Climate Variability Indices—A Guided Tour
Abstract
:1. Introduction
2. Materials and Methods
3. Indices of Inter-Annual and Inter-Decadal Climate Variability
3.1. El Niño–Southern Oscillation (ENSO)
3.1.1. Origins and characterization
3.1.2. Indices
3.2. North Atlantic Oscillation (NAO)
3.3. Pacific Decadal Oscillation (PDO)
3.4. Atlantic Meridional Oscillation, a.k.a. Atlantic Multi-Decadal Oscillation (AMO)
3.5. Links between Various Modes
- (i)
- The timescale: During the 20th century, PDO events persisted for 20–30 years, while typical ENSO events persisted for only 6–18 months.
- (ii)
- The essential climatic fingerprints of the PDO were most visible in the North Pacific/North American sector and secondary signatures existed in the tropics, while for ENSO, the opposite is true.
- (iii)
- Causes for the PDO are not well understood, while mechanisms driving ENSO are relatively well known.
4. Discussion and Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundzewicz, Z.W.; Szwed, M.; Pińskwar, I. Climate Variability and Floods—A global Review. Water 2019, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.; Huang, J.; Pinskwar, I.; Su, B.; Szwed, M.; Jiang, T. Climate variability and floods in China—A review. Earth-Sci. Rev. 2020, 211, 103434. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pińskwar, I.; Koutsoyiannis, D. Variability of global mean annual temperature is significantly influenced by the rhythm of ocean-atmosphere oscillations. Sci. Total. Environ. 2020, 747, 141256. [Google Scholar] [CrossRef]
- Norel, M.; Krawiec, K.; Kundzewicz, Z.W. Machine-learning modeling of climate variability impact on river runoff. Water 2021. submitted. [Google Scholar]
- Milanković, M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem; Königlich Serbische Akademie: Belgrade, Serbia, 1941; Volume 132, p. 633. [Google Scholar]
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial cause for the Cretaceous-Tertiary Extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene Boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newhall, C.G.; Self, S. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 1982, 87, 1231–1238. [Google Scholar] [CrossRef]
- Mason, B.G.; Pyle, D.M.; Oppenheimer, C. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 2004, 66, 735–748. [Google Scholar] [CrossRef]
- Schwabe, S.H. Sonnenbeobachtungen im Jahre 1843 [Observations of the Sun in the year 1843]. Astron. Nachr. (Astron. News) 1843, 21, 233–236. (In German) [Google Scholar]
- Hartmann, H.; Snow, J.A.; Stein, S.; Su, B.; Zhai, J.; Jiang, T.; Krysanova, V.; Kundzewicz, Z.W. Predictors of precipitation for improved water resources management in the Tarim River basin: Creating a seasonal forecast model. J. Arid. Environ. 2016, 125, 31–42. [Google Scholar] [CrossRef]
- Kaplan, A. Patterns and indices of climate variability. Bull. Amer. Meteor. Soc. 2011, 92, S20–S26. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.T. Correlation in seasonal variations of weather, IX. A further study of world weather. Mem. India Meteoro-Log. Dep. 1924, 24, 275–333. [Google Scholar]
- Bjerknes, J. Atmospheric teleconnections from Equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. The definition of El Niño. Bull. Amer. Meteor. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Huang, B.; L’Heureux, M.; Hu, Z.-Z.; Zhang, H.-M. Ranking the strongest ENSO events while incorporating SST uncertainty. Geophys. Res. Lett. 2016, 43, 9165–9172. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Stepaniak, D.P. Indices of El Niño evolution. J. Clim. 2001, 14, 1697–1701. [Google Scholar] [CrossRef] [Green Version]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Pinault, J.-L. Long wave resonance in tropical oceans and implications on climate: The Pacific Ocean. Pure Appl. Geophys. 2015, 173, 2119–2145. [Google Scholar] [CrossRef]
- Pinault, J.-L. Anticipation of ENSO: What teach us the resonantly forced baroclinic waves. Geophys. Astrophys. Fluid Dyn. 2016, 110, 518–528. [Google Scholar] [CrossRef]
- Wanner, H.; Brönnimann, S.; Casty, C.; Gyalistras, D.; Luterbacher, J.; Schmutz, C.; Stephenson, D.B.; Xoplaki, E. North Atlantic Oscillation–concepts and studies. Surv. Geophys. 2001, 22, 321–382. [Google Scholar] [CrossRef]
- Jones, P.D.; Osborn, T.J.; Briffa, K.R.; Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. Pressure-based measures of the North Atlantic Oscillation (NAO): A comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters. Sea Ice 2003, 134, 51–62. [Google Scholar] [CrossRef]
- Feldstein, S.B. The dynamics of NAO teleconnection pattern growth and decay. Q. J. R. Meteorol. Soc. 2003, 129, 901–924. [Google Scholar] [CrossRef]
