Evidence of Unknown Paleo-Tsunami Events along the Alas Strait, West Sumbawa, Indonesia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Field Surveys
3.2. Grain Size
- The proximal zone, closer to the sea extending substantially between the first two trenches parallel to the coast, which will be represented mainly by sections T4 and T5;
- The intermediate zone is located between trenches 2 and 3, represented by T3, T2, and T1 sections. Given the similarity between all sections in the proximal sampling area in abandoned fishponds, Section T4 (Figure 2) was selected for grain size analysis. Grain size samples in the T4 outcrop (Figure 2e) were obtained and determined based on the sediments’ visual characteristics for each homogenous layer;
- The distal zone extends landward beyond trench 3 and can be characterized by P1 (see Figure 2d). This zone is characterized by coarse material and has very poor sandy material.
3.3. Dating
3.4. Wave Direction
4. Results
4.1. Belang Island
4.2. Abandoned Fishponds in Kiantar Village
- At sampling points T1, T2, and T3 (see Figure 2 and Figure 5a), a massive deposit of marine origin with a single ~1.5 m thick layer characterized by a dominance of large rounded blocks and pebbles roughly imbricated landward at the base with a coarse sandy matrix more or less cemented containing numerous coral and shell clasts (part A in Figure 6 and Figure 7). This unit is topped by a mixture of abundant large smooth coral fragments and rounded pebbles in a lightly cemented sandy matrix with abundant bioclasts and whole shells (Figure 5a). The material of this upper unit displays a neat landward imbrication. This large and massive deposit ends on a very short distance, i.e., between 200 and 250 from the sea. Investigations conducted further landward did not allow to find more than that distance; a weak layer of fine sands mixed with silts containing small shell debris detectable along the road, South of Kiantar, 300 m beyond the limit of the coarse deposit;
- At sampling points of T4 and T5 (see Figure 2 and Figure 5b), additional thick deposits of marine origin are composed of three different layers without paleo-sols between each layer (part B,C,D in Figure 6). Each of these layers, 0.5 m thick on average, consists of coral fragments and marine shells mixed with boulders and capped by sand (Figure 5b);
5. Discussion
- Tsunami deposits probably dated 4th century CE (the most recent date), based on six samples, namely AF1, AF2, AF3, AF4, AF8, and AF9. We concluded that all coral and seashell samples from sampling points T1, T2, and T3 (see Figure 5 and Figure 6) were deposited following the same event since their deposits have the same visual characteristics, i.e., a single massive ~1.5 m thick layer displaying clear clast imbrication landward, large dense blocks, and pebbles at the base and less dense broken coral atop with locally a flatter fabric. Debris flows often develop reverse grading due an intense shearing at the base during transport, leading to the formation of dispersive pressure of shearing oriented upward. It is not the case here while the short distance between the source of the sediments and their deposition did not allow the reverse grading to occur. Furthermore, the deposits are too thick to have been deposited by a single storm and, also, large storms are infrequent in the study area since it is situated in a protected narrow strait with low wave ranges [45,46];
