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Abstract: The use of 3D point clouds to improve the understanding of natural phenomena is currently
applied in natural hazard investigations, including the quantification of rockfall activity. However,
3D point cloud treatment is typically accomplished using nondedicated (and not optimal) software.
To fill this gap, we present an open-source, specific rockfall package in an object-oriented toolbox de-
veloped in the MATLAB® environment. The proposed package offers a complete and semiautomatic
3D solution that spans from extraction to identification and volume estimations of rockfall sources us-
ing state-of-the-art methods and newly implemented algorithms. To illustrate the capabilities of this
package, we acquired a series of high-quality point clouds in a pilot study area referred to as the La
Cornalle cliff (West Switzerland), obtained robust volume estimations at different volumetric scales,
and derived rockfall magnitude–frequency distributions, which assisted in the assessment of rockfall
activity and long-term erosion rates. An outcome of the case study shows the influence of the volume
computation on the magnitude–frequency distribution and ensuing erosion process interpretation.

Keywords: 3D point cloud; free code; toolbox; rockfalls; identification; quantification; volume

1. Introduction

3D point clouds are commonly used in different scientific domains and in geosciences.
In geosciences, the use of point clouds mainly focuses on capturing outcrop geometry [1],
mapping geological layers [2], or investigating surface morphological changes [3,4]. In the
topic of natural hazards, point clouds are frequently used for mapping landslides and
monitoring topographic changes resulting from rockfall activity or mass movement [5].

In natural hazards, point clouds originate from active sensors, such as laser scanners,
also known as LiDAR technologies [6,7], or from passive sensors and workflows, such as
classic photogrammetry or structure-from-motion (SFM) [8–11]. During the last decade,
the popularization of point clouds acquired from ground-based LiDAR has allowed the
rapid mass collection of slope surface measurements [12,13]. These high-accuracy and high-
spatial-resolution data have opened new ways of investigating natural hazards [14–17].
Working with multitemporal high-density point clouds (typically over 100 million points
per scan) or large datasets requires a widely applicable and powerful programming lan-
guage. This has led to the development of open-source software dedicated to processing
point clouds, most of which were originally dedicated to civil engineering or robotics,
such as CloudCompare [18] or Point Cloud Library [19]. However, several challenges still
exist in the management and extraction of this large amount of data collected for natural
hazard studies, in particular for detecting and estimating the volume of rockfalls in their
source areas. In addition, a key issue is how to gather all tools into a single structure, as has
been done for aerial laser scanning in the domains of forestry and land use [20].
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Extracting rockfall magnitudes, frequencies, and locations from high-resolution, multi-
temporal 3D point clouds has been an active research topic in recent decades. Examples in-
clude investigations of fragmental rockfalls in mountainous areas [16], investigations of
coastal cliffs shaped by sea erosion [14,21–23], clustering of rockfall events [24–27], and in-
vestigations of rockfalls along transportation corridors [28,29]. From a methodological
point of view, most of the abovementioned studies use grid DEMs (in 2.5D) that have been
interpolated from a point cloud parallel to the rock wall, which allows the extraction of
rockfall volumes by subtracting multitemporal or oblique DEMs [30,31]. However, this pro-
cedure does not facilitate computing complex shapes with “concave” faces. Some recent
studies as in [32] investigated this problem. In this paper, we illustrate one possible method
to semiautomatically compute the retrospective detection of rockfall sources and related
complex geometries (i.e., concave hull volume) using a straightforward methodology.

To detect retrospective rockfall sources, the compared point clouds need prealignment
or co-registration. The detection is performed using a point-to-surface comparison com-
bined with a spatial filter. Then, to identify the true rockfall sources, a spatial clustering
algorithm is used to segment points belonging to each rockfall source. Finally, we applied
a shape reconstruction algorithm, used in the domain of computer graphics, to compute
complex rockfall source shapes and volumes, including concavities. This procedure is im-
plemented in MATLAB with the landslide specific RockfallQuantification package, which is
part of the free code toolbox 3DPointCloudToolBox, based on free code components and
well-established algorithms for point cloud data treatment.

We attempted to demonstrate the efficiency of this method on the study area of the
rock wall of the La Cornalle cliff. The obtained results allowed us to carry out a sensitiv-
ity analysis of the rockfall source volume computation on the erosion rate, and rockfall
assessment interpretation, using a magnitude–frequency plot and power-law regression as
described in [22,31,33–37].

