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Abstract: Based on a previous risk calculation study conducted along a road corridor, risk is recal-
culated using a stochastic simulation by introducing variability into most of the parameters in the
risk equation. This leads to an exceedance curve comparable to those of catastrophe models. This
approach introduces uncertainty into the risk calculation in a simple way, and it can be used for
poorly documented cases to compensate for a lack of data. This approach tends to minimize risk or
question risk calculations.

Keywords: landslide; rockfall; risk; stochastic; uncertainty; transportation corridors

1. Introduction

Several authors have used power-laws to assess hazards as functions of the volume
or area of instability [1–4] or risk [5]. Volumes are often used as quantifications of the
magnitudes of landslides. The frequency of failure of a volume greater than a given volume
Vol [3] for a given region and several observations N0 during a period ∆t is given by

λ(v ≥ Vol) =
N0

∆t

(
Vol
V0

)−b
= a Vol−b (1)

In general, an analysis is based on the following conceptual formula (modified
from [6]):

R = λr × fr × PS × Pp × Exp × E × V (2)

where λr is the temporal frequency of rupture for a given period within a given perimeter
and fr is the probability of rupture associated with a given magnitude or volume (here,
λ = λr × fr). PS is a spatial weight if the exact location is not known, Pp is the probability
of propagation calculated from the rockfall source at a given location, Exp is the exposure,
and E corresponds to the value or unit of the object at risk and V is its vulnerability.

One of the problems is that this formulation does not often explicitly incorporate un-
certainty, even though [7] proposed this approach using the term “risk curve”. Uncertainty
has mainly been applied by introducing random variables into the calculation of the factor
of safety [8,9]. Uncertainty can also be inserted by using first-order second-moment (FOSM)
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methods, for which an objective function is chosen that is supposed to respect a Gaussian
distribution, for example, the factor of safety, whose analytical expression is known; the
variances of the variables should also be known [6,7,10]. Wang et al. (2014) [11] applied
the FOSM technique for inserting uncertainty in the risk analysis of block falls potentially
affecting a tourist area and showed that the one-sigma confidence interval varies from
48% to 132% of the mean value. Simulations of block trajectories can provide probabilities
of exceedance as a function of impact energy on objects [12]. Macciotta et al., (2016) [13]
showed that by inserting uncertainty into Monte Carlo simulations, the risk of rockfall on a
section of railway track is reduced.

Here, the analysis carried out by [5] along a road section is taken up again and
simplified by replacing some parameters with random variables and by using Monte
Carlo simulations via MATLAB 2018b (see Supplementary Materials). The approach
is comparable to that of [13], but the intention is to show that such an approach can
particularly be applied when data are lacking; this is similar to the disaster model [14],
which presents its results according to an exceedance curve with no particular constraints.

2. Model Data

Hungr et al. (1999) [5] used Equation (1) and provided a simple synthetic example of
risk calculation along a stretch of roads in British Columbia; this is adapted to follow the
calculations used in this chapter. On average, [5] calculated that N0 = 100 events reach the
road per year for volumes greater than V0 = 0.001 m3, and they are distributed according to
a cumulative power with the observed b equal to 0.434 and a = N0 × V0

b = 4.99 (Figure 1):

λ(v ≥ Vol) =
100

1 year

(
Vol

0.001

)−0.434
= 4.99 Vol−0.434 (3)
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We obtain the frequency of each class of volumes, i.e., by calculating the difference be-
tween the values obtained for the two limits of the class via Equation (3). PS (see
Equation (2)) is equal to 1 since it is known that it reaches the road section under con-
sideration. The probability of propagation is relative to the location of the object. According
to [5], as we have a two-way road, small volumes (<5 m3) affect only one of the lanes, and
these smaller volumes do not necessarily affect a car passing over them; however, for volumes
above 100 m3, the road section is fully covered by the rockfall over a width D and Pp = 1.
Exposure is calculated according to D, which increases roughly with the cubic root of the
volume. The average vehicle length Lv is 5.4 m, and 5000 vehicles travel per day. Here,
only fatal accidents for at least one occupant are counted; therefore, vulnerability is equal to
lethality, injuries are not considered, and E is implicitly set to 1. As an example, using the
values chosen by [5] for the class of blocks from 0.1 to 1 m3, we obtain (Table 1):

R
(
0.1 – 1 m3) = (λr × fr) × PS × Pp × Exp × E × V

= 8.56 × 1 × 0.4 × 0.0167 × 1 × 0.2
= 0.011 f atal accidents per year

(4)

Table 1. Details of the risk calculations for different classes recalculated from [5], but with D = Vol1/3 (see Supplementary
Materials).