- The 9th century CE tsunami, based on coral samples at sampling point T4 (AF5, AF6, and AF7; see Figure 5 and Figure 6) and AF10, since dating results using the most suitable sampling protocol showed the same range years for each layer. This tsunami deposit overlay the deposit of the 4th-century tsunami and outcrops in all the proximal zone, i.e., between the first and the second trench. Its internal structure corresponds to three pulses’ records characterized each by a phase of strong energy when the turbulent wavefront favors transport and deposition of coarse pebbles. A laminar flow follows this phase during the wave tail passage that allows fine sediments to settle.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsushima, H.; Hirata, K.; Hayashi, Y.; Tanioka, Y.; Kimura, K.; Sakai, S.; Shinohara, M.; Kanazawa, T.; Hino, R.; Maeda, K. Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 56. [Google Scholar] [CrossRef] [Green Version]
- Gusiakov, V.K. Relationship of Tsunami Intensity to Source Earthquake Magnitude as Retrieved from Historical Data. Pure Appl. Geophys. 2011, 168, 2033–2041. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Baranov, B.V.; Dozorova, K.A.; Mazoza, R.K.; Kisel’man, B.A.; Baranova, N.A. The Komandor seismic gap: Earthquake prediction and tsunami computation. Oceanology 2014, 54, 519–531. [Google Scholar] [CrossRef]
- Satake, K. Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian Ocean tsunami. Geosci. Lett. 2014, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Thurman, H.V.; Trujillo, A.P. Essentials of Oceanography, 11st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999; p. 527. [Google Scholar]
- Begét, J.E. Volcanic tsunamis. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: New York, NY, USA, 2000; pp. 1005–1013. [Google Scholar]
- Bryan, S.E.; Cook, A.; Evans, J.P.; Colls, P.W.; Wells, M.G.; Lawrence, M.G.; Jell, J.S.; Greig, A.; Leslie, R. Pumice rafting and faunal dispersion during 2001–2002 in the Southwest Pacific: Record of a dacitic submarine explosive eruption from Tonga. Earth Planet. Sci. Lett. 2004, 227, 135–154. [Google Scholar] [CrossRef]
- Gillespie, R.; Clague, D. Encyclopedia of Islands; University of California Press: Berkeley, CA, USA, 2009; p. 1111. [Google Scholar]
- Paris, R.; Wassmer, P.; Lavigne, F.; Belousov, A.; Belousova, M.; Iskandarsyah, Y.; Benbakkar, M.; Ontowirjo, B.; Mazzoni, N. Coupling eruption and tsunami records: The Krakatau 1883 case-study, Indonesia. Bull. Volcanol. 2014, 76, 814. [Google Scholar] [CrossRef]
- Smart, G.M.; Crowley, K.H.M.; Lane, E.M. Estimating tsunami run-up. Nat Hazards 2016, 80, 1933–1947. [Google Scholar] [CrossRef]
- Mutaqin, B.W.; Lavigne, F.; Sudrajat, Y.; Handayani, L.; Lahitte, P.; Virmoux, C.; Hadmoko, D.S.; Komorowski, J.-C.; Hananto, N.D.; Wassmer, P. Landscape Evolution on the Eastern Part of Lombok (Indonesia) related to the 1257 CE Eruption of the Samalas Volcano. Geomorphology 2019, 327, 338–350. [Google Scholar] [CrossRef]
- Mutaqin, B.W.; Lavigne, F.; Hadmoko, D.S.; Malawani, M.N. Volcanic Eruption-Induced Tsunami in Indonesia: A Review. IOP Conf. Ser. Earth Environ. Sci. 2019, 256, 012023. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information. National Geophysical Data Center/World Data Service: NCEI/WDS. Global Historical Tsunami Database. 2020. Available online: https://data.unep-wcmc.org/datasets/1 (accessed on 20 May 2020). [CrossRef]
- Simons, W.; Socquet, A.; Vigny, C.; Ambrosius, B.; Haji Abu, S.; Promthong, C.; Subarya, C.; Sarsito, D.A.; Matheussen, S.; Morgan, P.; et al. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. J. Geophys. Res. Solid Earth 2007, 112, B06420. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, M.F. Landslides triggered by multiple earthquakes: Insights from the 2018 Lombok (Indonesia) events. Nat. Hazards 2019, 98, 575–592. [Google Scholar] [CrossRef]
