Magnetic Expression of Hydrothermal Systems Hosted by Submarine Calderas in Subduction Settings: Examples from the Palinuro and Brothers Volcanoes
Abstract
:1. Introduction
2. Geological Setting
2.1. Palinuro Volcanic Complex
2.2. Brothers Volcano and Kermadec Arc Region
3. Materials and Methods
3.1. Palinuro Caldera
3.2. Brothers Volcano
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballard, R. Notes on a major oceanographic find. Oceanus 1977, 20, 35–44. [Google Scholar]
- Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R.P.; Ballard, R.D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; et al. Submarine thermal springs on the Galapagos Rift. Science 1979, 203, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Spiess, F.N.; McDonald, K.C.; Atwater, T.; Ballard, R.D.; Carranza, A.; Cordoba, D.; Cox, C.; Diaz-Garcia, V.M.; Francheteau, J.; Guerrero, J.; et al. East pacific rise: Hot springs and geophysical experiments. Science 1980, 207, 142. [Google Scholar] [CrossRef] [PubMed]
- Rona, P.A. Resources of the sea floor. Science 2003, 299, 673–674. [Google Scholar] [CrossRef]
- Hannington, M.D.; de Ronde, C.E.J.; Petersen, S. Sea-floor tectonics and submarine hydrothermal systems. In One Hundredth Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 111–141. [Google Scholar]
- de Ronde, C.E.J.; Baker, E.T.; Massoth, G.J.; Lupton, J.E.; Wright, I.C.; Feely, R.A.; Greene, R.R. Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet. Sci. Lett. 2001, 193, 359–369. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Humphris, S.E.; Höfig, T.W.; Reyes, A.G.; The IODP Expedition 376 Scientists. Critical role of caldera collapse in the formation of seafloor mineralization: The case of Brothers volcano. Geology 2019, 47, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Clague, D.A.; Martin, J.F.; Paduan, J.B.; Butterfield, D.A.; Jamieson, J.W.; Le Saout, M.; Caress, D.W.; Thomas, H.; Holden, J.F.; Kelley, D.S. Hydrothermal chimney distribution on the Endeavour Segment, Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 2020, 21, e2020GC008917. [Google Scholar] [CrossRef]
- Galley, A.G.; Hannington, M.D.; Jonasson, I.R. Volcanogenic massive sulphide deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Special Publication; Goodfellow, W.D., Ed.; Mineral Deposits Division Geological Association of Canada: Toronto, ON, Canada, 2007; Volume 5, pp. 141–161. [Google Scholar]
- Gibson, H.L.; Morton, R.L.; Hudak, G. Submarine volcanic processes, deposits and environments favorable for the location of volcanic-associated massive sulfide deposits. In Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings; Barrie, C.T., Hannington, M.D., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 8, pp. 13–51. [Google Scholar]
- Humphris, S.; Herzig, P.; Miller, D.; Alt, J.C.; Becker, K.; Brown, D.; Brügmann, G.; Chiba, H.; Fouquest, Y.; Gemmell, J.B.; et al. The internal structure of an active sea-floor massive sulphide deposit. Nature 1995, 377, 713–716. [Google Scholar] [CrossRef] [Green Version]
- Berkenbosch, H.A.; de Ronde, C.E.J.; Ryan, C.G.; McNeill, A.W.; Gemmell, J.B.; Danyushevsky, L. Trace element mapping of copper- and zinc-rich black smoker chimneys from Brothers volcano, Kermadec arc, using synchrotron radiation XFM and LA-ICPMS. Econ. Geol. 2019, 114, 67–92. [Google Scholar] [CrossRef]
