Virtual Geosites as Innovative Tools for Geoheritage Popularization: A Case Study from Eastern Iceland
Abstract
:1. Introduction
2. Geological Background
3. Virtual Outcrops Building
3.1. Drone-Based Image Collection
3.2. Photogrammetry Processing for VOs Building
4. Strategy for Worldwide Sharing of the VOs
5. Description of the Selected VGs and Related “Scientific Virtual Geotours”
5.1. VG1: A Laccolith Intruded within a Basaltic Lava Flow Succession
5.2. VG2: Inclined Sheet Emplaced along a Normal Fault
5.3. VG3: Outstanding Vertical Dykes and Inclined Sheets
5.4. VG4: Dykes and Inclined Sheets
5.5. VG5: Cross-Cutting Relationships between Sills and Dykes
6. Qualitative Assessment of the Selected Virtual Geosites (VGs)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krokos, M.; Bonali, F.L.; Vitello, F.; Varvara, A.; Becciani, U.; Russo, E.; Marchese, F.; Fallati, L.; Nomikou, P.; Kearl, M.; et al. Workflows for virtual reality visualisation and navigation scenarios in earth sciences. In Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management, Heraklion, Crete, Greece, 3–5 May 2019; SciTePress: Setùbal, Portugal, 2019; pp. 297–304. [Google Scholar]
- Tibaldi, A.; Bonali, F.L.; Vitello, F.; Delage, E.; Nomikou, P.; Antoniou, V.; Becciani, U.; Van Wyk de Vries, B.; Krokos, M.; Whitworth, M. Real world–based immersive Virtual Reality for research, teaching and communication in volcanology. Bull. Volcanol. 2020, 82, 1–12. [Google Scholar] [CrossRef]
- Edler, D.; Keil, J.; Wiedenlübbert, T.; Sossna, M.; Kühne, O.; Dickmann, F. Immersive VR Experience of Redeveloped Post-Industrial Sites: The Example of “Zeche Holland” in Bochum-Wattenscheid. J. Cartogr. Geogr. Inf. 2019, 69, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Lütjens, M.; Kersten, T.; Dorschel, B.; Tschirschwitz, F. Virtual Reality in Cartography: Immersive 3D Visualization of the Arctic Clyde Inlet (Canada) Using Digital Elevation Models and Bathymetric Data. MTI 2019, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Trinks, I.; Clegg, P.; McCaffrey, K.; Jones, R.; Hobbs, R.; Holdsworth, B.; Holliman, N.; Imber, J.; Waggott, S.; Wilson, R. Mapping and analysing virtual outcrops. Visual Geosci. 2005, 10, 13–19. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Bonali, F.L.; Venturini, C. Iceland, an open-air museum for geoheritage and Earth science communication purposes. Resources 2020, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.C.; Hsu, T.C.; Jong, M.S.Y. Integration of the peer assessment approach with a virtual reality design system for learning earth science. Comput. Educ. 2020, 146, 103758. [Google Scholar] [CrossRef]
- Eberhard, R. Pattern and Process: Towards a Regional Approach to National Estate Assessment of Geodiversity; Eberhard, R., Ed.; Environment Australia: Canberra, Australia, 1997. [Google Scholar]
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation history, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Asrat, A.; Demissie, M.; Mogessie, A. Geoheritage conservation in Ethiopia: The case of the Simien mountains. Quaest. Geogr. 2012, 31, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Fassoulas, C.; Mouriki, D.; Dimitriou-Nikolakis, P.; Iliopoulos, G. Quantitative assessment of geotopes as an effective tool for geoheritage management. Geoheritage 2012, 4, 177–193. [Google Scholar] [CrossRef]
- Wimbledon, W.A.P.; Smith-Meyer, S. Geoheritage in Europe and Its Conservation; Wimbledon, W.A.P., Smith-Meyer, S., Eds.; ProGEO: Oslo, Norwey, 2012; p. 405. [Google Scholar]