- Ramdani, F.; Setiani, P.; Setiawati, D.A. Analysis of sequence earthquake of Lombok Island, Indonesia. Prog. Disaster Sci. 2019, 4, 100046. [Google Scholar] [CrossRef]
- Song, R.; Hattori, K.; Zhang, X.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Sol. Terr. Phys. 2020, 205, 105291. [Google Scholar] [CrossRef]
- Yang, X.; Singh, S.C.; Tripathi, A. Did the Flores backarc thrust rupture offshore during the 2018 Lombok earthquake sequence in Indonesia? Geophys. J. Int. 2020, 221, 758–768. [Google Scholar] [CrossRef]
- Rampino, M.R.; Self, S. Historic eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their stratospheric aerosols, and climatic impact. Quat. Res. 1982, 18, 127–143. [Google Scholar] [CrossRef]
- Stothers, R.B. Density of fallen ash after the eruption of Tambora in 1815. J. Volcanol. Geotherm. Res. 2004, 134, 343–345. [Google Scholar] [CrossRef]
- Kandlbauer, J.; Sparks, R.S.J. New estimates of the 1815 Tambora eruption volume. J. Volcanol. Geotherm. Res. 2014, 286, 93–100. [Google Scholar] [CrossRef]
- Sigl, M.; Winstrup, M.; McConnell, J.R.; Welten, K.C.; Plunkett, G.; Ludlow, F.; Büntgen, U.; Caffee, M.; Chellman, N.; Dahl-Jensen, D.; et al. Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature 2015, 523, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Rössler, O.; Brönnimann, S. The effect of the Tambora eruption on Swiss flood generation in 1816/1817. Sci. Total Environ. 2018, 627, 1218–1227. [Google Scholar] [CrossRef]
- Mutaqin, B.W.; Lavigne, F. Oldest Description of a Caldera-forming Eruption in Southeast Asia Unveiled in Forgotten Written Sources. GeoJournal 2019, in press. [Google Scholar] [CrossRef]
- Latter, J.H. Tsunamis of volcanic origin: Summary of causes, with particular reference to Krakatoa, 1883. Bull. Volcanol. 1981, 44, 467–490. [Google Scholar] [CrossRef]
- Stothers, R.B. The Great Tambora Eruption in 1815 and Its Aftermath. Science 1984, 224, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, H.; Carey, S. Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull. Volcanol. 1989, 51, 243–270. [Google Scholar] [CrossRef]
- Oppenheimer, C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog. Phys. Geogr. 2003, 27, 230–259. [Google Scholar] [CrossRef]
- Liang, E.; Dawadi, B.; Pederson, N.; Piao, S.; Zhu, H.; Sigdel, S.R.; Chen, D. Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records. Sci. Bull. 2019, 64, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Kim, B.-M. Ocean Response to the Pinatubo and 1259 Volcanic Eruptions. Ocean Polar Res. 2012, 34, 305–323. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, F.; Degeai, J.-P.; Komorowski, J.-C.; Guillet, S.; Robert, V.; Lahitte, P.; Oppenheimer, C.; Stoffel, M.; Vidal, C.M.; Surono; et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl. Acad. Sci. USA 2013, 110, 16742–16747. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.M.; Komorowski, J.-C.; Métrich, N.; Pratomo, I.; Kartadinata, N.; Prambada, O.; Michel, A.; Carazzo, G.; Lavigne, F.; Rodysill, J.; et al. Dynamics of the major Plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia). Bull. Volcanol. 2015, 77, 73. [Google Scholar] [CrossRef]
- Guillet, S.; Corona, C.; Stoffel, M.; Khodri, M.; Lavigne, F.; Ortega, P.; Eckert, N.; Sielenou, P.D.; Daux, V.; Churakova (Sidorova), O.V.; et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 2017, 10, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Mutaqin, B.W. Spatial Analysis and Geomorphic Characteristics of Coral Reefs on the Eastern Part of Lombok, Indonesia. Geogr. Tech. 2020, 15, 202–211. [Google Scholar] [CrossRef]