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Fouquet, Y. Where are the large hydrothermal sulphide deposits in the oceans? R. Soc. Lond. Philos. Trans. 1997, 355, 427–441. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Massoth, G.J.; Baker, E.T.; Lupton, J.E. Submarine hydrothermal venting related to volcanic arcs. In Giggenbach Memorial Volume, Simmons; Simmons, S.F., Graham, I.G., Eds.; Society of Economic Geologists Special Publication: Littleton, CO, USA, 2003; Volume 10, pp. 91–110. [Google Scholar]
- de Ronde, C.E.J.; Faure, K.; Bray, C.J.; Chappell, D.A.; Wright, I.C. Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Miner. Depos. 2003, 38, 217–233. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Massoth, G.J.; Butterfield, D.A.; Christenson, B.W.; Ishibashi, J.; Ditchburn, R.G.; Hannington, M.D.; Brathwaite, R.L.; Lupton, J.E.; Kamenetsky, V.S.; et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner. Depos. 2011, 46, 541–584. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Hein, J.R.; Butterfield, D.A. Metallogenesis and mineralization of intraoceanic arcs II: The Aeolian, Izu-Bonin, Mariana, and Kermadec Arcs, and the Manus backarc basin-introduction. Econ. Geol. 2014, 109, 2073–2077. [Google Scholar] [CrossRef]
- Leybourne, M.I.; de Ronde, C.E.J.; Wysoczanski, R.J.; Walker, S.L.; Timm, C.; Gibson, H.L.; Layton-Matthews, D.; Baker, E.T.; Clark, M.R.; Faure, K.; et al. Geology, hydrothermal activity, and seafloor massive sulfide mineralization at the rumble II west mafic caldera. Econ. Geol. 2012, 107, 1649–1668. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Stucker, V.K. Seafloor hydrothermal venting related to volcanic arcs and backarcs. In Encyclopaedia of Volcanoes, 2nd ed.; Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., Stix, J., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 823–849. [Google Scholar]
- Stucker, V.K.; Walker, S.L.; de Ronde, C.E.J.; Caratori Tontini, F.; Tsuchida, S. Hydrothermal venting at Hinepuia submarine volcano, Kermadec arc: Understanding magmatic hydrothermal fluid chemistry. Geochem. Geophys. Geosyst. 2017, 18, 3646–3661. [Google Scholar] [CrossRef]
- Baker, E.T.; Walker, S.L.; Embley, R.W.; de Ronde, C.E.J. High-resolution hydrothermal mapping of Brothers Caldera, Kermadec Arc. Econ. Geol. 2012, 107, 1583–1593. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Hannington, M.D.; Stoffers, P.; Wright, I.C.; Ditchburn, R.G.; Reyes, A.G.; Baker, E.T.; Massoth, G.J.; Lupton, J.E.; Walker, S.L.; et al. Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec Arc, New Zealand. Econ. Geol. 2005, 100, 1097–1133. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Baker, E.T.; Massoth, G.J.; Lupton, J.E.; Wright, I.C.; Sparks, R.J.; Bannister, S.C.; Reyners, M.E.; Walker, S.; Greene, R.; et al. Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: Large scale effects on venting. Geochem. Geophys. Geosyst. 2007, 8, Q07007. [Google Scholar] [CrossRef]
- Baker, E.T.; Martinez, F.; Resing, J.A.; Walker, S.L.; Buck, N.J.; Edwards, M.H. Hydrothermal cooling along the Eastern Lau Spreading Center: No evidence for discharge beyond the neovolcanic zone. Geochem. Geophys. Geosyst. 2010, 11, Q08004. [Google Scholar] [CrossRef]
- Fouquet, Y.; von Stackelberg, U.; Charlou, J.L.; Donval, J.P.; Erzinger, J.; Foucher, J.P.; Herzig, P.; Muehe, R.K.; Soakai, S.; Wiedicke, M.; et al. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 1991, 349, 778–781. [Google Scholar] [CrossRef]
- Bendel, V.; Fouquet, Y.; Auzende, J.M.; Lagabrielle, Y.; Grimaud, D.; Urabe, T. The white-lady hydrothermal field, north Fiji back-arc basin, Southwest Pacific. Econ. Geol. 1993, 88, 2237–2249. [Google Scholar] [CrossRef]
