New Evidence of Megaclasts from the Russian South: The First Report of Three Localities
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Shum
3.2. Merzhanovo
3.3. Red Stones
4. Discussion
4.1. Putting into the Broader Context
4.2. Methodological Note
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruban, D.A.; Ponedelnik, A.A.; Yashalova, N.N. Megaclasts: Term Use and Relevant Biases. Geoscience 2018, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Udden, J.A. The Mechanical Composition of Wind Deposits; Augustana Library Publications: Rock Island, IL, USA, 1898; Volume 1, pp. 1–69. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Boggs, S., Jr. Principles of Sedimentology and Stratigraphy; Pearson Prentice Hall: New Jersey, NJ, USA, 2006; 662p. [Google Scholar]
- Nichols, G. Sedimentology and Stratigraphy; Wiley-Blackwell: Oxford, UK, 2009; 419p. [Google Scholar]
- Tucker, M.E. Sedimentary Rocks in the Field: A Practical Guide; Wiley-Blackwell: Chichester, UK, 2011; 276p. [Google Scholar]
- Logvinenko, N.V. Marine Geology; Nedra: Leningrad, Russia, 1980; 343p. (In Russian) [Google Scholar]
- Shvanov, V.N. (Ed.) Systematics and Classifications of Sedimentary Rocks and their Analogues; Nedra: Sankt-Petersburg, Russia, 1998; 352p. (In Russian) [Google Scholar]
- Blair, T.C.; McPherson, J.G. Grain-size and textural classification of coarse sedimentary particles. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Bruno, D.E.; Ruban, D.A. Something more than boulders: A geological comment on the nomenclature of megaclasts on extraterrestrial bodies. Planet. Space Sci. 2017, 135, 37–42. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J. Megaclasts: Proposed revised nomenclature at the coarse end of the Udden-Wentworth gain-size scale for sedimentary particles. J. Sediment. Res. 2014, 84, 192–197. [Google Scholar] [CrossRef]
- Cox, R.; Lopes, W.A.; Jahn, K.L. Quantitative roundness analysis of coastal boulder deposits. Mar. Geol. 2018, 396, 114–141. [Google Scholar] [CrossRef]
- Cox, R. Megagravel deposits on the west coast of Ireland show the impacts of severe storms. Weather 2020, 75, 72–77. [Google Scholar] [CrossRef]
- Galindo, I.; Johnson, M.; Martín-González, E.; Romero, C.; Vegas, J.; Melo, C.; Ávila, S.; Sánchez, N. Late Pleistocene Boulder Slumps Eroded from a Basalt Shoreline at El Confital Beach on Gran Canaria (Canary Islands, Spain). J. Mar. Sci. Eng. 2021, 9, 138. [Google Scholar] [CrossRef]
- Johnson, M.E.; Guardado-France, R.; Johnson, E.M.; Ledesma-Vázquez, J. Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A. Finding Coastal Megaclast Deposits: A Virtual Perspective. J. Mar. Sci. Eng. 2020, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Scheffers, A.; Scheffers, S.; Kelletat, D.; Browne, T. Wave-Emplaced Coarse Debris and Megaclasts in Ireland and Scotland: Boulder Transport in a High-Energy Littoral Environment. J. Geol. 2009, 117, 553–573. [Google Scholar] [CrossRef]
- Trenhaile, A. Rocky coasts—Their role as depositional environments. Earth Sci. Rev. 2016, 159, 1–13. [Google Scholar] [CrossRef]
- Killingback, Z.; Holdsworth, R.; Walker, R.; Nielsen, S.; Dempsey, E.; Hardman, K. A bigger splat: The catastrophic geology of a 1.2-b.y.-old terrestrial megaclast, northwest Scotland. Geology 2021, 49, 180–184. [Google Scholar] [CrossRef]