2. Toolbox for 3D Point Cloud Processing

We create a point cloud toolbox, referred to as the 3DPointCloudToolBox, with empha-
sis on specific tools used for landslide and rockfall investigations (see Appendix A). This li-
brary uses object-oriented programming under the MATLAB® environment, which en-
ables the management of large datasets and complex functions with increased speed [38].
This selection provides a suitable environment for any user to enhance the library of
the toolbox owing to the work of the MathWorks® community. Some properties, such
as position, color, or intensity, are obtained as direct information extracted from LiDAR
devices or photogrammetric models, whereas other properties, such as normal vectors,
curvature, etc., are computed in postprocessing when needed. Other included properties
are related to the spatial distribution of the points, such as Delaunay triangulation or
voxel structure, Kd-tree [39]. The presented toolbox can be downloaded under link at
Supplementary materials.

3. Toolbox-Specific Landslide Package: Retrospective Rockfall Source Detection and
Volume Estimation Processing
3.1. Step 1: Rockfall Source Location Extract by Thresholding

The first step consists of locating retrospective rockfall sources via classification into
two different classes:

1. Points belonging to topographic changes assumed to result from rockfalls.
2. Points belonging to unchanged topography assumed to be stable surfaces.

The changes between two point cloud acquisitions are identified by a classical method
described in [40]. The detection of rockfall sources uses the difference in distance between
two point clouds of different epochs. The computation of the difference is performed using
a point-to-surface comparison to obtain the shortest distance (Euclidean distance) from each
point to the surface as di = ∆(Pi, S), where (Pi) is, for example, a (i) point in the pre-rockfall
event (pre) point cloud (P) of size (n), (S) is the surface built from the post-rockfall event



Geosciences 2021, 11, 75 3 of 19

(post) point cloud using the triangulation mesh, and (di) is the computed signed distance
along the local normal of (S). If no acquisition bias exists in the point cloud, the distribution
of distance differences without surface change follows a normal distribution centered on
zero. In the locations at which a change in topography occurs, the distance comparison (di)
must be larger than the standard deviation (σ). According to [5], the standard deviation
of the measurements between two epochs can be high and depends on multiple factors,
such as the quality of the point cloud datasets, the density of the points, the presence
of vegetation, the roughness of the relief, and the quality of the alignment between the
point clouds and/or the acquisition locations between the two epochs (LiDAR position
or picture positions). According to [41], point cloud points are assumed to be indicative
of topographic changes (i.e., here, a rockfall source) without ambiguity when the point-
to-surface comparison distances are larger than two times the standard deviation (2σ).
As proposed by [41], this threshold can be improved by applying a spatial filter using the
mean point-to-surface comparison distance of a point and its 25 nearest neighbors. Thus,
the thresholding conditions are defined as follows:

Pprei ⊂ rock f alls source when
∑25

i=1 ∆(Pprei, Spost)
25

> +2σ (1)

Pposti ⊂ rock f alls source when
∑25

i=1 ∆(Pposti, Spre)
25

< −2σ (2)

The points representing the conditions in Equations (1) and (2) are merged for each
neighborhood as one set of points belonging to a rockfall source. The result is spatially
distributed points that form clusters corresponding to rockfall sources and isolated points
associated with noise (Figure 1).
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Figure 1. Sketch of the process of localizing rockfall sources. Where P are the points, S is the reconstructed surface from
point cloud at different epochs, and dP is the difference in distance from the point-to-surface comparison. The subscripts pre
and post denote pre- and post-rockfall event acquisition, respectively.

3.2. Step 2: Clustering Rockfall Sources

The second step consists of the identification of each cluster representing a single
source and the removal of outliers. Currently, the segmentation of point clouds into clusters
uses the density-based clustering algorithm DBSCAN [42], as applied in [24]. The principle
behind DBSCAN [42] consists of scanning a point cloud with a selected neighboring radius
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(ε) assuming the availability of the minimum number of points (k) required to create a
cluster. The choice of the minimum number of points (k) and the neighboring radius (ε)
depends on the point cloud point density and the volume to be detected. This point is
not intuitive and is a limitation of DBSCAN as it is necessary to first identify a reasonable
measure of similarity for the dataset, before selecting the optimal (ε) It can be determined
by a trial-and-error procedure.

A solution to these shortcomings is to use the OPTICS algorithm (ordering points to
identify the clustering structure) [43] as a variant of DBSCAN. When using the OPTICS
algorithm, only the minimum number of points (k) considered as a cluster is needed.
Then, the value of (ε) can be calculated from the chosen (k). Based on the reachability
plot structure, an optimal neighborhood radius (ε) containing a predefined (k) points is
given by [43]

ε =

√
VkΓ[(1/2)n + 1]

n
√

πm
(3)

where (n) is the number of points in the dataset, (m) is the dimensionality of the experi-
mental space, (Γ) is the gamma function, and (V) is the volume of the space formed by
m points. The OPTICS algorithm sorts the data within a point cloud according to their dis-
tance and core distance and categorizes the points into one of three categories: core points,
border points, or outliers (Figure 2). A point (i) of a point cloud is defined as follows:

• A core point, if the neighborhood of radius (ε), has at least k-points (reachable points);
• A border point possesses at least one core point within a radius (ε);
• An outlier is a point with no point or no core point within its radius (ε).
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Figure 2. (A) Example of the raw dataset required to individualize the different clusters representing the different rockfall
sources. (B) The OPTICS (ordering points to identify the clustering structure) density-based clustering algorithm allows
classification according to the reachability distance or neighbor radius. (C) The classification allows attributing each point
as a border or core point. Moreover, the OPTICS algorithm allows the identification of outlier points to remove.

