this paper is to study the reflection and transmission
coefficients resulting from the interactions of regular waves with a rectangular breakwater sited
at the bottom of a tank. The present investigation is devoted to the analysis of the reflection and
transmission coefficients within the framework of linearized potential flow theory using two methods,
a numerical method based on the improved version of the meshless singular boundary method, and
the analytical approach within the plane wave model. The numerical method is first validated by
studying the accuracy of the numerical computations with respect to the number of boundary nodes
and the location of the vertical boundaries of the computational domain, for different immersion
ratios (h/d) and different relative lengths (w/d) of the obstacle. To assess the limitations of the analytical
approach, a comparison analysis is carried out between the analytical and numerical results. To
improve the calculations and the effectiveness of the analytical model, slight adjustments are made
to the analytical procedure, which is termed here the corrected analytical plane wave model. Finally,
the effects of the immersion ratio (h/d) and the relative length (w/d) of the obstacle on the reflection
and transmission coefficients are computed using the three methods, and discussed for several wave
and structural conditions.

Keywords: breakwater; analytical approach; meshless method; reflection and transmission coeffi-
cients; wave-structure interactions

1. Introduction

The coast is a site where several phenomena can appear and affect coastal structures,
such as sea-level rise caused by climate change, erosion due to wave actions, and the
decrease of fluvial sediment supply caused by the construction of dams, etc. Consequently,
researchers, engineers, and scientists have shown that the reflection of swell is one of
the convincing and relevant solutions to overcome problems of erosion, surges, marine
submersions, and all phenomena to which these structures can be exposed. Therefore, the
maximization of wave reflection has become extremely important in coastal engineering,
and arouses the interest of many researchers in the literature to investigate the numerical,
experimental, and theoretical methods that can study the reflection of wave–structure
interactions.

Considerable research has been carried out in the past on different types of breakwa-
ters. Nevertheless, the operating conditions of breakwaters are very challenging and, hence,
there is still a need for additional research to fill in the gaps. A short account of what has
been delivered up till now is given here. Dean [1] studied the effect of the wave amplitudes
on the reflection of surface waves by a submerged plane barrier. Takano [2] evaluated the
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passage effect of waves propagating under a rectangular breakwater. Patarapanich [3] stud-
ied the wave reflection and transmission by a submerged thin horizontal plate using the
finite element method (FEM). Using the matched asymptotic method, Liu and Jiankng [4]
investigated the transmitted wave intensity through a submerged slit on a vertical barrier.
On the other hand, using a parametric experimental design, Stamos et al. [5] compared
the reflection and transmission coefficients resulting from the interaction of waves with a
variety of submerged water-filled breakwater models of hemi-cylindrical and rectangular
shapes. Molin et al. [6] carried out laboratory experiments to investigate the interaction
of waves with a rigid vertical plate. Shortly afterwards, Lui et al. [7] examined the Bragg
reflections of water waves by multiple submerged semi-circular breakwaters.

Further, the submerged rectangular step is a structure mostly used as a breakwater
to protect shorelines by diminishing the destructive effects of the wave actions, reducing
the erosion of coasts, and protecting coastal structures from damage [8]. Recently, the
rectangular submerged breakwater has started to receive more attention compared to the
traditional emerged structures, due to its attractive aesthetics and ability to allow water
circulation as well as the passage of fish. Several experimental, analytical, and numerical
studies have been devoted to studying the reflection and transmission of swells by this
type of structure. Mei and Black [9] studied the problem of scattering properties for bottom
and surface obstacles using the variational method. Massel [10] investigated the interaction
of waves with an infinite- and finite-length rectangular submerged breakwater. Andrew
et al. [11] presented an experimental and numerical study based on the boundary element
method (BEM) to investigate the propagation of waves over a submerged impermeable
obstacle of a rectangular cross section. Recently, Szmidt [12] studied numerically using the
finite difference method (FDM), the interaction of waves with a rectangular breakwater
fixed at the bottom of numerical wave tank (NWT), and estimated the efficiency of the
breakwater in protecting sea shelf zones from open sea waves.