- Bruno, D.E.; Crowley, B.E.; Gutak, J.M.; Moroni, A.; Nazarenko, O.V.; Oheim, K.B.; Ruban, D.A.; Tiess, G.; Zorina, S.O. Paleogeography as geological heritage: Developing geosite classification. Earth Sci. Rev. 2014, 138, 300–312. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.; Póvoas, L.; Barriga, F.J.A.S.; Lopes, C. Science education in a museum: Enhancing Earth Sciences literacy as a way to enhance public awareness of geological heritage. Geoheritage 2014, 6, 217–223. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Venturini, C. Strategies and tools for improving Earth Science education and popularization in museums. Geoheritage 2017, 9, 187–194. [Google Scholar] [CrossRef]
- Venturini, C.; Pasquaré Mariotto, F. Geoheritage promotion through an interactive exhibition: A case study from the Carnic Alps, NE Italy. Geoheritage 2019, 11, 459–469. [Google Scholar] [CrossRef]
- De Grosbois, A.M.; Eder, W. Geoparks. A tool for education, conservation and recreation. Environ. Geol. 2008, 55, 465–466. [Google Scholar] [CrossRef]
- Mckeever, P.; Zouros, N.; Patzak, M. The UNESCO global network of national geoparks. In Geotourism. The Tourism of Geology and Landscape; Newsome, D., Dowling, R.K., Eds.; Goodfellow Publishers Ltd.: Oxford, UK, 2010; pp. 221–230. [Google Scholar]
- Pásková, M.; Zelenka, J. Sustainability management of unesco global geoparks. Sustain. Geosci. Geotourism 2018, 2, 44–64. [Google Scholar] [CrossRef]
- Panizza, M.; Piacente, S. Geomorphosites and geotourism. Rev. Geog. Acad. 2008, 2, 5–9. [Google Scholar]
- Newsome, D.; Dowling, R.K. Geotourism: The Tourism of Geology and Landscape; Goodfellow Publishers Ltd.: Oxford, UK, 2010. [Google Scholar]
- Burek, C.V. The role of LGAPs (Local Geodiversity Action Plans) and Welsh RIGS as local drivers for geoconservation within geotourism in Wales. Geoheritage 2012, 4, 45–63. [Google Scholar] [CrossRef]
- Kubalíková, L. Geomorphosite assessment for geotourism purposes. Czech J. Tour. 2013, 2, 80–104. [Google Scholar] [CrossRef]
- Suzuki, A.; Takagi, H. Evaluation of geosite for sustainable planning and management in Geotourism. Geoheritage 2018, 10, 123–135. [Google Scholar] [CrossRef]
- Grandgirard, V. L’évaluation des géotopes. Geol. Insubr. 1999, 4, 59–66. [Google Scholar]
- Becerra-Ramírez, R.; Gosálvez, R.U.; Escobar, E.; González, E.; Serrano-Patón, M.; Guevara, D. Characterization and Geotourist Resources of the Campo de Calatrava Volcanic Region (Ciudad Real, Castilla-La Mancha, Spain) to Develop a UNESCO Global Geopark Project. Geosciences 2020, 10, 441. [Google Scholar] [CrossRef]
- Beltrán-Yanes, E.; Dóniz-Páez, J.; Esquivel-Sigut, I. Chinyero Volcanic Landscape Trail (Canary Islands, Spain): A Geotourism Proposal to Identify Natural and Cultural Heritage in Volcanic Areas. Geosciences 2020, 10, 453. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante Carballo, F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences 2020, 10, 347. [Google Scholar] [CrossRef]
- Dóniz-Páez, J.; Beltrán-Yanes, E.; Becerra-Ramírez, R.; Pérez, N.M.; Hernández, P.A.; Hernández, W. Diversity of Volcanic Geoheritage in the Canary Islands, Spain. Geosciences 2020, 10, 390. [Google Scholar] [CrossRef]
- Megerle, H.E. Geoheritage and Geotourism in Regions with Extinct Volcanism in Germany; Case Study Southwest Germany with UNESCO Global Geopark Swabian Alb. Geosciences 2020, 10, 445. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. State of the Art of Geodiversity, Geoconservation, and Geotourism in Costa Rica. Geosciences 2020, 10, 211. [Google Scholar] [CrossRef]