- Choi, B.H.; Pelinovsky, E.; Kim, K.O.; Lee, J.S. Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatoa volcanic eruption. In Tsunamis, Tinti, S., Pelinovsky, E. Nat. Hazards Earth Syst. Sci. 2003, 3, 321–332. [Google Scholar] [CrossRef]
- Freundt, A. Entrance of Hot Pyroclastic Flows into the Sea: Experimental Observations. Bull. Volcanol. 2003, 65, 144–164. [Google Scholar] [CrossRef]
- Lander, J.F.; Whiteside, L.S.; Lockridge, P.A. Two Decades of Global Tsunamis, 1982–2002. Sci. Tsunami Hazards 2003, 21, 3–88. [Google Scholar]
- Pelinovsky, E.; Zahibo, N.; Dunkley, P.; Edmonds, M.; Herd, R.; Talipova, T.; Kozelkov, A.; Nikokina, I. Tsunami Generated by the Volcano Eruption on July 12–13, 2003 at Montserrat, Lesser Antilles. Sci. Tsunami Hazards 2004, 22, 44–57. [Google Scholar]
- Pararas-Carayannis, G. Risk assessment of tsunami generation from active volcanic sources in the eastern Caribbean region. In Caribbean Tsunami Hazard, Proceedings of the NSF Caribbean Tsunami Workshop, Singapore, 30–31 March 2004; Mercado-Irizarry, A., Liu, P., Eds.; World Scientific Publishing Co.: Singapore, 2006; pp. 91–137. [Google Scholar] [CrossRef]
- Mattioli, G.S.; Voight, B.; Linde, A.T.; Sacks, I.S.; Watts, P.; Widiwijayanti, C.; Young, S.R.; Hidayat, D.; Elsworth, D.; Malin, P.E.; et al. Unique and remarkable dilatometer measurements of pyroclastic flow-generated tsunamis. Geology 2007, 35, 25–28. [Google Scholar] [CrossRef]
- Schmitz, W.J. On the World Ocean Circulation: Volume II; Technical Report WHOI-96-08; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 1996. [Google Scholar]
- Voris, H.K. Maps of Pleistocene Sea Levels in South East Asia: Shorelines, River Systems, Time Durations. J. Biogeogr. 2000, 27, 1153–1167. [Google Scholar] [CrossRef] [Green Version]
- Sathiamurthy, E.; Voris, H.K. Maps of Holocene Sea Level Transgression and Submerged Lakes on the Sunda Shelf. Nat. Hist. J. Chulalongkorn Univ. 2006, 2, 1–43. [Google Scholar]
- Solihuddin, T. A Drowning Sunda Shelf Model during Last Glacial Maximum (LGM) and Holocene: A Review. Indones. J. Geosci. 2014, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Indonesian Geospatial Agency (BIG). Observasi Dan Prediksi Pasut Serta Hasil Model Laut. 2020. Available online: http://tides.big.go.id/ (accessed on 17 November 2020).
- Indonesian Meteorological, Climatological, and Geophysical Agency (BMKG). Kondisi Wilayah Perairan Indonesia. 2020. Available online: https://peta-maritim.bmkg.go.id/ (accessed on 17 November 2020).
- Landa, A. A La Recherche des Coraux Témoins de L’éruption Volcanique du Samalas en 1257; Memoire M1 Université Paris 1 Panthéon Sorbonne: Paris, France, 2016. [Google Scholar]
- Szczuciński, W.; Kokociński, M.; Rzeszewski, M.; Chagué-Goff, C.; Cachão, M.; Goto, K.; Sugawara, D. Sediment sources and sedimentation processes of 2011 Tohoku-Oki tsunami deposits on the Sendai Plain, Japan—Insights from diatoms, nannoliths and grain size distribution. Sediment. Geol. 2012, 282, 40–56. [Google Scholar] [CrossRef]
- Chagué-Goff, C.; Niedzielski, P.; Wong, H.K.Y.; Szczuciński, W.; Sugawara, D.; Goff, J. Environmental impact assessment of the 2011 Tohoku-Oki tsunami on the Sendai Plain. Sediment. Geol. 2012, 282, 175–187. [Google Scholar] [CrossRef]
- Goff, J.; Chagué-Goff, C.; Nichol, S.; Jaffe, B.; Dominey-Howes, D. Progress in paleotsunami research. Sediment. Geol. 2012, 243–244, 70–88. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Reimer, R.W. CALIB 8.2. Available online: http://calib.org (accessed on 22 October 2020).