We propose to investigate, in this paper, the capabilities of the improved version
of the meshless singular boundary method (ISBM) [13–15] to analyze the reflection and
transmission coefficients resulting from the interactions of regular waves with a rectangular
breakwater sited at the bottom of a tank. The method is validated by studying the accuracy
of the numerical results with respect to the number of boundary nodes and the location of
the vertical boundaries of the computational domain for different immersion ratios (h/d)
and different relative lengths (w/d) of the obstacle. Further, the analytical reflection and
transmission coefficients within the plane wave model (see Appendix A) are compared
with the results of the numerical model and discussed for several wave and structural
conditions. To improve the shortfalls of the analytical model, slight modifications are
introduced to the analytical procedure, which is termed here the corrected analytical plane
wave model. Finally, a general discussion is made to highlight the strengths and limitations
of the corrected plane wave model.

This paper is divided into five main sections. After presenting the introduction of the
work and stating the objective of this research in Section 1, the formulation of the problem
and the numerical method used in this work are presented in Sections 2 and 3. In Section 4,
the error sensitivity indicator, and comparisons of the numerical and analytical results
and analysis, are presented to study the interactions of regular waves with a rectangular
breakwater sited at the bottom of a tank. Finally, some conclusions and perspectives are
illustrated in Section 5.

2. Formulation of the Problem

We consider, in this study, a submerged single impermeable rectangular step (break-
water) which is placed at the bottom, as shown in Figure 1.



Geosciences 2021, 11, 430 3 of 17Geosciences 2021, 11, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 1. Breakwater system of this study. 

The idealized geometry of the two-dimensional (2D) problem in a Cartesian system 
(x-y) is shown in Figure 2. Regular waves of small amplitude a, period T, and wavelength 
L impinge from the left in water of depth d. Assuming an irrotational flow and incom-
pressible fluid motion, the problem is formulated using a velocity potential Φ(𝑥, 𝑦, 𝑡) =𝑅𝑒[𝜙(𝑥, 𝑦). exp (𝑖𝜎𝑡)] where Re denotes the real part, 𝜙(𝑥, 𝑦)is the time independent 
spatial velocity potential,𝑖 = √−1 , 𝜎 = 2𝜋 𝑇⁄  is the wave angular frequency, and t is the 
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specified if the two-dimensional velocity potential φ is known. 

 
Figure 2. Problem definitions for the breakwater system. 

The breakwater is described by the immersion ratio h/d and relative length (w/d), 
where d is the water depth in the absence of the obstacle, h is the water depth above the 
obstacle, and w is the length of the obstacle. 

The total fluid domain is divided into three regions as shown in Figure 2. Region I at 
(−∞) is the region where the waves are incoming (inflow), and region III at (+∞) is where 
the waves are transmitted (outflow). Region II is between regions I and III, and is delim-

ited by the rigid (impermeable) walls of the breakwater ( 1bΓ , 2bΓ , and 3bΓ ), the free 

surface boundary fΓ , the seabed boundary sΓ , and the radiation boundaries −Γ  and 

+Γ , respectively, of the inflow and outflow regions. The spatial velocity potential φ 
satisfies the following conditions: 
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Figure 1. Breakwater system of this study.

The idealized geometry of the two-dimensional (2D) problem in a Cartesian sys-
tem (x-y) is shown in Figure 2. Regular waves of small amplitude a, period T, and
wavelength L impinge from the left in water of depth d. Assuming an irrotational flow
and incompressible fluid motion, the problem is formulated using a velocity potential
φ(x, y, t) = Re[φ(x, y)· exp(iσt)] where Re denotes the real part, φ(x, y) is the time inde-
pendent spatial velocity potential, i =

√
−1 , σ = 2π/T is the wave angular frequency,

and t is the time. The wave number k = 2π/L is the solution of the dispersion relation
gk·tanh(kd) = σ2, where g is the gravitational acceleration. The wave field is totally
specified if the two-dimensional velocity potential φ is known.
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Figure 2. Problem definitions for the breakwater system.

The breakwater is described by the immersion ratio h/d and relative length (w/d),
where d is the water depth in the absence of the obstacle, h is the water depth above the
obstacle, and w is the length of the obstacle.