Volume 4.99 × Vol−0.434 λr × fr D~Vol(1/3) Exp Pp V H × Pp × Exp × V 1/R

(m3) (#/yr) (#/yr) (m) (-) (-) (-) (-) (yr)

0.001 100.000

0.010 36.813 63.187 0.2 0.0146 0.1 0.05 0.005 217.0

0.100 13.552 23.261 0.5 0.0154 0.2 0.1 0.007 139.9

1.0 4.989 8.563 1 0.0167 0.4 0.2 0.011 87.6

10 1.837 3.152 2 0.0193 0.6 0.5 0.018 54.9

100 0.676 1.160 5 0.0271 0.8 0.8 0.020 49.7

1000 0.249 0.427 10 0.0401 1.0 1.0 0.017 58.4

10,000 0.092 0.157 30 0.0922 1.0 1.0 0.014 69.0

>10,000 0.092 50 0.1443 1.0 1.0 0.013 75.7

Total 0.106 9.4

The exposure is recalculated according to [15]:

Exp = Nv
(Lv + D)

vv
=

5000
24

(5.4 + 1)
80 × 1000

= 0.0167 (5)

where vv is the speed of a vehicle and Nv is the number of vehicles per year. The sum of
all classes up to 105 m3 indicates an average annual frequency of fatal accidents of 0.106,
i.e., approximately one accident every 10 years (Table 1). By using the upper bounds of the
classes, the risk is increased when compared to that obtained through the use of the average
of the classes. The following paragraph attempts to overcome this problem by introducing
simulations, which allow uncertainty to be incorporated in the model, and the values of the
vulnerability or probability of death and the probability of impact are modified according
to functions instead of with the discrete sets of values used by [5] (Figure 2).
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Figure 2. Model for the probability of impact or spread (Pp) and a vulnerability (V) curve created
from data from [5] to make the functions continuous.

3. Introducing Uncertainty into Risk Calculation

Currently, the use of related uncertainty is increasingly required for risk management,
and one of the means to obtain it is to use risk calculation simulations. This is presented
through a previous example of risk calculation by modifying the procedure of [5]. The
first step of the simulation is conducted according to the distribution of the volumes
that will fall, and thus it is necessary to define the minimum and maximum annual
frequencies corresponding to the maximum (105 m3) and minimum (10−3 m3) volumes of
the distribution function, respectively. Let Fmax = 4.99 × 0.0010.434 = 100 and Fmin = 4.99 ×
100,0000.434 = 0.0337. Starting from the power-law cumulative distribution, it is quite easily
inverted and thus, we can draw values at random in an equiprobable way between Fmin
and Fmax such that the simulated frequency is given by

Fsim = Fmin + rnd × (Fmax − Fmin) (6)

where rnd is a random variable varying from 0 to 1 according to a uniform distribution.
Thus, the corresponding volume is

Vsim =

(
Fsim

a

)− 1
b

(7)

This makes it possible to simulate a distribution of rockfall events per year. Instead of
calculating by class, the calculation is performed for each of the 100 simulated volumes.
Based on these simulations, it is possible to add distributions for several variables into the
risk calculation. First, the number of events is, on average, 100 events per year; we can
make the number of events into a random variable by using an inverse Poisson distribution,
which allows us to simulate random values from a mean for discrete values. One million
years are simulated (Figure 3).

In the example of [5], there were two estimated variables that are discrete: Pp and
V. As mentioned earlier, the idea is to make them continuous via a linear fit for Pp and a
second-degree polynomial for V from the log base 10 values of the volumes (Vol) (Figure 2):

Pp = 0.180 log10(Vol) + 0.460 (8)

V = 0.038 (log10(Vol))2 + 0.152 log10(Vol) + 0.202 (9)
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Figure 3. Cumulative distribution of the number of events per year for the 106 simulations, based on
a Poisson distribution using an average parameter of 100.

The value of D is given by the cubic root of the volume. The last step is to add
distribution functions to the other variables. For simplification, uniform distribution
functions are used here, i.e., the values are equiprobable between two limits (Table 2). This
applies to the variables related to the exposure: D, vv, and Nv. We do not randomize Lv
because the length of the zone affecting the passengers is not easy to estimate and does
not change much; the goal is also to be coherent with [5]. The limits are chosen based on
so-called “expert knowledge” while assuming reasonable ranges for values centered on
the average value.

Table 2. Limitations of uniform distributions of random variables.

Variables Units (Remarks) Minimum Maximum

Debris width D m D/2 3D/2

Vehicle speed vv km/h 57.5 102.5

Number of vehicles Nv Vehicles/day 4500 5500

Probability of impact or propagation
at the vehicle location Pp

(-) (Integrated in the calculation; one
order of magnitude of volume

variability)
log10(V(d)) − 0.5 log10(V(d)) + 0.5

Vulnerability V(lethality) idem idem idem

4. Results

The simulation program is executed first for 10,000 events with the same data as those
in Table 1 [5], except for the continuous functions of V and Pp; the annual frequency of
accidents is 0. 0992, i.e., one fatal accident every 10 years. By simply adding the variabilities
shown in (Table 2), for 10,000 simulations, we obtain 0.103 (1 accident every 9.7 years),
which shows that for the selected distributions, the results converge comparably to the
data in [5], even with a relatively small number of simulations.