- Lubova, K.A.; Zayats, P.P.; Ruban, D.A.; Tiess, G. Megaclasts in geoconservation: Sedimentological questions, anthropogenic influence, and geotourism potential. Geology 2013, 19, 321–335. [Google Scholar] [CrossRef]
- Nwoko, J.; Kane, I.; Huuse, M. Megaclasts within mass-transport deposits: Their origin, characteristics and effect on substrates and succeeding flows. Geol. Soc. 2020, 500, 515–530. [Google Scholar] [CrossRef]
- Ruban, D.A. Unusual Isolated Large Clasts from the Periphery of the Lagonaki Highland, Western Caucasus: New Evidence of Classification and Origin. Geoscience 2018, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A.; Sallam, E.S.; Ermolaev, V.A.; Yashalova, N.N. Aesthetic Value of Colluvial Blocks in Geosite-Based Tourist Destinations: Evidence from SW Russia. Geoscience 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Adamia, S.; Zakariadze, G.; Chkhotua, T.; Sadradze, N.; Tsereteli, N.; Chabukiani, A.; Gventsadze, A. Geology of the Caucasus: A review. Turk. J. Earth Sci. 2011, 20, 489–544. [Google Scholar]
- Van Hinsbergen, D.J.; Torsvik, T.H.; Schmid, S.M.; Maţenco, L.C.; Maffione, M.; Vissers, R.L.; Gürer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A. The Khadzhokh Canyon System—An Important Geosite of the Western Caucasus. Geoscience 2020, 10, 181. [Google Scholar] [CrossRef]
- Kosyan, R.D.; Krylenko, M.V. Modern state and dynamics of the Sea of Azov coasts. Estuarine Coast. Shelf Sci. 2019, 224, 314–323. [Google Scholar] [CrossRef]
- Matishov, G.G.; Polshin, V.V. New Results on the History of the Sea of Azov in the Holocene. Dokl. Earth Sci. 2019, 489, 1339–1344. [Google Scholar] [CrossRef]
- Popov, S.V.; Shcherba, I.G.; Ilyina, L.B.; Nevesskaya, L.A.; Paramonova, N.P.; Khondkarian, S.O.; Magyar, I. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 238, 91–106. [Google Scholar] [CrossRef]
- Bush, V.A. The deep structure of the Scythian Plate basement. Geotectonics 2014, 48, 413–426. [Google Scholar] [CrossRef]
- Zaitsev, V.A.; Zlatopolsky, A.A.; Panina, L.V. The modern topography of the Scythian Plate as evidence for deformations in the crystalline basement. Mosc. Univ. Geol. Bull. 2013, 68, 339–344. [Google Scholar] [CrossRef]
- Ruban, D. The Upper Miocene of the Rostov Dome (Eastern Paratethys): Implication of the chronostratigraphy and bivalvia-based biostratigraphy. Ann. Geol. Penins. Balk. 2005, 66, 9–15. [Google Scholar] [CrossRef]
- Ruban, D. Stratigraphic evidence of a Late Maeotian (Late Miocene) punctuated transgression in the Tanais Palaeobay (northern part of the Eastern Paratethys, South-West Russia). Geology 2010, 16, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, V.O.V.; Panina, L.; Polino, R.; Koronovsky, N.V.; Kiseleva, E.A.; Klavdieva, N.V.; Smolyaninova, E.I. Evolution of the North Caucasus foredeep: Constraints based on the analysis of subsidence curves. Tectonophysics 1999, 307, 361–379. [Google Scholar] [CrossRef]
- Tikunov, V.S.; Belozerov, V.S.; Antipov, S.O.; Suprunchuk, I.P. Social media as a tool for the analysis of tourist objects (case study of the Stavropol Kraj). Vestnik Moskovskogo Univ. Ser. 5 Geogr. 2018, 3, 89–95. [Google Scholar]