The total fluid domain is divided into three regions as shown in Figure 2. Region
I at (−∞) is the region where the waves are incoming (inflow), and region III at (+∞) is
where the waves are transmitted (outflow). Region II is between regions I and III, and is
delimited by the rigid (impermeable) walls of the breakwater (Γb1, Γb2, and Γb3), the free
surface boundary Γ f , the seabed boundary Γs, and the radiation boundaries Γ− and Γ+,
respectively, of the inflow and outflow regions. The spatial velocity potential φ satisfies the
following conditions:

∂2φ

∂x2 +
∂2φ

∂y2 = 0 in the fluid region II (1)

∂φ

∂n
− σ2

g
·φ= 0 at y = d

(
free surface boundary Γ f

)
(2)

∂φ

∂n
= 0 at y = 0 (seabed boundary Γs) (3)

∂φ

∂n
= 0 (x, y) ∈ Γb1 ∪ Γb2 ∪ Γb3 (breakwater boundaries Γb) (4)

where n is the normal to the boundary pointing out of the flow region, and
Γb = Γb1 ∪ Γb2 ∪ Γb3 denotes the total rigid (impermeable) boundary of the breakwa-
ter.
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The radiation conditions at the inflow and outflow regions are expressed as

∂(φ− φI)

∂n
− i·k·(φ− φI)= 0 radiation condition at x → −∞

(
boundary Γ−

)
(5)

∂(φ)

∂n
− i·k·(φ)= 0 radiation condition at x → +∞

(
boundary Γ+

)
(6)

where φI is the incident velocity potential.
The radiation conditions in the infinite strip problem are treated by transferring the

far field potentials at two fictitious vertical boundaries at finite distances x = −xr and
x = +xr, representing, respectively, the left boundary Γ− and the right boundary Γ+ of the
fluid domain. The analytical series at these boundaries are given by:

φ− = φI + A−· cosh(k·y)
sinh(k·d) e−ik·(x+xr) and

∂ φ−

∂ n
= − ∂ φ−

∂ x
for x = −xr

(
boundary Γ−

)
(7)

φ+ = A+· cosh(k·y)
sinh(k·d) eik·(x−xr) and

∂ φ+

∂ n
=

∂ φ+

∂ x
for x = +xr

(
boundary Γ+

)
(8)

where A− and A+ are unknown complex coefficients to be determined. The disturbances
are guaranteed to be out-going waves only (see for example [16,17]). The incident velocity
potential is defined as:

φI = −
a·L
T
· cosh(k·y)

sinh(k·d) eik·(x+xr) (9)

The special matching conditions at the interfaces Γ− and Γ+ of the flow regions ensure
a smooth transfer of the mass flow from one region to the next. Once the potentials φ− and
φ+ are calculated by satisfying the radiation boundary conditions of Equations (5) and (6),
they are matched to those of Equations (7) and (8), then the unknown coefficients A− and
A+ are evaluated following the method of Yueh and Chuang [18]:

A− = −
(
− a·L

T

)
+

k
N0· cosh(k·d) ·

∫ d

0
φ−(−xr, y)·cosh(k·y

)
·dy (10)

A+ =
k

N0· cosh(k·d) ·
∫ d

0
φ+(+xr, y)·cosh(k·y

)
·dy (11)

where N0 = 1
2

(
1 + 2k·d

sinh(2k·d)

)
. The reflection and transmission coefficients (R and Tr) are

determined from the following expressions (see [16,17] and further details in Appendix B):

R =|A−0
∣∣∣ T

a·L and Tr =|A+
0

∣∣∣ T
a·L (12)

3. Numerical Solution by the ISBM

For the numerical solution the total boundary of the whole computational domain is
discretized as shown in Figure 3 for the single breakwater.
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Figure 3. Domain discretization.