- Heaton, T.J.; Köhler, P.; Butzin, M.; Bard, E.; Reimer, R.W.; Austin, W.E.N.; Ramsey, C.B.; Grootes, P.M.; Hughen, K.A.; Kromer, B.; et al. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 2020, 62, 779–820. [Google Scholar] [CrossRef]
- Allen, G. Marine Life of the Pacific and Indian Oceans; Tuttle Publishing: North Clarendon, UK, 2001; p. 21. [Google Scholar]
- Wassmer, P.; Gomez, C. Development of the AMS Method for Unconsolidated Sediments, Application to Tsunami deposits. Geomorphol. Relief Process. Environ. 2011, 3, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Wassmer, P.; Schneider, J.L.; Fonfrège, A.; Lavigne, F.; Paris, R.; Gomez, C. Use of Anisotropy of Magnetic Susceptibility (AMS) in the study of tsunami deposits: Application to the 2004 deposits on the eastern coast of Banda Aceh, North Sumatra, Indonesia. Mar. Geol. 2010, 275, 255–272. [Google Scholar] [CrossRef]
- Wassmer, P.; Gomez, C.; Iskandasyah, T.Y.W.M.; Lavigne, F.; Sartohadi, J. Contribution of anisotropy of magnetic susceptibility (AMS) to reconstruct flooding characteristics of a 4220 BP tsunami from a thick unconsolidated structureless deposit (Banda Aceh, Sumatra). Front. Earth Sci. 2015, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Wassmer, P.; Font, E.; Gomez, C.; Iskandarsyah, T.Y.W.M. Magnetic Susceptibility and Anisotropy of Magnetic Susceptibility: Versatile Tools to Decipher Hydrodynamic Characteristics of Past Tsunamis. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Chapter 16; Elsevier: Amsterdam, The Netherlands, 2020; pp. 343–363. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. A Study in the Significance of Grain-Size Parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Major, J.J. Depositional Processes in Large-Scale Debris-Flow Experiments. J. Geol. 1997, 105, 345–366. [Google Scholar] [CrossRef]
- Kortekaas, S.; Dawson, A.G. Distinguishing tsunami and storm deposits: An example from Martinhal, SW Portugal. Sediment. Geol. 2007, 200, 208–221. [Google Scholar] [CrossRef]
- Moore, A.L.; McAdoo, B.G.; Ruffman, A. Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sediment. Geol. 2007, 200, 336–346. [Google Scholar] [CrossRef]
- Dura, T.; Cisternas, M.; Horton, B.P.; Ely, L.L.; Nelson, A.R.; Wesson, R.L.; Pilarczyk, J.E. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile. Quat. Sci. Rev. 2014, 113, 93–111. [Google Scholar] [CrossRef]
- Grauert, M.; Björck, S.; Bondevik, S. Storegga tsunami deposits in a coastal lake on Suouroy, the Faroe Islands. Boreas 2001, 30, 263–271. [Google Scholar] [CrossRef]
- Donato, S.V.; Reinhardt, E.G.; Boyce, J.I.; Pilarczyk, J.E.; Jupp, B.P. Particle-size distribution of inferred tsunami deposits in Sur Lagoon, Sultanate of Oman. Mar. Geol. 2009, 257, 54–64. [Google Scholar] [CrossRef]