Now, if a point (i) is a core point, then it forms a cluster together with all points (core or
border) that are reachable from it. They are mutually densely connected. Each cluster
contains at least one core point.

According to [43], the OPTICS algorithm is a well-suited clustering method for datasets
with a large number of points. In addition, OPTICS was successfully used in chemometrics
to reveal clusters of arbitrary shapes with differing densities [44].

After processing, the point cloud is divided into a series of point cloud sets correspond-
ing to its clusters and outliers. Then, at the end of step 2, a cluster is considered a rockfall
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source when it is a compound of points from different epochs, pre- and post-rockfall
sources. The single epoch clusters and outliers are removed.

3.3. Step 3: Rockfall Source Volume Estimation

The last step consists of calculating the volumes of the different sets of clustered points
identified as rockfall sources. The volume computation utilizes the full 3D point cloud
using the α-shape hull algorithm [45,46] to take into account the natural geometric com-
plexities encountered for rockfall source shapes. This algorithm, originally developed in the
domain of computer graphics to recreate complex surfaces, is applied to geometrical studies
in biosciences, [47], and its uses include visualization and volume estimations. The α shape
is a mathematical expression used for the representation of complex shapes (convex or
concave) by the linear approximation of the original shape from a set of points [48]. Accord-
ing to [45], the α shape is the generalized form of the concave hull in which it is a complex
of Delaunay triangulation (DT) in 2D or 3D. For a given value of α, the α-complex includes
all the simplexes in the DT that have an empty circumscribing sphere with a squared radius
equal to or smaller than α (Figure 3).
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with a radius larger than the defined research radius α. (C) New outer surface from the α shape with concavities formed by
the points. The shape is an α-complex compound of multiple simplexes (triangles) from DT.

To define the closeness to a real shape or the envelope (Sα) formed by a set of points,
the value used is an α value corresponding to a research radius in the point cloud ranging
from 0 to ∞ and follows the subsequent conditions:

• If α = ∞, Sα is the convex hull of the point cloud;
• If α = 0, Sα is each point of the point cloud itself;
• If 0 < α < ∞, Sα will be the largest polyhedron or shape connecting m points of the

point cloud.

In addition, we look for an efficient determination of the volume of this specific shape
(Sα). As Sα is a complex of DT, we use the DT to decompose volumes defined by the
envelope of Sα into tetrahedrons. The volume of a i tetrahedron with a triangular base of a
given area, A, and a height, h, are given as follows:

Vi =
1
3

Ah (4)

The volume of the source of a rockfall is equal to the sum of all n tetrahedron volumes,
Vi, inside an α-shaped Sα defined as follows:

V rock f all Source =
n

∑
i=1

Vi (5)
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This process is applied to all rockfall sources. The precision of the volume calculation
depends on the α value. It is possible to have an intuitive perception of the real volume
by plotting the volume versus the α value, and the best α value is then located at the first
asymptotic behavior instance (Figure 4).
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4. Case Study

To illustrate the application of the abovementioned methodology and its implementa-
tion in MATLAB, we carried out a series of point cloud acquisitions with a terrestrial LiDAR
device at a study site located a few kilometers eastward of Lausanne (Vaud, Switzerland) in
the Lavaux region (Figure 5A) within the Molasse Swiss Plateau [49]. The region is affected
by several critical slow-moving landslides and numerous rockfall activities [50].

The pilot study area, referred to as the La Cornalle cliff, is part of the lateral scarp of a
slow-moving landslide (Figure 5B) that has been well documented since the 18th century
and has been active for 10,000 years, resulting in several hazardous events [50]. The cliff,
which is over 35 m high and 110 m long (Figure 5C), is an interesting actual-scale laboratory
used to study rockfall processes, including the triggering conditions needed for the erosion
of molassic rock, which leads to estimation of the erosion rate induced by rockfall activity.
The cliff is hardly accessible for direct measurement.