In the ISBM, the nodal values of the potentials and their fluxes are expressed as linear
combinations of fundamental solutions and their derivatives [13–15],

φ(xi) =
N

∑
j=1,i 6=j

αj·Q(xi, sj) + αi·φii (13)

q(xi) =
∂φ(xi)

∂nxi
=

N

∑
j=1,i 6=j

αj·∂Q(xi, sj)

∂nxi
+ αi·qii (14)

where αj are unknown coefficients to be determined, xi and sj are, respectively, the colloca-
tion points (xi, yi) and the source points

(
x′ j, y′ j

)
, and N is the total number of points. φ(xi)

and q(xi) are the Dirichlet and Neumann values, and nxi is the normal at the collocation
point xi. The coefficients φii and qii are source intensity factors corresponding, respectively,
to the fundamental solution and its derivative. Q(xi, sj) is the fundamental solution of the
2D Laplace equation. It depends only on the Euclidean distance rij =

∣∣xi − sj
∣∣ between the

collocation points xi and the source points sj, i.e., rij =

√(
xi − x′ j

)2
+
(

yi − y′ j)
2
, and is

given together with its normal derivative as:

Q(xi, sj) =
1

2π
ln

(
1
rij

)
(15)

∂Q(xi, sj)

∂nxi
= −

[(nxxi ) ·(xi − x′ j
)
+(nyxi )·(yi − y′ j)]

2π(rij)
2 (16)

nxxi and nyxi are the component of the normal at the collocation point xi.
The coefficients φii and qii are the diagonal elements of the ISBM interpolation matrices.

They arise when the collocation points and the source points coincide (xi = sj). Direct
evaluation of these coefficients is unfeasible because of the singularities inherent in the
fundamental solution and its derivative. In this study, the coefficients φii are evaluated
simply by the integration of the fundamental solution on line segments leading to a simple
analytical expression as [19,20]:

φii =
1
`i

∫
Γs

Q(xi, s)dΓs =
1

2π

[
ln
(

2
`i

)
+ 1
]

(17)

For the coefficient qii, a simple expression is derived by Gu [14], using a regularization
process of subtracting and adding-back to remove singularities:

qii = −
1
`i

N

∑
j=1,i 6=j

`j·
∂Q(xi, sj)

∂nsj
(18)
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where `i and `j are the half distances, respectively, between the collocations points xi−1

and xi+1, and the source points sj−1 and sj+1. nsj is the normal at the source point sj.
The boundary conditions given by Equations (2)–(6) are satisfied by a linear combina-

tion of Equations (13) and (14). The discretization process leads to:
For nodes xi ∈ Γ f (free surface boundary):

N

∑
j=1,i 6=j

αj·
(

∂Q(xi, sj)

∂nxi
− σ2

g
·Q(xi, sj)

)
+ αi·

(
qii −

σ2

g
·φii

)
= 0 (19)

For nodes xi ∈ Γ− (the radiation boundary at x = −xr):

N

∑
j=1,i 6=j

αj·
(

∂Q(xi, sj)

∂nxi
− i·k·Q(xi, sj)

)
+ αi·(qii − i·k·φii) =

∂φI(xi)

∂nxi
− i·k·φI(xi) (20)

For nodes xi ∈ Γ+ (the radiation boundary at x = +xr):

N

∑
j=1,i 6=j

αj·
(

∂Q(xi, sj)

∂nxi
− i·k·Q(xi, sj)

)
+ αi·(qii − i·k·φii) = 0 (21)

For nodes xi ∈ Γs and Γb (seabed and breakwater boundaries):

N

∑
j=1,i 6=j

αj·
(

∂Q(xi, sj)

∂nxi

)
+ αi·qii = 0 (22)

The resulting discretized Equations (19)–(22) are written in a more compact matrix
form as: [

Hij
]

N x N ·
{

αi
}

N
= {Bi}N i, j = 1, 2, . . . . . . , N (23)

where N is the total number of nodes on the whole domain boundaries, e.g.,
N = N f + N− + N+ + Nb + Ns, where N f , N−, N+, Nb, and Ns are the number of
nodes respectively on the boundaries Γ f , Γ−, Γ+, Γb, and Γs. The algebraic system of
equations expressed by Equation (23) is solved numerically using a Gaussian elimination
algorithm to yield the vector of unknowns

{
αi}. The potential and its derivative at the

nodes are then computed using Equations (13) and (14).

4. Results and Discussion

The results of the present investigation are divided into two separate sections. The
first section is dedicated to studying the sensitivity of the numerical results of the ISBM to
ensure the validity of the proposed numerical wave model. In the Section 2, comparison
is made between the results of the ISBM, the analytical approach within the plane wave
model (see Appendix A), and the corrected plane wave model.