- Baker, E.T.; Embley, R.W.; Walker, S.L.; Resing, J.A.; Lupton, J.E.; Nakamura, K.-I.; de Ronde, C.E.J.; Massoth, G.J. Hydrothermal activity and volcano distribution along the Mariana Arc. J. Geophys. Res. Solid Earth 2008, 113, B08S09. [Google Scholar] [CrossRef] [Green Version]
- Resing, J.A.; Lebon, G.; Baker, E.T.; Lupton, J.E.; Embley, R.W.; Massoth, G.J.; Chadwick, W.W., Jr.; de Ronde, C.E.J. Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc. Econ. Geol. 2007, 102, 1047. [Google Scholar] [CrossRef] [Green Version]
- Minniti, M.; Bonavia, F. Copper-ore grade hydrothermal mineralization discovered in a seamount in the Tyrrhenian Sea (Mediterranean): Is the mineralization related to porphyry copper or to base metal lodes? Mar. Geol. 1984, 59, 271–282. [Google Scholar] [CrossRef]
- Lupton, J.; de Ronde, C.; Sprovieri, M.; Baker, E.T.; Bruno, P.P.; Italiano, F.; Walker, S.; Faure, K.; Leybourne, M.; Britten, K.; et al. Active hydrothermal discharge on the submarine Aeolian Arc. J. Geophys. Res. Solid Earth 2011, 116, B02102. [Google Scholar] [CrossRef] [Green Version]
- Fouquet, Y.; Pelleter, E.; Konn, C.; Chazot, G.; Dupré, S.; Alix, A.S.; Chéron, S.; Donval, J.P.; Guyader, V.; Etoubleau, J.; et al. Volcanic and hydrothermal processes in submarine calderas: The Kulo Lasi example (SW Pacific). Ore Geol. Rev. 2018, 99, 314–343. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, P.; Beaulieu, S.; Tivey, M.A.; Eggert, R.G.; German, C.; Glowka, L.; Lin, J. Deep-sea mining of seafloor massive sulphides. Mar. Policy 2010, 34, 728–732. [Google Scholar] [CrossRef]
- Szitkar, F.; Dyment, J.; Fouquet, Y.; Honsho, C.; Horen, H. The magnetic signature of ultramafic-hosted hydrothermal sites. Geology 2014, 42, 715–718. [Google Scholar] [CrossRef]
- Kent, D.V.; Gee, J. Magnetic alteration of zero-age oceanic basalt. Geology 1996, 24, 703–706. [Google Scholar] [CrossRef]
- Novosel, I.; Spence, G.D.; Hyndman, R.D. Reduced magnetization produced by increased methane flux at a gas hydrate vent. Mar. Geol. 2015, 216, 265–274. [Google Scholar] [CrossRef]
- Ade-Hall, J.M.; Palmer, H.C.; Hubbard, T.P. The magnetic and opaque petrological response of basalt to regional hydrothermal alteration. Geophys. J. R. Astron. Soc. 1971, 24, 137–174. [Google Scholar] [CrossRef] [Green Version]
- Rona, P.A. Magnetic signatures of hydrothermal alteration and volcanic mineral deposits in oceanic crust. J. Volcanol. Geotherm. Res. 1978, 3, 219–225. [Google Scholar] [CrossRef]
- Watkins, N.D.; Paster, T.P. The magnetic properties of igneous rocks from the ocean floor. Philos. Trans. R. Soc. A 1971, 268, 507–550. [Google Scholar] [CrossRef]
- Wooldridge, A.L.; Haggerty, S.E.; Rona, P.A.; Harrison, C.G.A. Magnetic properties and opaque mineralogy of rocks from selected seafloor hydrothermal sites at oceanic ridges. J. Geophys. Res. Solid Earth 1990, 95, 12351–12374. [Google Scholar] [CrossRef]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.F.; Olson, C.; Beale, J.R.; Wessel, P. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Billi, A.; Barberi, G.; Faccenna, C.; Neri, G.; Pepe, F.; Sulli, A. Tectonics and seismicity of the Tindari Fault System, southern Italy: Crustal deformations at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab. Tectonics 2006, 25, TC2006. [Google Scholar] [CrossRef] [Green Version]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Royden, L. Flexural behavior of the continental lithosphere in Italy:Constraints imposed by gravity and defection data. J. Geophys. Res. 1988, 93, 7747–7766. [Google Scholar] [CrossRef]