The La Cornalle cliff is composed of subhorizontal alternations of decimetric to met-
ric beds (0.1–3 m) of sandstone and marls (Figure 5D) of Chattian age from the Lower
Freshwater Molasse [51]. Molassic rocks are generally weak rocks that are highly affected
by erosional processes. The bedding is monocline and dips in the opposite direction of
the slope. Four sets of discontinuities are present: stratification S0 125/14◦, joint sys-
tem J1 234/86◦ subparallel to the cliff face, and joint systems J2 150/75◦ and J3 325/80◦

nearly perpendicular to the slope. Discontinuities are clearly present on sandstone beds.
The spacing varies from 0.2 to 1.0 m for J1 and from 0.15 to 2 m for J2 and J3, respectively.
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shows the lithology of the area composed of alternating metric layers of sandstone and marls. Source map from Swisstopo
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The significant rockfall sources located in the sandstone beds are caused by the dif-
ferentiated erosion rate between marls and sandstone. This phenomenon induces the
overhanging and toppling failure mechanisms of sandstone beds. Numerous rockfalls
accumulate material on the top of the slow-moving landslide [52], which promotes move-
ment. Based on structural analysis, the expected block volumes could vary from 0.003 m3

(0.1 × 0.2 × 0.15 m) for the minimal volume to 6.0 m3 (3.0 × 1.0 × 2.0 m) for the maxi-
mal volume.

We acquired a first point cloud of the cliff from a ground-based LiDAR survey in
June 2010. A second acquisition was completed in September 2012; afterward, the cliff
was monitored by LiDAR four times per year (seasonally) up to May 2015. The data were
collected with an Optech/Teledyne ILIRS 3DER with theoretical accuracy of 7 mm at 100 m
and a standard deviation of 10 mm [53]. The footprint at the cliff range (~300 m) was
approximately 50 mm. The effective point surface density was of 860 pts/m2.

5. Results

The results are illustrated to show some output from typical datasets from 3D point
clouds. Table 1 reports the input parameters used in the illustrated results, which were
obtained automatically by the algorithm and manually by the user. When available,
the automatic parameters proposed by the software were applied. The user-defined
parameters were as follows:

With a minimum of 34 points, it is expected to detect volumes larger than 0.5 L
according to the described point surface density. The α value was determined for each
point rockfall source based on the procedure described in Section 3.3.
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Table 1. Example of input parameters used for the La Cornalle cliff case study.

Input Parameters

Threshold for pre- to post-event (T) corresponding to 2σ 0.074 m Automatically defined by package
Minimum number of considered points for a cluster (k) 34 pts Manually defined by user

Neighborhood radius (ε) 0.251 m Automatically defined by package
α value or research radius (α) 0.25–1.25 m Manually defined by user

As an example, Figure 6A shows the observed and identified major rockfall events
from sandstone beds between September 2012 and March 2013 during which the north-
ern part of the cliff experienced important rockfall activity. Thirty-one rockfall events
were identified via photographic comparison, mostly the important volumes. Figure 6B
shows the identified rockfall sources after computation using the developed toolbox and
applying the presented methods on the LiDAR data collected between September 2012
and March 2013. Each rockfall source belongs to a different-colored point cloud. In total,
49 individualized rockfall sources extracted with the presented procedure were identified.
When comparing the two results, we noted that the difference in the identified number of
rockfall events comes from the small undetected rockfall sources in the picture analysis.
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Figure 6. (A) An example of the location of identified rockfalls (green) based on field observations and picture analysis
between two epochs (Fall 2012–Spring 2013). (B) Identified points belonging to different rockfall sources after using the
rockfall source extraction function on the acquired point cloud between Fall 2012 and Spring 2013 with a terrestrial laser
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To illustrate the output results of the presented procedure, and particularly the com-
puted rockfall volumes, we used the classic rockfall magnitude–frequency representa-
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tion [22,31,33–37]. According to [37], volumes from rockfall source areas are assumed to
follow a power-law regression:

n = aV−b (6)

where V is the rockfall volume, n is the number of rockfalls larger than V occurring in a
rock wall during an investigation period, and the constant, a, represents the number of
rockfalls whose volume is greater than 1 m3. It depends on the size of the cliff, the length of
the investigation period, and the geological and geomorphological context. The exponent,
b, depends on the geological and geomorphological context only. Thereby, recent studies
showed that a and b are correlated to the GSI (Geological Strength Index) of the rock
cliff [37]. In addition, the value of b indicates the proportion of small events as compared
to larger events. Therefore, this is important in the context of a power-law distribution,
where small events in sum could contribute significantly to overall volume loss. The power-
law regression has some limits as described in [22], as we have potential temporal and/or
spatial resolution bias.