- Wassmer, P.; Iskandarsyah, T.Y.W.M.; Gomez, C.; Lavigne, F.; Hart, D.; Pratomo, I.; Bel, J. When Debris Flows Run Upslope: Tsunami Induced Debris Flows. In Proceedings of the 8th International Conference on Geomorphology, Paris, France, 27–31 August 2013. [Google Scholar]
- Marris, E. Tsunami damage was enhanced by coral theft. Nature 2005, 436, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, H.J.S.; McCulley, J.L.; Mendis, S.G.; Perera, K. Coral poaching worsens tsunami destruction in Sri Lanka. EOS 2005, 86, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, C.M.; Hallberg, R.W.; Oppenheimer, M. Coral reefs reduce tsunami impact in model simulations. Geophys. Res. Lett. 2006, 33, L23612. [Google Scholar] [CrossRef] [Green Version]
- Baba, T.; Mleczko, R.; Burbidge, D.; Cummins, P.R.; Thio, H.K. The Effect of the Great Barrier Reef on the Propagation of the 2007 Solomon Islands Tsunami Recorded in Northeastern Australia. Pure Appl. Geophys. 2008, 165, 2003–2018. [Google Scholar] [CrossRef]
- Gabrie, C.; Salvat, B. General Features of French Polynesian Islands and Their Coral Reefs. In Proceedings of the 5th International Coral Reef Congress, Tahiti, French Polynesia, 27 May–1 June 1985. [Google Scholar]
- Paulay, G. Productivity plays a major role in determining atoll life and form: Tarawa, Kiribati. In Proceedings of the 8th International Coral Reef Symposium, Balboa, Panama, 24–29 June 1996; Lessios, H.A., MacIntyre, I.G., Eds.; Smithson. Trop. Res. Inst.: Balboa, Panama, 1997; Volume 1, pp. 483–488. [Google Scholar]
- Takada, A.; Nasution, A.; Rosgandika, M. Eruptive History During the last 10ky for the Caldera-Forming Eruption of Rinjani Volcano. In Proceedings of the Japan Earth and Planetary Science Joint Meeting, Tokyo, Japan, 22–24 October 2003. [Google Scholar]
- Nasution, A.; Takada, A.; Rosgandika, M. The volcanic activity of Rinjani, Lombok Island, Indonesia, during the last thousand years, viewed from 14C datings. In Proceedings of the Convention Bandung 2004, the 33rd Annual Convention & Exhibition, Bandung, Indonesia, 29 November–1 October 2004; pp. 8–15. [Google Scholar]
Sample Name | Sample Type | Sample Location |
---|---|---|
AF1 | Seashell | T1 |
AF2 | Seashell | T1 |
AF3 | Seashell | T1 |
AF4 | Coral | T3 |
AF5 | Coral | T4 |
AF6 | Coral | T4 |
AF7 | Coral | T4 |
AF8 | Coral | T3 |
AF9 | Seashell | T2 |
AF10 | Coral | T3 |
BI1 | Coral | T6 |
BI2 | Coral | T6 |
Sample Name | Sample Type | Uncal Age BP | Cal. Age CE (1 Sigma) |
---|---|---|---|
BI1 | Coral | 760 ± 30 | 1540–1698 |
BI2 | Coral | 790 ± 30 | 1527–1672 |
Sample Name | Depth (cm) | Mean Grain-Size | Standard Deviation (σΦ) | Skewness (SkI) | Kurtosis (KG) | Textural Types Percentage (%) | |||
---|---|---|---|---|---|---|---|---|---|
Φ | µm | Clay | Silt | Sand | |||||