4.1. Error Indicators Analysis

To ensure that the numerical results of the ISBM are acceptable, the sensitivity of
the numerical results of the ISBM to the total number of boundary nodes N, and to the
positions x = ±xr of the fictitious vertical boundaries, are tested for different immersion
ratios (h/d) and for different relative lengths (w/d) of the obstacle. To guarantee tests for
small and large values of relative water depth kd, the sensitivity tests are presented for two
values of the relative water depths, namely kd = 0.2 and kd = 3.

Energy conservation is expressed as
∣∣1− R2 − Tr

2
∣∣ (see [16] for further details), and

can be regarded as an error indicator of the numerical solutions. The results are assumed
acceptable when errors do not exceed a value of 10−2.

In Figure 4, we examine effects of the total number of boundary nodes N for a fixed
relative length w/d = 2 and different immersion ratios, h/d = 0.25, 0.50, 0.75. In Figure 5
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the immersion ratio is fixed at h/d = 0.50 and the relative length is varied, w/d = 2, 4, 6.
These results show that, for narrow breakwaters (Figure 4), when the immersion ratio
h/d is varied, a minimum number of boundary nodes N = 200 is required to ensure that
computational errors are small and do not exceed 10−2. However, for wider breakwaters
(Figure 5), the total number of boundary nodes is recommended to be at least N = 600 to
guarantee that the computational errors remain below 10−2.
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To show the results of the numerical errors with respect to the positions x = ±xr of
the fictitious vertical boundaries, we plot the errors against the quantity 2xr/w (relative
width of the computational domain). The total number of boundary nodes used in these
tests is N = 600. Figure 6 shows the effects of the quantity 2xr/w for a fixed relative length
w/d = 2 and different immersion ratios, h/d = 0.25, 0.50, 0.75; whereas, in Figure 7, the
immersion ratio is fixed at h/d = 0.50 and the relative length is varied, w/d = 2, 4, 6. The
results of Figure 6 for narrow breakwaters show that errors reach minimal values when the
quantity 2xr/w is in the range 2.5 < 2xr/w < 3.5. For these computations, a representative
value of 2xr/w = 3 is adopted. Thus, the positions of the fictitious vertical boundaries
are fixed, respectively, at x = ±3w/2. For wider breakwaters, as shown in Figure 7, the
results indicate clearly that errors are lowest for 1.5 < 2xr/w < 2.5. A typical value of
2xr/w = 2 is assumed for these calculations, and therefore the positions of the fictitious
vertical boundaries are fixed, respectively, at x = ±w.
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4.2. Reflection and Transmission Coefficients Analysis

This subsection stands deeply on discussing the reflection and transmission coeffi-
cients. Three approaches are used in this work to analyze the reflection and transmission
coefficients during the wave interactions with submerged rectangular breakwater. The first
approach used is the improved version of the ISBM approach that is already validated in
reference [21].