- Baraboshkin, E.Y. On Subdivision of the Berremian Stage in the Vicinities of Kislovodsk. In Proceedings of the Tesizy Dokladov VII Kraevoj Konferentsii po Geologii i Poelznym Iskopaemym Severnogo Kavkaza, Essentuki, Russia; 1991; pp. 42–43. (In Russian). [Google Scholar]
- Drushits, V.V.; Mikhailova, I.A. Biostratigraphy of the Lower Cretaceous of the Northern Caucasus; MGU: Moscow, Russia, 1966; 190p. (In Russian) [Google Scholar]
- Snezhko, V.A.; Bogdanova, T.N.; Snezhko, V.V. Lower Cretaceous sediments in the central and eastern parts of the Greater Caucasus northern slope (paleontological and lithological comparison). Reg. Geol. Metall. 2018, 74, 59–70. (In Russian) [Google Scholar]
- Yakushev, V.; Sherstukov, M.; Tatarskiy, A.; Yufereva, V.; Saltanova, A. Using the Method of Geochemical Analysis to Obtain Paleogeographic Information on the Territory of the City of Kislovodsk and the National Park “Kislovodsk”. In Proceedings of the Engineering and Mining Geophysics 2019 15th Conference and Exhibition, Gelendzhik, Russia, 22–26 April 2019; pp. 93–101. [Google Scholar]
- Barale, L.; D’Atri, A.R.; Martire, L. The Role of Microbial Activity in the Generation of Lower Cretaceous Mixed FE-Oxide-phosphate Ooids from the Provencal Domain, French Maritime Alps. J. Sediment. Res. 2013, 83, 196–206. [Google Scholar] [CrossRef]
- Kearsley, A.T. Iron-rich ooids, their mineralogy and microfabric: Clues to their origin and evolution. Geol. Soc. 1989, 46, 141–164. [Google Scholar] [CrossRef]
- Sturesson, U.; Heikoop, J.; Risk, M. Modern and Palaeozoic iron ooids—A similar volcanic origin. Sediment. Geol. 2000, 136, 137–146. [Google Scholar] [CrossRef]
- Martinez, M.; Aguado, R.; Company, M.; Sandoval, J.; O’Dogherty, L. Integrated astrochronology of the Barremian Stage (Early Cretaceous) and its biostratigraphic subdivisions. Glob. Planet. Chang. 2020, 195, 103368. [Google Scholar] [CrossRef]
- Olierook, H.K.; Jourdan, F.; Merle, R.E. Age of the Barremian–Aptian boundary and onset of the Cretaceous Normal Superchron. Earth Sci. Rev. 2019, 197, 102906. [Google Scholar] [CrossRef]
- Reboulet, S.; Szives, O.; Aguirre-Urreta, B.; Barragán, R.; Company, M.; Frau, C.; Kakabadze, M.V.; Klein, J.; Moreno-Bedmar, J.A.; Lukeneder, A.; et al. Report on the 6th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Vienna, Austria, 20th August 2017). Cretac. Res. 2018, 91, 100–110. [Google Scholar] [CrossRef]
- Migoń, P. Sandstone geomorphology—Recent advances. Geomorphology 2021, 373, 107484. [Google Scholar] [CrossRef]
- Belisle, B. Whole world within reach: Google Earth VR. J. Vis. Cult. 2020, 19, 112–136. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote. Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote. Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Warnasuriya, T.W.S.; Kumara, M.P.; Gunasekara, S.S.; Gunaalan, K.; Jayathilaka, R.M.R.M. An Improved Method to Detect Shoreline Changes in Small-Scale Beaches Using Google Earth Pro. Mar. Geodesyst. 2020, 43, 541–572. [Google Scholar] [CrossRef]
- Ruban, D.A. Are virtual journeys around great lakes effective for finding megaclast deposits? Evidence from the Lake Malawi. Afr. Geogr. Rev. 2020, 1–11. [Google Scholar] [CrossRef]