We analyzed the sensitivity of the computed volume for a restrained series of identified
rockfall source varying the α values for the whole series. We increased the α values by
increment up to infinity, hence increasing the trend toward a convex shape. Figure 7
shows the magnitude–frequency relationship of the series of computed volumes from the
identified rockfall sources with different complex shapes, between Fall 2012 and Spring
2013, illustrated in Figure 6B. Figure 7 outlines the influence of the α value on each series of
computed volumes from rockfall sources using power-law regression on each magnitude–
frequency distribution. The magnitude–frequency representation is used here to show the
trend. The regressions are made from volumes ≥0.01 m3, which is the expected smallest
volume identified without ambiguity from the point cloud. We observed an increase in
the number of volumes greater than 1 m3, or an increasing parameter a for an increase
of the α value. In contrast, we observed a decrease in the b exponent. For values α < 0.1,
which are a too low research radius, we observed that most of the reconstructed volumes
are not filled or contained inner holes, as in Figure 4B. For a value 0.1 ≤ α ≤ 1.25, we can
reconstruct volumes conserving a close-to-reality geometry depending on block shape
complexity. For a value α > 1.25, we start connecting farther points, increasing shape
convexity for all rockfall volumes, and moving away from real geometry up to an infinite
α value, which indicates the maximal convex shape and the maximal rockfall volume (i.e.,
Figure 4D).

We applied the presented methodology to the overall monitoring period from 2010
to 2015 data. Thus, we identified 394 rockfall sources. Based on observation made on
Figure 7, we applied on each of these rockfall sources a detailed assessment of the volume
in order to compute close-to-reality volume, applying the method illustrated in Section 3.3
and Figure 4. As final result, we obtained a total volume of 105.2 m3, ranging from 0.0015
to 7.63 m3 with a mean volume of 0.2 m3 (see Figure 8). Less than 1% of the rockfall
sources were smaller than 0.003 m3 (0.1 × 0.2 × 0.15 m), which is the smallest volume
expected from structural analysis. Less than 25% of the rockfall sources are smaller than
0.01 m3 (0.2 × 0.2 × 0.2 m), which is the expected smallest volume identified without
ambiguity from the point cloud. In Figure 8, the regression shown in red represents the
rockfall sources with volumes higher than 0.01 m3, and the other regression shown in
blue represents all volumes, including the smallest volumes. Green triangles were not
included in the regression analysis because they represent multiple rockfall sources and
were too scarce during the period of monitoring; thus, they were not considered to be
representative [22,54]. We observed that the choice of the volume interval considered in the
regression affects the a and b parameters. With distribution containing all rockfall sources,
a increases and b decreases compare to distribution with only rockfall sources >0.01 m3.
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6. Discussion

From a processing and methodological standpoint, we note that applying the pre-
sented package for the detection and volume calculation of rockfall sources based on point
clouds provides the benefit of being less time intensive compared to procedures that use
manual methods and multiple software programs. This advantage is even more relevant
when monitoring is performed on large outcrops based on several time series. The pre-
sented approach provides automatic thresholding, making it a robust method. Based on our
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experience, the presented results illustrate that segmentation permits efficient extraction
of rockfall sources. However, some limitations appear in the point-to-surface method in
terms of precision. Improvements could be made using finer point-to-surface comparisons
in the first step by, for example, using the M3C2 algorithm comparison developed by [55]
and investigated in [56]. The DBSCAN algorithm used in clustering datasets requires a
homogenously spaced point cloud since the minimum number of points and ε cannot
then be chosen appropriately to detect all clusters at once. If the data and scale are not
well analyzed before applying this method, the results can be biased. This limitation is
eclipsed by the benefits of the OPTICS algorithm, as it offers an alternative to requiring
an optimal ε, even if the user does not know the ε value. The advantages of using the
OPTICS algorithm are as follows: (a) This algorithm does not require prior knowledge of
the number of clusters in the data; (b) this variation of the DBSCAN algorithm enables
the identification arbitrarily shaped clusters and clusters completely surrounded by other
clusters; and (c) using OPTICS classification, we are able to remove outliers. However,
the proposed algorithm also has some disadvantages, the OPTICS algorithm was not en-
tirely deterministic; depending on the order in which the data are processed, border points
were reachable from more than one cluster. This situation could occur if two or more
rockfall sources were very close.

For the volume computation, it is possible to say that using the α shape takes full
advantage of the 3D surface (with overhanging, etc.) and does not reduce it to 2.5D [30].
We see that for shapes that were more complex, our estimates approach the real volume
and avoid overestimation (see Figure 4D). The α shape can compute a very complex shape,
as often observed in natural rockfall geometry related to a discontinuous layout. The main
problem with α shapes is the determination of the best α values for surface reconstruction
when the point cloud does not present a uniform density of points [32]. Some studies have
shown improvement of the surface and volume computation when using the α shape as
was done in [57]. Furthermore, some issues with holes from shadowing during acquisition
were encountered, as was also observed by [25] with the potential to negatively impact
the accuracy of the results. This indicates that acquiring the point cloud from multiple
positions can help overcome these errors.