- Faccenna, C.; Funiciello, F.; Giardini, D.; Lucente, P. Episodic back-arc extension during restricted mantle convection in the central Mediterranean. Earth Planet Sci. Lett. 2001, 187, 105–116. [Google Scholar]
- Doglioni, C. A proposal kinematic modelling for W-dipping subductions—Possible applications to the Tyrrhenian-Apennines system. Terra Nova 1991, 3, 423–434. [Google Scholar] [CrossRef]
- Doglioni, C.; Gueguen, E.; Harabaglia, P.; Mongelli, F. On the origin of W-directed subduction zones and applications to the western Mediterranean. Geol. Soc. Spec. Publ. 1999, 156, 541–561. [Google Scholar] [CrossRef]
- Faccenna, C.; Mattei, M.; Funiciello, R.; Jolivet, L. Styles of back-arc extension in the central Mediterranean. Terra Nova 1997, 9, 126–130. [Google Scholar] [CrossRef]
- Gueguen, E.; Doglioni, C.; Fernandez, M. Lithospheric boudinage in the Western Mediterranean back-arc basins. Terra Nova 1997, 9, 184–187. [Google Scholar] [CrossRef]
- Gueguen, E.; Doglioni, C.; Fernandez, M. On the post 25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 1998, 298, 259–269. [Google Scholar] [CrossRef]
- Kastens, K.A.; Mascle, J.; Christian, A.A.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Emeis, K.C.; Glaçon, G.; Hosegawa, S.; et al. Odp leg 107 in the Tyrrhenian Sea: Insights into passive margin and backarc basin evolution. Geol. Soc. Am. Bull. 1998, 100, 1140–1156. [Google Scholar] [CrossRef]
- Gamberi, F.; Marani, M.P. Deep-sea depositional systems of the Tyrrhenian Basin. Mem. Descr. Carta Geol. D’italia 2004, 64, 109–126. [Google Scholar]
- Prada, M.; Ranero, C.R.; Sallarès, V.; Zitellini, N.; Grevemeyer, I. Mantle exhumation and sequence of magmatic events in the Magnaghi–Vavilov Basin (Central Tyrrhenian, Italy): New constraints from geological and geophysical observations. Tectonophysics 2016, 689, 133–142. [Google Scholar] [CrossRef]
- Marani, M.P.; Trua, T. Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Tyrrhenian Sea). J. Geophys. Res. Solid Earth 2002, 107, EPM 3-1–EPM 3-15. [Google Scholar] [CrossRef]
- Cocchi, L.; Caratori Tontini, F.; Muccini, F.; Marani, M.P.; Bortoluzzi, G.; Carmisciano, C. Chronology of the transition from a spreading ridge to an accretional seamount in the Marsili backarc basin (Tyrrhenian Sea). Terra Nova 2009, 21, 369–374. [Google Scholar] [CrossRef]
- Caratori Tontini, F.; Cocchi, L.; Muccini, F.; Carmisciano, C.; Marani, M.; Bonatti, E.; Ligi, M.; Boschi, E. Potential-feld modeling of collapse-prone submarine volcanoes in the southern Tyrrhenian Sea (Italy). Geophys. Res. Lett. 2010, 37, L03305. [Google Scholar] [CrossRef]
- De Astis, G.; Ventura, G.; Vilardo, G. Geodynamic significance of the Aeolian volcanism (southern Tyrrhenian Sea, Italy) in light of structural, seismological, and geochemical data. Tectonics 2003, 22, 1040. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Lister, S. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 2004, 23. [Google Scholar] [CrossRef]
- Chiarabba, C.; De Gori, P.; Speranza, F. The southern Tyrrhenian subduction zone: Deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planet. Sci. Lett. 2008, 268, 408–423. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Gasparon, M.; Lucente, F.P.; Peccerillo, A.; Miller, M.S. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics 2008, 27, TC2008. [Google Scholar] [CrossRef] [Green Version]