- Gale, S.; Ibrahim, Z.; Lal, J.; Sicinilawa, U. Downstream fining in a megaclast-dominated fluvial system: The Sabeto River of western Viti Levu, Fiji. Geomorphology 2019, 330, 151–162. [Google Scholar] [CrossRef]
- Wilson, P.; Matthews, J.A.; Mourne, R.W.; Linge, H.; Olsen, J. Interpretation, age and significance of a relict paraglacial and periglacial boulder-dominated landform assemblage in Alnesdalen, Romsdalsalpane, southern Norway. Geomorphology 2020, 369, 107362. [Google Scholar] [CrossRef]
- Evelpidou, N.; Karkani, A.; A Pirazzoli, P. Fossil shorelines at Corfu and surrounding islands deduced from erosional notches. Holocene 2014, 24, 1565–1572. [Google Scholar] [CrossRef]
- Tserolas, P.; Mpotziolis, C.; Maravelis, A.; Zelilidis, A. Preliminary geochemical and sedimentological analysis in NW Corfu: The Miocene sediments in Agios Giorgios pagon. Bull. Geol. Soc. Greece 2017, 50, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Wahlgren, C.-H. Oskarshamn Site Investigation. Bedrock Geology—Overview of Excursion Guide; Report R-10-05; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2010; 47p. [Google Scholar]
- Imura, R.; Oki, K. Topography and Geology of the Chiringashima Island, southern Kyushu, Japan; Reports of the Faculty of Science. Kagoshima Univ. 2001, 34, 17–23. [Google Scholar]
- Miyahara, S.; Uda, T.; Serizawa, M. Prediction of formation of land-tied islands. Coast. Eng. Proc. 2014, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.F.; Rogers, J.D.; Abu Bakar, M.Z. Hunza river watershed landslide and related features inventory mapping. Environ. Earth Sci. 2016, 75, 523. [Google Scholar] [CrossRef]
- Scoon, R. Kilimanjaro: Volcanism and Ice. Geobulletin 2016, 59, 68–75. [Google Scholar]
- Chen, C.A.; Wang, B.; Huang, J.; Lou, J.; Kuo, F.; Tu, Y.; Tsai, H. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Acta Oceanol. Sin. 2005, 24, 125–133. [Google Scholar]
- Chiu, C.-L.; Song, S.-R.; Hsieh, Y.-C.; Chen, C.-X. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications. Terr. Atmospheric Ocean. Sci. 2010, 21, 575. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zeng, Z.; Chen, S.; Yin, X.; Chen, C.-T.A. Rare earth elements in hydrothermal fluids from Kueishantao, off northeastern Taiwan: Indicators of shallow-water, sub-seafloor hydrothermal processes. Chin. Sci. Bull. 2013, 58, 4012–4020. [Google Scholar] [CrossRef] [Green Version]
- De Pauw, E.; Magoggo, J.P.; Niemeyer, J. Soil Survey Report of Dodoma Capital City District; UN Development Program: Tanga, Tanzania, 1983; 127p. [Google Scholar]
- Roselee, M.H.; Ghani, A.A.; Umor, M.R. Petrology and geochemistry of igneous rocks from southern Tioman Island, Pahang, Peninsular Malaysia. Bull. Geol. Soc. Malays. 2016, 62, 79–89. [Google Scholar] [CrossRef]
- Angiboust, S.; Agard, P.; Jolivet, L.; Beyssac, O. The Zermatt-Saas ophiolite: The largest (60-km wide) and deepest (c.70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone? Terra Nova 2009, 21, 171–180. [Google Scholar] [CrossRef]
- Benoit, L.; Gourdon, A.; Vallat, R.; Irarrazaval, I.; Gravey, M.; Lehmann, B.; Prasicek, G.; Gräff, D.; Herman, F.; Mariethoz, G. A high-resolution image time series of the Gorner Glacier – Swiss Alps – derived from repeated unmanned aerial vehicle surveys. Earth Syst. Sci. Data 2019, 11, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Cook, T.; Abbolt, L. Travels in geology: Zermatt: Europe meets Africa in Switzerland’s iconic Alps. Earth 2016, 61, 84–89. [Google Scholar]