- Ureta, G.; Németh, K.; Aguilera, F.; González, R. Features That Favor the Prediction of the Emplacement Location of Maar Volcanoes: A Case Study in the Central Andes, Northern Chile. Geosciences 2020, 10, 507. [Google Scholar] [CrossRef]
- Parkes, M.; Gatley, S.; Gallagher, V. Old Volcanic Stories—Bringing Ancient Volcanoes to Life in Ireland’s Geological Heritage Sites. Geosciences 2021, 11, 52. [Google Scholar] [CrossRef]
- Santo, A.P. A New Magma Type in the Continental Collision Zone. The Case of Capraia Island (Tuscany, Italy). Geosciences 2021, 11, 104. [Google Scholar] [CrossRef]
- Vörös, F.; Pál, M.; van Wyk de Vries, B.; Székely, B. Development of Geodiversity System for the Scoria Cones of the Chaîne des Puys Based on Geomorphometric Studies. Geosciences 2021, 11, 58. [Google Scholar] [CrossRef]
- Zorina, S.O.; Silantiev, V.V. Geosites, Classification of. In Encyclopedia of Mineral and Energy Policy; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Ruban, D.A. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Lima, F.; Brilha, J.; Salamuni, E. Inventorying geological heritage in large territories: A methodological proposal applied to Brazil. Geoheritage 2010, 2, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing “scientific” and “additional values” of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Coratza, P.; Giusti, C. Methodological proposal for the assessment of the scientific quality of of geomorphosites. Il Quat. 2005, 18, 307–313. [Google Scholar]
- Coratza, P.; Panizza, M. Geomorphology and Cultural Heritage; Memorie Descrittive Della Carta Geologica d’Italia; Coratza, P., Panizza, M., Eds.; ISPRA: Rome, Italy, 2009; p. 87. [Google Scholar]
- Gudmundsson, A. Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophyisics 2011, 500, 50–64. [Google Scholar] [CrossRef]
- Gudmundsson, A.; Pasquarè Mariotto, F.; Tibaldi, A. Dykes, Sills, Laccoliths, and Inclined Sheets in Iceland. In Physical Geology of Shallow Magmatic Systems; Breitkreutz, C., Rocchi, S., Eds.; Springer: Cham, Germany, 2014. [Google Scholar]
- Tibaldi, A. Structure of volcano plumbing systems: A review of multi-parametric effects. J. Volcanol. Geoth. Res. 2015, 298, 85–135. [Google Scholar] [CrossRef]
- Tibaldi, A.; Vezzoli, L.; Pasquaré Mariotto, F.; Rust, D. Strike-slip fault tectonics and the emplacement of sheet-laccolith systems: The Thverfell case study (SW Iceland). J. Struct. Geol. 2008, 30, 274–290. [Google Scholar] [CrossRef]
- Tibaldi, A.; Pasquaré Mariotto, F. A new mode of inner volcano growth: The “flower intrusive structure”. Earth Planet. Sci. Lett. 2008, 271, 202–208. [Google Scholar] [CrossRef]
- Tibaldi, A.; Bonali, F.L.; Pasquaré Mariotto, F.; Rust, D.; Cavallo, A.; D’Urso, A. Structure of regional dykes and local cone sheets in the Midhyrna-Lysuskard area, Snaefellsnes Peninsula (NW Iceland). Bull. Volcanol. 2013, 75, 764–780. [Google Scholar] [CrossRef]
- Tibaldi, A.; Pasquaré Mariotto, F.; Rust, D. New insights into the cone-sheet structure of the Cuillin Complex, Isle of Skye, Scotland. J. Geol. Soc. 2011, 168, 689–704. [Google Scholar] [CrossRef]
- Bistacchi, A.; Tibaldi, A.; Pasquaré Mariotto, F.; Rust, D. The association of cone-sheets and radial dykes: Data from the Isle of Skye (UK), numerical modelling, and implications for shallow magma chambers. Earth Planet. Sci. Lett. 2012, 339–340, 46–56. [Google Scholar] [CrossRef]