Concerning the results from the case study, a good correlation can be seen between the
rockfall sources identified during fieldwork (green in Figure 6A) and sources detected with
our package (shown in Figure 6B). The segmentation of rockfall sources worked sufficiently
for the efficient identification of volumes at different scales, e.g., from 0.0025 to 10 m3 with
a point spacing at cliff range of 3.4 cm.

When looking at the volume–frequency plot in Figure 7, we observed a decrease
in b exponents, when increasing α value, which is in agreement with previous studies
pointing out that the decrease in the value of b indicates a rise in the portion of larger
events as compared to smaller events [33]. This is logically correlated to increasing α value,
which generates a more convex and hence larger volume. Therefore, we observed varia-
tions in the volume ranging from 5% to 90% when computing concave or convex shapes
depending on the selected α value and the complex geometry of the rockfall sources.
The variation is particularly significant for large volumes with an increase trend for larger
volumes. The structural analysis of the cliff showed four main joint sets that produced a
parallelepiped unitary rockfall geometry. Thus, we can expect that larger rockfall events
are a combination of several unitary parallelepipeds inducing a more complex geometry
and thereby producing some concave geometries. In contrast, we also observed that vol-
ume computation influences a as computing less-complex geometries increases the overall
volume size, which leads to an overestimation of volume size during the monitoring period.

This highlights the importance of measuring the complexity of the geometry of large
rock falls and the use of an α shape to obtain a volume and a magnitude–frequency analysis
that are closer to reality.

When looking at the volume–frequency plot in Figure 8 an underestimation of the
number of rockfalls with small volumes (<0.05 m3) is suspected. The same observation is
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made on Figure 7. This may have been caused by the limited spatial resolution (one point
every 3.4 cm), as described in [35], and the minimal number of points used for cluster
detection (see Section 3.2). Some large rockfalls were related to multiple events located in
the same area (i.e., triangle symbol in Figure 8) but computed as a single event due to insuf-
ficient temporal resolution [35] or too close sources. This presence of multiple unresolved
events can be resolved with a higher-frequency data acquisition, such as monthly or per-
manent acquisition [22], instead of seasonal acquisition. Thus, errors linked to coalescence
and superposition of events can be reduced with enough temporal sampling [33].

The volume estimations provided the statistics of all volumes that provided informa-
tion about the erosional processes or cliff retreat [58]. Based on the volume–frequency plot,
the estimated exponent value (b) was between 0.48 and 0.78, and the factors were similar
to those found in the literature by [34] for seaside sandstone cliffs. This can be correlated
locally high fracturation in some sandstone layers or the poor GSI of the rock cliff but sug-
gests that the volume computation and the regression line boundaries also influenced the
erosional process interpretation [37,59]. The power law shows some limits in this study site
as we have temporal resolution bias and effect related to variation of thickness in sandstone
layers in a too small area leading to a too large effect on sampling. Nevertheless, using the
power law, it is possible to extrapolate to large volumes that were not reached during the
period of monitoring [58,60,61]. The interpretation made on the rockfall activity from the
presented results allowed us to state that, even though the failures were clearly episodic,
the mean cliff retreat rate by rockfall was estimated to be approximately 10 mm/year for
a surface of 2240 m2 in the zone of interest, assuming a mean detachment of material of
~25 m3 per year between October 2011 and October 2013 and of ~21 m3 per year over the
full monitoring period from 2010 to 2015 on sandstone beds. In addition to these results,
the erosional volume of marls was not considered in this study.

7. Conclusions

The proposed toolbox tries to fill an existing gap in the open-source tools available
for the treatment of point clouds oriented toward the quantification of rockfall activity.
This package is a compound of multiple state-of-the-art algorithms (DBSCAN, OPTICS,
α shape) that are able to identify rockfall sources and their volumes by considering its com-
plex shapes. Perspectives for the RockfallQuantification packages include an additional tool
for describing the shape of each rockfall event in terms of the principal axis, which could
bring interesting inputs to rockfall propagation software that takes into account the shape
of the blocks, such as RocFall [62] or Rockyfor3D [63].

The application of the RockfallQuantification package to the La Cornalle cliff demon-
strated a decrease in processing time and provided a robust procedure to quantify rockfall
activity and determine erosion rate. We were able to compute volume with concavities
observed in the field and to finally calculate the erosion rate and subsequent magnitude–
frequency distribution of the local Molassic cliff. In addition, the results highlighted the im-
portance of correctly estimating the volume of rockfall events when magnitude–frequency
plots are used.

The RockfallQuantification package as well as the 3DPointCloudToolBox can also be
applied to other high-resolution surface data techniques, such as aerial laser scanning or
photogrammetric techniques, including Structure-from-Motion. In addition, the Rockfal-
lQuantification package can be used for other applications in geosciences to extract volume
information from other natural events (e.g., lava flow, sediment transport, etc.). Finally,
as a free-code package, it allows users to constantly improve the package for use in their
specific needs.