- Marthaler, M. The African Matterhorn: Yes or no?—A structural, geodynamical and paleogeographical overview. Bull. Angewandte Geol. 2008, 13, 11–16. [Google Scholar]
- Chilton, K.D.; Spotila, J.A. Preservation of Valley and Ridge topography via delivery of resistant, ridge-sourced boulders to hillslopes and channels, Southern Appalachian Mountains, U.S.A. Geomorphology 2020, 365, 107263. [Google Scholar] [CrossRef]
- Sager, C.; Airo, A.; Arens, F.L.; Rabethge, C.; Schulze-Makuch, D. New types of boulder accumulations in the hyper-arid Atacama Desert. Geomorphology 2020, 350, 106897. [Google Scholar] [CrossRef]
- Wesnousky, S.G.; Owen, L.A. Development of the Truckee River terraces on the northeastern flank of the Sierra Nevada. Geomorphology 2020, 370, 107399. [Google Scholar] [CrossRef]
- French, R.A.; Watters, T.R.; Robinson, M.S. Provenance of Block Fields Along Lunar Wrinkle Ridges. J. Geophys. Res. Planets 2019, 124, 2970–2982. [Google Scholar] [CrossRef]
- Pondrelli, M.; Rossi, A.P.; Le Deit, L.; Schmidt, G.W.; Pozzobon, R.; Hauber, E.; Salese, F. Groundwater Control and Process Variability on the Equatorial Layered Deposits of Kotido Crater, Mars. J. Geophys. Res. Planets 2019, 124, 779–800. [Google Scholar] [CrossRef]
- Ruesch, O.; Sefton-Nash, E.; Vago, J.; Küppers, M.; Pasckert, J.; Krohn, K.; Otto, K. In situ fragmentation of lunar blocks and implications for impacts and solar-induced thermal stresses. Icarus 2020, 336, 113431. [Google Scholar] [CrossRef]
- Tesson, P.-A.; Conway, S.; Mangold, N.; Ciazela, J.; Lewis, S.; Mège, D. Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes. Icarus 2020, 342, 113503. [Google Scholar] [CrossRef] [Green Version]
- Górska-Zabielska, M.; Witkowska, K.; Pisarska, M.; Musial, R.; Jonca, B. The Selected Erratic Boulders in the Swietokrzyskie Province (Central Poland) and Their Potential to Promote Geotourism. Geoheritage 2020, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- A Grigoryev, A.; Gladkiy, Y.N.; Sevastyanov, D.V.; Shastina, G.N. Stone objects of Russian Fennoscandia: Potential for recreational use. IOP Conf. Series Earth Environ. Sci. 2019, 302, 012148. [Google Scholar] [CrossRef]
Category | Class | Grade | Size, m |
---|---|---|---|
Megaclasts | Superblocks (SB) | >100.0 m | |
Megablocks | Coarse (CM) | >50.0–100.0 m | |
Medium (MM) | >25.0–50.0 m | ||
Fine (FM) | >10.0–25.0 m | ||
Blocks | Coarse (CB) | >5.0–10.0 m | |
Medium (MB) | >2.5–5.0 m | ||
Fine (FB) | >1.0–2.5 m | ||
Boulders | >0.1–1.0 m |
Locality | Basic Sources | Megaclast Occurrence | Size Grade * | Clast Shape | Parent Rocks | General Setting | Origin-related processes ** |
---|---|---|---|---|---|---|---|
Field cases | |||||||
Shum (Greater Caucasus, Russia) | This study | Group and individual | FB, MB(r) | Irregular, flat, angle roundness | Limestones | Canyon (mountains) | Slope collapse, slope retreat, karst |
Merzhanovo (Azov Sea, Russia) | This study | Group | FB, MB(r), CB (r) | Irregular, flat, angular | Limestones | Coastal (epeiric sea) | Landsliding, slope retreat, erosion |