By carrying out 106 simulations for one year with a number of annual rockfalls
distributed according to Figure 3, we obtain an average frequency of 0.059 events per year,
i.e., one event every 16.8 years (Table 3). The median is 0.047, i.e., a longer time than that
obtained by [5] separates the potential accidents. The fact that we are no longer working
with classes reduces the average frequency (it is divided by almost half). The so-called
exceedance curves indicate that there is a 95% chance that there are less than 45.6 years
between two events (Figure 4). The probability of having an event within less than 7.3 years
is 5%, which is not negligible.
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Table 3. Characteristics of the exceedance curves in Figure 4 for the first two columns and for two other scenarios obtained
by changing the number of occupants in the car and the average total number of rockfalls per year.

Thresholds Frequency Return Period T [Year]

Case A A B C D

(events/year) 1 occ. N0 = 100 1 occ. N0 = 130 1–2 occ. N0 = 100 1–2 occ. N0 = 130

Average 0.059 16.8 13.0 11.2 8.6

Minimum (max. T) 0.010 103.3 80.9 75.4 48.6

97.50% 0.020 51.2 35.4 34.8 24.1

95% 0.022 45.6 31.8 31.0 21.6

Median 0.047 21.1 15.5 14.2 10.5

5% 0.137 7.3 6.0 4.8 3.9

2.5 0.165 6.1 5.1 3.9 3.3

Maximum (Min. T) 0.603 1.7 1.6 1.2 1.0
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5. Discussion and Conclusions

The orders of magnitude are respected since [5] indicated that the return period of
fatal accidents observed on Highway 99 between 1960 and 1996 was 12 years and 8 years
from 1980 to 1996, as traffic increased. Here, the mean and median values are T = 17 and
21 years, respectively, and 95% of the simulated return periods are greater than 7.3 years,
which is close to the observation. This result can be interpreted in different ways, either
by using high probability thresholds or by modifying the distributions of the random
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variables introduced, which are nevertheless symmetrical. Alternatively, the recently
produced accident statistics, and an analysis of the accidents according to collisions must
be questioned, as they could be added and halve the simulated return period.

By increasing the number of events per year to N0 = 130, we also fit the data (Figure 1)
by maximizing the frequency; the average return period is 12.9 years (median 15.3) (Table 3,
case B). By using a random number of occupants (1 or 2), we obtain that T = 11.2 years
(median 14.1; case C), and if both are used, the result is 8.6 years (median 10.4; case D). This
shows that a reasonable hypothesis can lead to agreement with the observed data. It also
shows that for models A to D, the exceedance probability of 5% of the return period ranges
from 3.9 and 7.3 years. It is also noteworthy that the centered 95% confidence level ranges for
the return period decrease with hazard and occupant increases; for cases A to D, the results
are 51.2 to 6.1 years (range 45.1), 35.4 to 5.1 years (30.3), 34.8 to 3.9 years (30.9), and 24.1 to
3.3 years (20.8), respectively.

This approach makes it possible to add probabilities of realization to frequencies or
return periods, and this is useful for decision-making. The above example permits us
to analyze the sensitivity of risk calculations. Randomizing the original data from [5]
minimizes the average risk because it enables the calculation values for all realizations and
not just for classes, while at the same time providing elements for the quantification of
uncertainties. Some assumptions concerning the distributions of the variables D, vv, and
Nv are not simple, but it seems that reasonable choices provide reliable results. Haimes
(2015) [16] also showed that performing the risk calculation using a probabilistic approach
reduced the risk compared to the average value. This type of approach is likely to be
developed in landslide risk assessments, such as those of propagation models, by also
introducing variability. This is a way to introduce the catastrophe model [14] into landslide
risk assessments.

The main objective of this study is to show that this kind of method can be applied
easily by adding other random variables while using other distribution functions, such
as the normal distribution when the variable distribution is assumed to be symmetrical
and the standard deviation can be estimated; the log-normal distribution is used if large
values present a large tail; the triangular distribution is well designed for expert knowledge
because the minimum and maximum values are needed in addition to the most likely
value [17]. In any case, the use of Poisson distributions is a valid approach when nothing
is known about the integer values except the mean. This method becomes especially
useful when the knowledge of the data is partial, meaning that it is possible to obtain an
exceedance curve using expert input, as proposed by [13] and [11]. Such sensitivity studies
should be used more often in the near future, but recommendations should be issued so
that the results can be compared for risk management purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3263/
11/3/143/s1, Figure S1: title, Table S1: title, Video S1: title.Code (Matlab 2018b): Simul_risk_rockfall_road.m,
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