Supplementary Materials: The algorithms are available on request to corresponding author or online
at https://wp.unil.ch/risk/software/PointCloudToolBox under the open access policy.

https://wp.unil.ch/risk/software/PointCloudToolBox
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Appendix A

3DPointCloudToolBox contains general packages (Figure A1) with state-of-the-art
algorithms and dedicated functions for point cloud preprocessing, including the alignment
of point clouds PointCloudAlignment and PointCloudComparison for point cloud com-
parison (point-to-point and point-to-surface). The 3DPointCloudToolBox contains specific
postprocessing packages oriented toward rockfall analysis (RockfallQuantification) pre-
sented in detail in subsequent sections. The elementary brick is the object class PointCloud
created with a series of properties useful for data treatment, which includes the point’s
position (X; Y; Z), intensities (I), colors (R; G; B), normal vectors (Nx; Ny; Nz), etc.

The RockfallQuantification package contains a series of functions encapsulated in
the main script (Figure A2). This inner structure allows either extracting intermediary
results at each step or running the full package to obtain the volume for each rockfall event
as output.

Figure A2 describe all functions used in the RockfallQuantification package that enable
the extraction, individualization, and computation of rockfall volumes. As input data,
the package needs two point clouds acquired at different epochs. Other necessary input
parameters include the minimum number of points (k) to be considered to create a cluster
in step two (see Section 3.2) and the research radius (r) needed to compute the shape of
the rockfall point cloud at step three (see Section 3.3). It is possible to define all automatic
research parameters (such as σ and ε) to decrease processing time or affine the results.
It defines the threshold to determine σ at step one (see Section 3.1) or the neighborhood
radius (ε) for step two (see Section 3.2). This solution is easier if the user has an idea of
the research radius parameter, but this will increase the computation time. To compute
the point-to-plane comparison, RockfallDetect needs the PointCloudComparison package.
The provided final output is a database with labeled rockfall event volumes and associated
point cloud objects defined at the second stage.
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Figure A1. The structure of the 3DPointCloudToolBox contains folders labeled as Documents for
tutorials, Examples of scripts to start up, Beta for functions in development, and Data to store raw
data that can be used in the 3DPointCloudToolBox. The main folder Toolbox contains subfolders
for point cloud data treatments (MainLibrary, PointCloudAlignment, PointCloudComparison, Syn-
theticPointCloud) and a specific subfolder landslide for landslide monitoring, with one for rockfall
monitoring and another for landslide surface displacement monitoring (RockfallQuantification,
LandslideTracking).
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alphavol Compute α-concave hull from PointCloud [45] 

Table A2. Key terms of the MATLAB®-oriented programming as defined in MathWorks®. 

MATLAB Classes—Key Terms 
Class definition Description of what is common to every instance of a class 

Classes A class describes a set of objects with common characteristics 
Super classes Classes that are used as a basis for the creation of more specifically defined classes (i.e., subclasses) 

Subclasses 
Classes that are derived from other classes and that inherit the methods, properties, and events 
from those classes (subclasses facilitate the reuse of code defined in the superclass from which they 
are derived) 

Objects Specific instances of a class, which contain actual data values stored in the object’s properties 
Properties Data storage for class instances 

Methods Special functions that implement operations that are usually performed only on instances of the 
class 

Packages Folders that define a scope for a class and function naming 

Figure A2. Workflow for the RockfallQuantification package.
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Table A1. Functions available on the RockfallQuantification package.

RockfallQuantification Functions

Step 1: RockfallExtract Extract point belonging to surface change from two
PointCloud objects

Step 2: RockfallSegment Individualize single rockfall event by clustering index
on PointCloud

dbscan_optics Density-Based Spatial Clustering of Applications with
Noise [42] and OPTICS improvement [43]

dist Compute Euclidean distance between points in the cloud

epsilon Compute optimal epsilon radius according to gamma
function approximation (Daszykowski et al., 2002)

Step 3: RockfallVolume Compute volume and center of mass of PointCloud

trueboundary Find boundary points to define shape of PointCloud

volumes_tetra Compute volume of single tetrahedron

alphavol Compute α-concave hull from PointCloud [45]

Table A2. Key terms of the MATLAB®-oriented programming as defined in MathWorks®.