The second approach used is the analytical method within the plane wave model
(Appendix A), and the third is the analytical method within the corrected plane wave
model. Further, the intention is to figure out the possibility to study the reflection and
transmission coefficients using the corrected plane wave model without the introduction of
evanescent modes. Firstly, the purpose is to study the validity of reflection and transmission
coefficients within the corrected plane wave model, the limitations associated with relative
length and the immersion ratio of the submerged rectangular breakwater are studied
versus the relative water depth kd, which represents essentially the ratio of water depth to
wavelength. Secondly, the goal is to discuss the effect of relative length on reflection and
transmission coefficients. Therefore, in Figure 8, the effect of relative length is investigated
by fixing the immersion ratio at h/d = 0.50, and varying the relative length into w/d = 2,
w/d = 4, and w/d = 6. Thirdly, we aim to study the effect of immersion ratios on reflection
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and transmission coefficients. Hence, in Figure 9, the effect of immersion ratios is studied
by fixing the relative length at w/d = 2, and varying the immersion ratio into h/d = 0.25,
h/d = 0.50, and h/d = 0.75.
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To analyze the reflection and transmission coefficients during the wave interactions
with submerged rectangular breakwater, three methods are employed; the first approach
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is the ISBM, which is already validated in the reference [21]. The second approach used
is the analytical method within the plane wave model (Appendix A), and the third is
the analytical method within the corrected plane wave model. The plane wave model is
corrected by adding 5% to the relative length and subtracting 4% from the immersion ratio.
Further, the results of Figures 8 and 9 show that the analytical method within the plane
wave model appears slightly far from the ISBM approach, and, as the relative water depth
kd increases, the deviation of profiles of the analytical method increases. After several
tests, our computational experiments indicate that descriptions of analytical profiles of
reflection and transmission coefficients have corrected, and have the same profiles of the
ISBM method by adding 5% to the relative length and subtracting 4% from the immersion
ratio. Furthermore, the results of the corrected plane wave model are much better than
those of the uncorrected plane wave model for all immersion ratios and relative lengths of
the obstacle. For these reasons, the corrected plane wave model is strongly recommended.
Moreover, the analytical model is based on the use of simple assumptions and simple
mathematical manipulations, and the use of the corrected plane wave model presents
the advantage of reducing the dimension of algebraic systems treated. In addition, the
ISBM method necessitates the mesh generation and the numerical integration. Thus, the
analytical model is much easier to use than the ISBM method. Further, the advantages
of the corrected plane wave model over the ISBM approach are that it is presented in no
condition to the total nodes number, or fictitious vertical boundaries.

On the other hand, the effects of relative length and immersion ratio on reflection
and transmission coefficients, are deeply studied versus the relative water depth kd in
Figures 8 and 9. For the sake of clarity, Figure 8, describing the effect of relative length on
the variation of reflection and transmission coefficients, shows that the reflection coeffi-
cients increase when the relative length increases, whereas the transmission coefficients
decrease when the relative length increases. Furthermore, the results show that when the
relative length increases, the oscillatory aspect of reflection and transmission coefficients
increase, with the appearance of maximum of reflection and transmission coefficients
at long wavelengths. Moreover, as the relative water depth increases, the maximum of
reflection and transmission coefficients decrease. In addition, Figure 9, describing the
effect of immersion ratio on the variation of reflection and transmission coefficients, shows
that the reflection coefficients decrease when the immersion ratio increases, whereas the
transmission coefficients increase when the immersion ratio decreases.

5. Conclusions and Perspectives

In this research paper, the reflection and transmission coefficients during the inter-
actions of regular wave-rectangular breakwater cited at the bottom are studied using the
ISBM approach, the analytical approach within the plane wave model (Appendix A), and
the corrected plane wave model. Firstly, to verify the capability of the proposed NWT,
the error sensitivity to the total number of boundary nodes, and to positions of fictitious
vertical boundaries, for different immersion ratios (h/d) and for different relative length
(w/d) of the obstacle, are deeply investigated. Further, the results of this work show that
the minimum number of boundary nodes N = 200 is required to ensure an accurate compu-
tation solution for narrow breakwaters, and N = 600 for wider breakwaters. Furthermore,
to ensure minimal values of errors, the quantity 2xr/w is recommended to be in the range
2.5 ≺ 2xr/w ≺ 3.5 for narrow breakwaters, and 1.5 ≺ 2xr/w ≺ 2.5 for wider breakwaters.

Next, the improved version of the meshless singular boundary method (ISBM), the
analytical approach within the plane wave model (Appendix A), and the corrected plane
wave model are compared to investigate the capacity of the plane wave and corrected
plane wave models to study the reflection and transmission coefficients during interactions
of regular wave-rectangular breakwater cited at the bottom of tank. For the sake of details,
the plane wave model is efficient for small relative water depths kd; whereas, by correcting
the plane wave model by adding 5% to the relative length, and subtracting 4% from the
immersion ratio, the corrected plane wave model appears to be in an acceptable agreement
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with the ISBM approach. Afterwards, the results show that the corrected plane wave
model is successful in deeply analyzing the effects of the relative length and immersion
ratio on reflection and transmission coefficients. Then, it is recommended to use this
approach compared to the ISBM method that is conditioned to the nodes number and
the position of fictitious vertical boundaries. As perspective, we endeavor to study the
wave-current–structure interactions using the Generating-Absorbing Boundary Conditions
(GABCs) approach [22] to meticulously study the reflection and transmission coefficients
for different aspects of currents.
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Nomenclature
a The amplitude of the incident wave
T The period
R The reflection coefficient
Tr The transmission coefficient
d The water depth
h The water depth above the obstacle
w The length of the obstacle
h/d The immersion ratio
w/d The relative length
k The wave number that verifies the dispersion relation ω2

g = k th(kd)