- Hernández, A.; Sánchez-López, G.; Pla-Rabes, S.; Comas-Bru, L.; Parnell, A.; Cahill, N.; Geyer, A.; Trigo, R.M.; Giralt, S. A 2000-year Bayesian NAO reconstruction from the Iberian Peninsula. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Luterbacher, J.; Schmutz, C.; Gyalistras, D.; Xoplaki, E.; Wanner, H. Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys. Res. Lett. 1999, 26, 2745–2748. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Barlow, M. The NAO, the AO, and Global Warming: How closely related? J. Clim. 2005, 18, 4498–4513. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in winter time geopotential height and temperature fields. Ge-ophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Ambaum, M.H.P.; Hoskins, B.J. The NAO troposphere–stratosphere connection. J. Clim. 2002, 15, 1969–1978. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J. Pacific–Decadal Oscillation (PDO). In The Earth system: Physical and Chemical Dimensions of Global Environmental Change; MacCracken, M.C., Perry, J.S., Eds.; Wiley & Sons, Ltd.: Chichester, UK, 2002; Volume 1, pp. 592–594. ISBN 0-471-97796-9. [Google Scholar]
- Schneider, N.; Cornuelle, B.D. The forcing of the Pacific Decadal Oscillation. J. Clim. 2005, 18, 4355–4373. [Google Scholar] [CrossRef]
- Jin, F.-F. A theory of interdecadal climate variability of the North Pacific Ocean–Atmosphere system. J. Clim. 1997, 10, 1821–1835. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- D’Orgeville, M.; Peltier, W.R. On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: Might they be related? Geophys. Res. Lett. 2007, 34, 23705. [Google Scholar] [CrossRef]
- Hare, S.R. Low Frequency Climate Variability and Salmon Production. Ph.D. Thesis, School of Fisheries, University of Washington, Seattle, WA, USA, 1996. [Google Scholar]
- Kim, H.; Yeh, S.-W.; An, S.-I.; Song, S.-Y. Changes in the role of Pacific decadal oscillation on sea ice extent variability across the mid-1990s. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.B.; Kennedy, J.J.; Folland, C.K. A Tripole Index for the Interdecadal Pacific Oscillation. Clim. Dyn. 2015, 45, 3077–3090. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic Multi-decadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Shea, D.J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Mann, M.E.; Steinman, B.A.; Miller, S.K. On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett. 2014, 41, 3211–3219. [Google Scholar] [CrossRef] [Green Version]
- Dima, M.; Lohmann, G. A hemispheric mechanism for the Atlantic Multi-decadal Oscillation. J. Clim. 2007, 20, 2706–2719. [Google Scholar] [CrossRef]
- Pinault, J.-L. Modulated Response of Subtropical Gyres: Positive Feedback Loop, Subharmonic Modes, Resonant Solar and Orbital Forcing. J. Mar. Sci. Eng. 2018, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Srokosz, M.; Baringer, M.; Bryden, H.; Cunningham, S.; Delworth, T.; Lozier, S.; Marotzke, J.; Sutton, R. Past, Present, and Future Changes in the Atlantic Meridional Overturning Circulation. Bull. Am. Meteorol. Soc. 2012, 93, 1663–1676. [Google Scholar] [CrossRef] [Green Version]
- Lozier, M.S. Deconstructing the Conveyor Belt. Science 2010, 328, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nat. Cell Biol. 2002, 419, 207–214. [Google Scholar] [CrossRef]
- Alley, R.; Agustsdottir, A. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 2005, 24, 1123–1149. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonance of baroclinic waves in the tropical oceans: The Indian Ocean and the far western Pacific. Dyn. Atmos. Oceans 2020, 89, 101119. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T.P. Interdecadal Modulation of ENSO Teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2725. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, G.M. Variations in the Pacific Decadal Oscillation over the past millennium. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.; Compo, G.P.; Alexander, M.A. ENSO-forced variability of the Pacific Decadal Oscillation. J. Clim. 2003, 16, 3853–3857. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liu, Z.; Zhang, R.; Delworth, T.L. On the observed relationship between the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation. J. Oceanogr. 2011, 67, 27–35. [Google Scholar] [CrossRef]
- Braganza, K.; Karoly, D.; Hirst, A.; Mann, M.; Stott, P.; Stouffer, R.; Tett, S. Simple indices of global climate variability and change: Part I—Variability and correlation structure. Clim. Dyn. 2003, 20, 491–502. [Google Scholar] [CrossRef]
- Stanisławska, K.; Kundzewicz, Z.W.; Krawiec, K. Hindcasting global temperature by evolutionary computation. Acta Geophys. 2013, 61, 732–751. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonant Forcing of the Climate System in Subharmonic Modes. J. Mar. Sci. Eng. 2020, 8, 60. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norel, M.; Kałczyński, M.; Pińskwar, I.; Krawiec, K.; Kundzewicz, Z.W. Climate Variability Indices—A Guided Tour. Geosciences 2021, 11, 128. https://doi.org/10.3390/geosciences11030128
Norel M, Kałczyński M, Pińskwar I, Krawiec K, Kundzewicz ZW. Climate Variability Indices—A Guided Tour. Geosciences. 2021; 11(3):128. https://doi.org/10.3390/geosciences11030128
Chicago/Turabian StyleNorel, Mateusz, Michał Kałczyński, Iwona Pińskwar, Krzysztof Krawiec, and Zbigniew W. Kundzewicz. 2021. "Climate Variability Indices—A Guided Tour" Geosciences 11, no. 3: 128. https://doi.org/10.3390/geosciences11030128
APA StyleNorel, M., Kałczyński, M., Pińskwar, I., Krawiec, K., & Kundzewicz, Z. W. (2021). Climate Variability Indices—A Guided Tour. Geosciences, 11(3), 128. https://doi.org/10.3390/geosciences11030128