MATLAB Classes—Key Terms

Class definition Description of what is common to every instance of a class

Classes A class describes a set of objects with common characteristics

Super classes Classes that are used as a basis for the creation of more
specifically defined classes (i.e., subclasses)

Subclasses

Classes that are derived from other classes and that inherit the
methods, properties, and events from those classes
(subclasses facilitate the reuse of code defined in the
superclass from which they are derived)

Objects Specific instances of a class, which contain actual data values
stored in the object’s properties

Properties Data storage for class instances

Methods Special functions that implement operations that are usually
performed only on instances of the class

Packages Folders that define a scope for a class and function naming

Table A3. PointCloud methods or functions implemented to operate on PointCloud objects only.

PointCloud Methods

Add Add the content of a given point cloud to this one

addNoise

Add simulated noise to the true point positions with
following possibility:
Gaussian position smearing
Outliers to simulate completely wrong position
Drop out some points by replacing points position by NaNs

ComputeBoundaries Compute the Boundary points

ComputeCurvature

Compute the curvatures at each point using:
Estimation of the curvature based on [64]
Variation of the surface from correlation of point clouds
based on [65]

ComputeDelaunayTriangulation Compute a 3D Delaunay triangulation using built-in
MATLAB® function
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Table A3. Cont.

PointCloud Methods

ComputeKDTree Compute a Kd search tree using built-in MATLAB® function

ComputeNormals Compute the least squares normal vector estimation of the
points based on [64]

ComputeOptimalNormals
Compute the adaptive normals based on neighbor size, point
density, and research radius based on [66] in order to reduce
normals dispersion

ComputeTrueDistance Compute the mean and root mean squared distances between
a PointCloud positions and a given PointCloud true positions

CopyTrue2MeasPos Copy the “true” positions to the “measured” ones

GetMissingPropFromPC Complete properties of an object PointCloud by getting the
missing ones from other PointCloud object

HasTrueP Return true if the object PointCloud has true positions

ImportDataFromASCII Import data from an ASCII file

IsEmpty Is the object PointCloud object empty?

MeshPointCloud Create a MeshPointCloud from this PointCloud

MoveToCM Move to the center of mass of another given object PointCloud

NormalsOutTopo
For each point, compute the sign of the normal vector to be
oriented toward its indexed sensor using TLSAttribute to
have normals orientation to be out of the topography

Plot3 Plot the 3D coordinates of each point of the object
PointCloud Positions

PlotCurvature Plot the computed curvatures

PlotNormals Plot the computed normals

PlotPCLViewer Plot for large point cloud positions with colors or intensities
using Point Cloud Library Viewer [19]

PlotPositionsWithColors Plot the point cloud with the colors

PlotPositionsWithIntensities Plot the point cloud with the intensities

RemoveNans Remove any NaNs values in P and TrueP

SaveInASCII Save object PointCloud in ASCII format

SaveInPCD Save object PointCloud in PCD format for open Point
Cloud Library [19]

Size What is the dimension of the object PointCloud?

Transform Transform the object PointCloud

WhatColor Query: what is the RGB color of the closest point?

WhatIntensity Query: what is the intensity of the closest point?

Table A4. Functions available in the MainLibrary package.

MainLibrary

PointCloud Constructor of the object PointCloud and related methods

AffinTransform Apply an affine transformation to object PointCloud

AlphaBoundary Determine the convex hull of the object PointCloud using [45]

EuclDist Compute the Euclidean distance between two vectors of
3D points.
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Table A4. Cont.

MainLibrary

HalfWayPoints Loop on all the possible pairs in the input points and compute
the halfway point

ImportPointCloudFromASCII
Create a PointCloud object from a given input data (in ASCII
format), allowing the user selection of the specific point
cloud properties

MeshPointCloud Class to hold mesh grids as created by functions like GridFit

PlaneMesh Create a synthetic planar grid of points

Plot3DPointClouds Display one object PointCloud with defined property

PlotMultiPointClouds Display several objects PointCloud with defined property

Quat2Rot Convert (unit) quaternion representations to (orthogonal)
rotation matrices R

RemoveDuplicate3DPoints Remove the duplicates in a set of 3D points

Rot2Quat Converts (orthogonal) rotation matrices R to (unit)
quaternion representations

RotationMatrix Compute the rotation matrix given the Eulerian
rotation angles

SubSampling Create a sub sample of a given object PointCloud

TransformMatrix Given the rotation angles and a translation vector, provides a
transformation matrix

TriangularMesh Decompose a given triangle form mesh into smaller triangles

Vector A class to efficiently store any other property or type of data

Table A5. Functions available in the PointCloudComparison package.

PointCloudComparison

ComparePoint2Point

Compute comparison using the shortest point to point
distance. Calculation is made using Euclidean distance
between a given point in PointCloud A to the closest point
in PointCloud B with output as absolute differences.

ComparePoint2Surface

Compute comparison using the shortest point to surface
distance. Calculation is made between a given point in
PointCloud A and the distance parallel to the normal to
the closest point in PointCloud B with output as
signed differences.
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