- Cocchi, L.; Passaro, S.; Caratori Tontini, F.; Ventura, G. Volcanism in slab tear faults is larger than in island-arcs and back-arcs. Nat. Commun. 2017, 8, 1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colantoni, P.; Lucchini, F.; Rossi, P.L.; Sartori, R.; Savelli, C. The Palinuro volcano and magmatism of the southeastern Tyrrhenian Sea (Mediterranean). Mar. Geol. 1981, 39, M1–M12. [Google Scholar] [CrossRef]
- Chiarabba, C.; Jovane, L.; Di Stefano, R. A new look to the Italian seismicity: Seismotectonic inference. Tectonophysics 2005, 395, 251–268. [Google Scholar] [CrossRef]
- Trua, T.; Serri, G.; Marani, M. Geochemical features and geodynamic significance of the southern Tyrrhenian backarc basin. Cenozoic Volcanism Mediterr. Area 2007, 418, 221–233. [Google Scholar]
- Peccerillo, A.; De Astis, G.; Faraone, D.; Forni, F.; Frezzotti, M.L. Compositional variations of magmas in the Aeolian arc: Implications for petrogenesis and geodynamics. Geol. Soc. Lond. Mem. 2013, 37, 491–510. [Google Scholar] [CrossRef]
- Ligi, M.; Cocchi, L.; Bortoluzzi, G.; D’Oriano, F.; Muccini, F.; Caratori Tontini, F.; de Ronde, C.E.J.; Carmisciano, C. Mapping of seafloor hydrothermally altered rocks using geophysical methods; Marsili and Palinuro seamounts, southern Tyrrhenian Sea. Econ. Geol. 2014, 109, 2103–2117. [Google Scholar] [CrossRef]
- Passaro, S.; Milano, G.; D’Isanto, C.; Ruggieri, S.; Tonielli, R.; Bruno, P.; Sprovieri, M.; Marsella, E. DTM-based morphometry of the Palinuro seamount (Italy, Eastern Tyrrhenian Sea): Geomorphological and volcanological implication. Geomorphology 2010, 115, 129–140. [Google Scholar] [CrossRef]
- Caratori Tontini, F.; Cocchi, L.; Carmisciano, C. Rapid 3-D forward model of potential field with application to the Palinuro seamount (southern Tyrrhenian Sea, Italy). J. Geophys. Res. 2009, 114, B02103. [Google Scholar] [CrossRef] [Green Version]
- Petersen, S.; Monecke, T.; Augustin, N.; De Benedetti, A.A.; Esposito, A.; Gärtner, A.; Gardeler, A.; Gemmell, J.B.; Gibson, H.; He, G.; et al. Drilling submarine hydrothermal systems in the Tyrrhenian Sea, Italy. InterRidge News 2008, 17, 21–23. [Google Scholar]
- Monecke, T.; Petersen, S.; Lackschewitz, K.; Hügler, M.; Hannington, M.D.; Gemmell, J.B. Shallow submarine hydrothermal systems in the Aeolian volcanic arc, Italy. EOS Trans. Am. Geophys. Union 2009, 90, 110–111. [Google Scholar] [CrossRef] [Green Version]
- Petersen, S.; Monecke, T.; Westhues, A.; Hannington, M.D.; Gemmell, J.B.; Sharpe, R.; Peters, M.; Strauss, H.; Lackschewitz, K.; Augustin, N.; et al. Drilling Shallow-Water Massive Sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy. Econ. Geol. 2014, 109, 2129–2157. [Google Scholar] [CrossRef]
- Caratori Tontini, F.; Bortoluzzi, G.; Carmisciano, C.; Cocchi, L.; de Ronde, C.E.J.; Ligi, M.; Muccini, F. Near-bottom magnetic signatures of submarine hydrothermal systems at Marsili and Palinuro Volcanoes, Southern Tyrrhenian Sea, Italy. Econ. Geol. 2014, 109, 2119–2128. [Google Scholar] [CrossRef]
- Szitkar, F.; Petersen, S.; Caratori Tontini, F.; Cocchi, L. High resolution magnetics reveal the deep structure of a volcanic-arc-related basalt hosted hydrothermal site (Palinuro, Tyrrhenian Sea). Geochem. Geophys. Geosyst. 2015, 16, 1950–1961. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, J.W.; Bloomer, S.H.; Evans, C.A.; Melchior, J.T. Evolution of intra-oceanic arc-trench systems. Tectonophysics 1984, 102, 175–205. [Google Scholar] [CrossRef]
- Clift, P.D.; MacLeod, C.J.; Tappin, D.R.; Wright, D.J.; Bloomer, S.H. Tectonic controls on sedimentation and diagenesis in the Tonga Trench and forearc, southwest Pacific. Geol. Soc. Am. Bull. 1998, 110, 483–496. [Google Scholar] [CrossRef]