1 | −35 | 2.95 | 234.83 | 2.40 | −0.60 | 1.36 | 4.49 | 17.71 | 77.80 |
2 | −55 | 2.45 | 225.60 | 1.81 | −0.59 | 3.02 | 4.60 | 9.50 | 85.90 |
3 | −80 | 2.50 | 223.54 | 1.76 | −0.57 | 2.25 | 3.62 | 10.65 | 85.73 |
4 | −102 | 1.70 | 347.67 | 1.29 | −0.40 | 1.91 | 2.23 | 4.71 | 93.06 |
5 | −125 | 1.70 | 342.80 | 0.91 | −0.10 | 1.28 | 0.93 | 2.75 | 96.32 |
6 | −133 | 1.33 | 446.53 | 0.95 | −0.18 | 1.14 | 1.07 | 2.78 | 96.16 |
7 | −157 | 1.56 | 389.93 | 0.98 | −0.06 | 1.02 | 0.95 | 2.32 | 96.73 |
8 | −172 | 1.38 | 548.53 | 2.01 | −0.48 | 1.61 | 2.95 | 7.41 | 89.64 |
T4 | T3 | P3 | T2 | P2 | T1 | P1 | |
---|---|---|---|---|---|---|---|
Mean intermediate axis (cm) for 30 samples | 10.5 | 11.2 | 11.1 | 10.1 | 13.2 | 13.9 | 15.2 |
Sample | Date of Analysis | Sample Type | Outcrop | Depth (cm) | Uncal Age BP | Cal. Age BCE/CE (1 Sigma) |
---|---|---|---|---|---|---|
AF1 | 08/2016 | Seashell | T1 | −173 | 2375 ± 30 | 75 BCE–103 CE |
AF2 | 08/2016 | Seashell | T1 | −128 | 2145 ± 30 | 216–381 CE |
AF3 | 08/2016 | Seashell | T1 | −70 | 2250 ± 30 | 83–248 CE |
AF4 | 10/2017 | Coral | T3 | −143 | 2050 ± 30 | 316–489 CE |
AF5 | 10/2017 | Coral | T4 | −158 | 1520 ± 30 | 879–1031 CE |
AF6 | 10/2017 | Coral | T4 | −92 | 1540 ± 30 | 854–1010 CE |
AF7 | 10/2017 | Coral | T4 | −40 | 1560 ± 30 | 883–992 CE |
AF8 | 12/2017 | Coral | T3 | −162 | 2169 ± 40 | 174–355 CE |
AF9 | 12/2017 | Seashell | T2 | −172 | 2137 ± 34 | 225–392 CE |
AF10 | 03/2018 | Coral | T3 | −35 | 1740 ± 28 | 654–789 CE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutaqin, B.W.; Lavigne, F.; Wassmer, P.; Trautmann, M.; Joyontono, P.; Gomez, C.; Septiangga, B.; Komorowski, J.-C.; Sartohadi, J.; Hadmoko, D.S. Evidence of Unknown Paleo-Tsunami Events along the Alas Strait, West Sumbawa, Indonesia. Geosciences 2021, 11, 46. https://doi.org/10.3390/geosciences11020046
Mutaqin BW, Lavigne F, Wassmer P, Trautmann M, Joyontono P, Gomez C, Septiangga B, Komorowski J-C, Sartohadi J, Hadmoko DS. Evidence of Unknown Paleo-Tsunami Events along the Alas Strait, West Sumbawa, Indonesia. Geosciences. 2021; 11(2):46. https://doi.org/10.3390/geosciences11020046
Chicago/Turabian StyleMutaqin, Bachtiar W., Franck Lavigne, Patrick Wassmer, Martine Trautmann, Puncak Joyontono, Christopher Gomez, Bagus Septiangga, Jean-Christophe Komorowski, Junun Sartohadi, and Danang Sri Hadmoko. 2021. "Evidence of Unknown Paleo-Tsunami Events along the Alas Strait, West Sumbawa, Indonesia" Geosciences 11, no. 2: 46. https://doi.org/10.3390/geosciences11020046
APA StyleMutaqin, B. W., Lavigne, F., Wassmer, P., Trautmann, M., Joyontono, P., Gomez, C., Septiangga, B., Komorowski, J. -C., Sartohadi, J., & Hadmoko, D. S. (2021). Evidence of Unknown Paleo-Tsunami Events along the Alas Strait, West Sumbawa, Indonesia. Geosciences, 11(2), 46. https://doi.org/10.3390/geosciences11020046