σ The wave number above of the obstacle that verifies the dispersion relation ω2

g = σ th(σh)

Appendix A

In this section, the objective is to present an analytical approach to calculate the
reflection and transmission coefficients during the interaction of regular wave-rectangular
obstacle cited at the bottom of tank. Within the plane wave approach, Dingemans [23] has
already presented the reflection and transmission coefficients based on matching conditions
approach where the continuity of the velocity potential as long with the horizontal velocity
over the subdomains is neglected. In this paper, we subdivide the domain of study (cf.
Figure A1) into three sub-domains (D1, D2, D3), where the continuity of velocity potential
and horizontal velocity are expressed at edges of the obstacle to determine the reflection and
transmission coefficients. By expressing the connection conditions at edges of the obstacle,
our approach appears to be simpler and mre accurate than presented by Dingemans [23].
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At each subdomain the velocity potential is expressed as:

- at the subdomain D1

φ1 = a[exp(−jk(x + w/2)) + Rexp(jk(x + w/2))]ch(k(y + d)) (A1)

- at the subdomain D2

φ2 = aTrexp(−jk(x− w/2))ch(k(y + d)) (A2)

- at the subdomain D3

φ3 = a[Cexp(−jσx) + Dexp(jσx)]ch(σ(y + h)) (A3)

The continuity of the velocity potential and horizontal velocity are expressed at two
positions x = −w/2 and position x = w/2 as:

• At the position x =−w/2∫ 0

−h
φ1(−w/2, y)ch(σ(y + h))dy =

∫ 0

−h
φ3(−w/2, y)ch(σ(y + h))dy (A4)

0∫
−h

φ1(−w/2, y)
∂x

ch(k(y + d))dy =

0∫
−h

∂φ3(−w/2, y)
∂x

ch(k(y + d))dy (A5)

• At the position x= w/2∫ 0

−h
φ1(w/2, y)ch(σ(y + h))dy =

∫ 0

−h
φ3(w/2, y)ch(σ(y + h))dy (A6)

0∫
−h

∂φ1(w/2, y)
∂x

ch(k(y + d))dy =

0∫
−h

∂φ3(w/2, y)
∂x

ch(k(y + d))dy (A7)

after expressing the connection conditions at the positions x = w/2 and x = −w/2, we
obtain a linear algebraic system as

I1(1 + R) = I2(Cz + Dz)
I1Tr = I2(Cz + Dz)

kI3(1− R) = σI1(Cz−Dz)
kI3Tr = σI1(Cz−Dz)

(A8)

where:

I1 =
∫ 0

−h
ch(k(y + d))ch(σ(y + d))dy (A9)
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I2 =
∫ 0

−h
ch2(σ(y + h))dy (A10)

I3 =
∫ 0

−h
ch2(k(y + d))dy (A11)

by combining the system of Equation (8), we obtain

Cz =
1
2

I1

I2
(1 + R) +

1
2

k
σ

I3

I1
(1− R) (A12)

Dz =
1
2

I1

I2
(1 + R)− 1

2
k
σ

I3

I1
(1− R) (A13)

Then, by injecting the expressions (12) and (13) in the second and fourth equation of
the system (8), we obtain

I1

I2
Tr =

[
I1

I2
(1 + R) +

kI3

σI1
(1− R)

]
z2

2
+

[
I1

I2
(1 + R)− kI3

σI1
(1− R)

]
z2

2
(A14)

kI3

σI1
Tr =

[
I1

I2
(1 + R) +

kI3

σI1
(1− R)

]
z2

2
−
[

I1

I2
(1 + R)− kI3

σI1
(1− R)