- Bevis, M.; Taylor, F.W.; Schutz, B.E.; Recy, J.; Isacks, B.L.; Helu, S.; Singh, R.; Kendrick, E.; Stowell, J.; Taylor, B.; et al. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature 1995, 374, 249–251. [Google Scholar] [CrossRef]
- Brodie, J.W.; Hatherton, T. The morphology of Kermadec and Hikurangi trenches. Deep-Sea Res. 1958, 5, 18–28. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Seely, D.R. Structure and stratigraphy of forearc regions. AAPG Bull. 1979, 63, 2–31. [Google Scholar]
- Funnell, M.J.; Peirce, C.; Stratford, W.R.; Paulatto, M.; Watts, A.B.; Grevemeyer, I. Structure and deformation of the Kermadec forearc in response to subduction of the Pacific oceanic plate. Geophys. J. Int. 2014, 199, 1286–1302. [Google Scholar] [CrossRef] [Green Version]
- Caratori Tontini, F.; Bassett, D.; de Ronde, C.E.J.; Timm, C.; Wysoczanski, R. Early evolution of a young back-arc basin in the Havre Trough. Nat. Geosci. 2019, 12, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Carey, R.; Soule, S.A.; Manga, M.; White, J.D.; McPhie, J.; Wysoczanski, R.; Jutzeler, M.; Kenichiro, T.; Yoerger, D.; Fornari, D.; et al. The largest deep-ocean silicic volcanic eruption of the past century. Sci. Adv. 2018, 4, e1701121. [Google Scholar] [CrossRef] [Green Version]
- Embley, R.W.; de Ronde, C.E.J.; Merle, S.G.; Davy, B.; Caratori Tontini, F. Detailed morphology and structure of an active submarine arc caldera: Brothers volcano, Kermadec arc. Econ. Geol. 2012, 107, 1557–1570. [Google Scholar] [CrossRef]
- de Ronde, C.E.J.; Humphris, S.E.; Höfig, T.W. Expedition 376 Scientific Prospectus: Brothers Arc Flux. Sci. Prospectus 2017, 376, 33. [Google Scholar] [CrossRef]
- Caratori Tontini, F.; Tivey, M.A.; de Ronde, C.E.J.; Humphris, S.E. Heat flow and near-seafloor magnetic anomalies highlight hydrothermal circulation at Brothers volcano caldera, Southern Kermadec Arc, New Zealand. Geophys. Res. Lett. 2019, 46, 8252–8260. [Google Scholar] [CrossRef] [Green Version]
- de Ronde, C.E.J.; Humphris, S.E.; Höfig, T.W. The Expedition 376 Scientists. In Proceedings of the International Ocean Discovery Program; International Ocean Discovery Program: College Station, TX, USA, 2019; p. 267. [Google Scholar] [CrossRef]
- Marani, P.M.; Gamberi, F.; Bonatti, E. From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Back Arc Basin; Memorie Descrittive della Carta geologica d’Italia: Rome, Italy, 2004; Volume 64, p. 196. [Google Scholar]
- Faggioni, O.; Pinna, E.; Savelli, C.; Schreider, A.A. Geomagnetism and age study of Tyrrhenian seamounts. Geophys. J. Int. 1995, 123, 915–930. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.V.; Stefanov, G.A.; Sichev, V.A.; Tumanov, I.V.; Schreider, A.A. Near bottom geophysical study of the Palinuro seamount. Oceanology 1980, 6, 1113–1117. [Google Scholar]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Merle, S. New Zealand American Submarine Ring of Fire 2007; Cruise Report; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2007. [Google Scholar]
- Caratori Tontini, F.; de Ronde, C.E.J.; Yoerger, D.; Kinsey, J.; Tivey, M. 3-D focused inversion of near-seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand. J. Geophys. Res. 2012, 117, B10102. [Google Scholar] [CrossRef]
- Caratori Tontini, F.; Davy, B.; de Ronde, C.E.J.; Embley, R.W.; Leybourne, M.; Tivey, M.A. Crustal magnetization of Brothers Volcano, New Zealand, measured by autonomous underwater vehicles: Geophysical expression of a submarine hydrothermal system. Econ. Geol. 2012, 107, 1571–1581. [Google Scholar] [CrossRef]