Red Stones (Southern Ciscaucasus, Russia) | This study | Future group | FB, MB | Irregular, angle roundness | Sandstones | Top-hill (sandstone landform) | Denudation, chemical weathering |
Virtual cases *** | |||||||
Angelokastro (Corfu, Greece) | [56,57] | Group | FB, MB, CB, FM(r) | Irregularity, angular | Limestones | Coastal | Cliff collapse, water action, seismicity? |
Blå Jungfrun (Kalmar Strait, Sweden) | [58] | Group | FB, MB, CB, FM | Irregular, elongated, angular | Granites | Top-hill and coastal | Weathering, slope transport, wave abrasion |
Chiringashima (Kagoshima Bay, Japan) | [59,60] | Group and individual | FB, MB, CB(r) | Irregular, angular | Pyroclastic flow deposits | Coastal | Slope failures, wave abrasion |
Hunza River (Karakoram, Pakistan) | [61] | Megaclast- bearing sediment | FB, MB, CB, FM, MM(r) | Irregular, angular | Granitoids; deposits of natural dam | Valley (mountains) | Landsliding, weathering |
Kilimanjaro (Crater Camp) (Tanzania) | [62] | Group | FB, MB, CB(r) | Irregular, spherical, angular, subrounded | Volcanic rocks | Volcanic | Slope failure, volcanism? |
Kueitou (Kueishan Island (Taiwan) | [63,64,65] | Group | FB, MB, CB, FM, MM(r) | Irregular, angular | Pyroclastic flow deposits | Coastal and volcanic | Cliff collapse, volcanism, wave abrasion? |
Simba Hill (Dodoma, Tanzania) | [66] | Group | FB, MB, CB, FM, MM(r) | Irregular, elongated, angular, subangular | Granites | Top-hill | Weathering, slope transport |
Soyak (Soyak Island, Malaysia) | [67] | Group | FB, MB, CB, FM | Irregular, angular, smoothened, "rillenkarren" | Granitoids | Entire island | Weathering, wave abrasion |
Zermatt (Gornergletscher, Switzerland) | [68,69,70,71] | Megaclast- bearing sediment | FB, MB, CB(r), FM(r) | Irregular, angular | Eclogitic rocks | Glacier edge | Glacial, slope transport |
Literature cases | |||||||
Valley and Ridge | [72] | Group and individual | FB, MB, CB | Irregular, angular, smoothened | – | Colluvial | Erosion, slope transport |
Stołowe Mountains | [47] | Group | FB | Irregular, angular | Sandstones | Former top-till | Denudation |
Atacama | [73] | Megaclast- bearing sediment | FB | Irregular, angular, subangular | – | Desert | Seismic-driven transport, weathering |
Truckee River | [74] | Group and individual | FB, MB, CB, FM | Irregular, spherical, angular, subangular | Granites | Valley | Glacial outwash- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A.; Yashalova, N.N. New Evidence of Megaclasts from the Russian South: The First Report of Three Localities. Geosciences 2021, 11, 129. https://doi.org/10.3390/geosciences11030129
Ruban DA, Yashalova NN. New Evidence of Megaclasts from the Russian South: The First Report of Three Localities. Geosciences. 2021; 11(3):129. https://doi.org/10.3390/geosciences11030129
Chicago/Turabian StyleRuban, Dmitry A., and Natalia N. Yashalova. 2021. "New Evidence of Megaclasts from the Russian South: The First Report of Three Localities" Geosciences 11, no. 3: 129. https://doi.org/10.3390/geosciences11030129
APA StyleRuban, D. A., & Yashalova, N. N. (2021). New Evidence of Megaclasts from the Russian South: The First Report of Three Localities. Geosciences, 11(3), 129. https://doi.org/10.3390/geosciences11030129