]
z2

2
(A15)

with z = exp(jσw/2), more explicitly,(
I1

I2
+

kI3

σI1

)
Tr =

[
I1

I2
(1 + R) +

kI3

σI1
(1− R)

]
z2 (A16)

(
I1

I2
− kI3

σI1

)
Tr =

[
I1

I2
(1 + R)− kI3

σI1
(1− R)

]
z2 (A17)

Then, we obtain a matrix system as[
A B
B A

][
Tr
0

]
=

[
z2 0
0 z2

][
A B
B A

][
1
R

]
(A18)

The resolution of the matrix system makes it possible to obtain the expression of the
reflection and transmission coefficients as

R =
z2 − z2

z2B/A− z2 A/B
(A19)

Tr =
B/A− A/B

z2B/A− z2 A/B
(A20)

where:
A =

I1

I2
+

kI3

σI1
and B =

I1

I2
− kI3

σI1
(A21)

Appendix B

The potentials at the fictitious boundaries Γ− and Γ+, defined at x = −xr and x = +xr
respectively, are written as:

φ− = − a · L
T
· cosh(k · y)

sinh(k · d) eik·(x+xr) − ar · L
T
· cosh(k · y)

sinh(k · d) e−ik·(x+xr) (A22)

φ+ = − at · L
T
· cosh(k · y)

sinh(k · d) eik·(x−xr) (A23)

where a, ar and at are the incident, reflected and transmitted wave amplitudes respectively.
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The reflection and transmission coefficients R and Tr are defined as:

R = ar
a and Tr =

at
a (A24)

Substituting the relations given by Equation (A24) into Equations (A22) and (A23) we
get:

φ− = − a · L
T
· cosh(k · y)

sinh(k · d) eik·(x+xr) − a · R · L
T

· cosh(k · y)
sinh(k · d) e−ik·(x+xr) (A25)

φ+ = − a · T · L
T

· cosh(k · y)
sinh(k · d) eik·(x−xr) (A26)

Now defining the following expressions as:∣∣∣A−0 |= a·R·L
T and

∣∣A+
0

∣∣ = a·T·L
T (A27)

and substituting into Equations (A25) and (A26) , we finally achieve the final expressions
of the inflow and outflow potentials:

φ− = − a · L
T
· cosh(k · y)

sinh(k · d) eik·(x+xr) + A− · cosh(k · y)
sinh(k · d) e−ik·(x+xr) (A28)

φ+ = A+ · cosh(k · y)
sinh(k · d) eik·(x−xr) (A29)

After calculating the potentials ϕ− and ϕ+ from the ISBM, they are matched to those
of Equations (A28) and (A29) at x = −xr and x = +xr respectively, then the unknown
coefficients A− and A+ are evaluated as follows. When Equations (A28) and (A29) are
evaluated at x = −xr and x = +xr they become:

φ−(−xr, y) = − a · L
T
· cosh(k · y)

sinh(k · d) + A− · cosh(k · y)
sinh(k · d) (A30)

φ+(+xr, y) = A+ · cosh(k · y)
sinh(k · d) (A31)

We can now multiply both sides of Equations (A30) and (A31) by cos h(k · y) to give:

φ−(−xr, y) · cos h(k · y) =− a · L
T
· [cos h(k · y)]2

sinh(k · d) + A− · [cos h(k · y)]2

sinh(k · d) (A32)

φ+(+xr, y) · cos h(k · y) =A+ · [cos h(k · y)]2

sinh(k · d) (A33)

Integrating y in Equations (A32) and (A33) between 0 and d, and after manipulating
the resulting algebraic expressions, we get:

A− = −
(
− a·L

T

)
+

k
N0· cosh(k·d) ·

∫ d

0
φ−(−xr, y) · cos h(k · y

)
· dy (A34)

A+ =
k

N0 · cos h(k · d) ·
∫ d

0
φ+(+xr, y) · cos h(k · y

)
· dy (A35)

where N0 = 1
2

(
1 + 2k·d

sin h(2k·d)

)
.

Referring to Equation (A27) , the reflection and transmission coefficients are Finally
calculated as:

R =|A−0
∣∣∣ T

a·L and Tr =|A+
0

∣∣∣ T
a·L (A36)
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