- Tivey, M.A.; Rona, P.A.; Schouten, H. Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothermal field, Mid-Atlantic Ridge, at 268N. Earth Planet. Sci. Lett. 1993, 115, 101–115. [Google Scholar] [CrossRef]
- Tivey, M.A.; Johnson, H.P. Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields. Geology 2002, 30, 979–982. [Google Scholar] [CrossRef]
- Caratori Tontini, F.; Crone, T.J.; de Ronde, C.E.; Fornari, D.J.; Kinsey, J.C.; Mittelstaedt, E.; Tivey, M. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites. Geophys. Res. Lett. 2016, 43, 6205–6211. [Google Scholar] [CrossRef] [Green Version]
- Honsho, C.; Ura, T.; Kim, K. Deep-sea magnetic vector anomalies over the Hakurei hydrothermal field and the Bayonnaise knoll caldera, Izu-Ogasawara arc, Japan. J. Geophys. Res. 2013, 118, 5147–5164. [Google Scholar] [CrossRef]
- Dziak, R.P.; Haxel, J.H.; Matsumoto, H.; Lau, T.K.; Merle, S.G.; de Ronde, C.E.J.; Embley, R.W.; Mellinger, D.K. Observations of regional seismicity and local harmonic tremor at Brothers volcano, south Kermadec Arc, using an ocean bottom hydrophone array. J. Geophys. Res. 2008, 113, B08S04. [Google Scholar] [CrossRef]
- Honsho, C.T.; Yamazaki, T.; Ura, K.; Okino, H.; Morozumi, H.; Ueda, S. Magnetic anomalies associated with abundant production of pyrrhotite in a sulfide deposit in the Okinawa Trough, Japan. Geochem. Geophys. Geosyst. 2016, 17, 4413–4424. [Google Scholar] [CrossRef]
- Gee, J.S.; Webb, S.C.; Ridgway, J.; Staudigel, H.; Zumberge, M.A. A deep tow magnetic survey of Middle Valley, Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 2001, 2, 1059. [Google Scholar] [CrossRef] [Green Version]
- Einaudi, M.T.; Hedenquist, J.W.; Inan, E.E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth; Simmons, S.F., Graham, I., Eds.; Society of Economic Geologists Special Publication: Littleton, CO, USA, 2003; Volume 10, pp. 285–313. [Google Scholar]
- de Ronde, C.E.J.; Walker, S.L.; Ditchburn, R.G.; Caratori Tontini, F.; Hannington, M.D.; Merle, S.G.; Timm, C.; Handler, M.R.; Wysoczanski, R.J.; Dekov, V.M.; et al. The anatomy of a buried submarine hydrothermal system, Clark volcano, Kermadec arc, New Zealand. Econ. Geol. 2014, 109, 2261–2292. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocchi, L.; Caratori Tontini, F.; Muccini, F.; de Ronde, C.E.J. Magnetic Expression of Hydrothermal Systems Hosted by Submarine Calderas in Subduction Settings: Examples from the Palinuro and Brothers Volcanoes. Geosciences 2021, 11, 504. https://doi.org/10.3390/geosciences11120504
Cocchi L, Caratori Tontini F, Muccini F, de Ronde CEJ. Magnetic Expression of Hydrothermal Systems Hosted by Submarine Calderas in Subduction Settings: Examples from the Palinuro and Brothers Volcanoes. Geosciences. 2021; 11(12):504. https://doi.org/10.3390/geosciences11120504
Chicago/Turabian StyleCocchi, Luca, Fabio Caratori Tontini, Filippo Muccini, and Cornel E. J. de Ronde. 2021. "Magnetic Expression of Hydrothermal Systems Hosted by Submarine Calderas in Subduction Settings: Examples from the Palinuro and Brothers Volcanoes" Geosciences 11, no. 12: 504. https://doi.org/10.3390/geosciences11120504
APA StyleCocchi, L., Caratori Tontini, F., Muccini, F., & de Ronde, C. E. J. (2021). Magnetic Expression of Hydrothermal Systems Hosted by Submarine Calderas in Subduction Settings: Examples from the Palinuro and Brothers Volcanoes. Geosciences, 11(12), 504. https://doi.org/10.3390/geosciences11120504