- Sæmundsson, K. Outline of the geology of Iceland. Jokull 1979, 29, 7–28. [Google Scholar]
- Jóhannesson, H. Jardlagaskipan of throun rekbleta a Vesturlandi. (Evolution of rift zones in western Iceland). Natturufraedingurinn Reyk. 1980, 50, 13–31. [Google Scholar]
- Vink, G.E. A hotspot model for Iceland and the Vøring Plateau. J. Geophys. Res. Solid Earth 1984, 89, 9949–9959. [Google Scholar] [CrossRef]
- Oskarsson, N.; Steinthorsson, S.; Sigvaldason, G.E. Iceland geochemical anomaly: Origin, volcanotectonics, chemical fractionation and isotope evolution of the crust. J. Geophys. Res. Solid Earth 1985, 90, 10011–10025. [Google Scholar] [CrossRef]
- Hardarson, B.S.; Fitton, J.G.; Ellam, R.M.; Pringle, M.S. Rift relocation—A geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. Earth Planet. Sci. Lett. 1997, 153, 181–196. [Google Scholar] [CrossRef]
- Gudmundsson, A. Dynamics of volcanic systems in Iceland: Example of tectonism and volcanism at juxtaposed hot spot and mid-ocean ridge systems. Ann. Rev. Earth Planet. Sci. 2000, 28, 107–140. [Google Scholar] [CrossRef]
- Thordarson, T.; Larsen, G. Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. J. Geodyn. 2007, 43, 118–152. [Google Scholar] [CrossRef]
- Paquet, F.; Dauteuil, O.; Hallot, E.; Moreau, F. Tectonics and magma dynamics coupling in a dyke swarm of Iceland. J. Struct. Geol. 2007, 29, 1477–1493. [Google Scholar] [CrossRef]
- Gudmundsson, A. Dyke emplacement at divergent plate boundary. In Mafic Dykes Emplacement Mechanisms; Parker, A.J., Rickwood, P.C., Tucker, D.H., Eds.; Balkema: Rotterdam, The Netherlands, 1990; pp. 47–62. [Google Scholar]
- Gudmundsson, A. Infrastructure and mechanisms of volcanic systems in Iceland. J. Volcanol. Geotherm. Res. 1995, 64, 1–22. [Google Scholar] [CrossRef]
- Gudmundsson, A. The geometry and growth of dykes. In Physics and Chemistry of Dykes; Baer, G., Heimann, A., Eds.; Balkema: Rotterdam, The Netherlands, 1995; pp. 23–34. [Google Scholar]
- Gudmundsson, A. Magma chambers modeled as cavities explain the formation of rift zone central volcanoes and their eruption and intrusion statistics. J. Geophys. Res. 1998, 103, 7401–7412. [Google Scholar] [CrossRef]
- Gudmundsson, A. Emplacement and arrest of sheets and dykes in central volcanoes. J. Volcanol. Geotherm. Res. 2002, 116, 279–298. [Google Scholar] [CrossRef]
- Bourgeois, O.; Dauteuil, O.; Hallot, E. Rifting above a mantle plume: The Icelandic Plateau. Geodin. Acta 2005, 18, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Klausen, M.B. Geometry and mode of emplacement of dike swarms around the Birnudalstindur igneous centre, SE Iceland. J. Volcanol. Geotherm. Res. 2006, 151, 340–356. [Google Scholar] [CrossRef]
- Neuhoff, P.S.; Fridriksson, T.; Arnorsson, S.; Brid, D.K. Porosity evolution and mineral paragneiss during low-grade metamorphism of basaltic lavas at Teigarhorn, eastern Iceland. Am. J. Sci. 1999, 299, 467–501. [Google Scholar] [CrossRef] [Green Version]
- Etzelmüller, B.; Patton, H.; Schomacker, A.; Czekirda, J.; Girod, L.; Hubbard, A.; Lilleøren, K.S.; Westermann, S. Icelandic permafrost dynamics since the Last Glacial Maximum—Model results and geomorphological implications. Quat. Sci. Rev. 2020, 233, 106236. [Google Scholar] [CrossRef]
- Walker, G.P.L. The structure of eastern Iceland. In Geodynamics of Iceland and the North Atlantic Area; Kristjansson, L., Ed.; D. Reidel Publishing: Dordrecht, The Netherlands, 1974; pp. 177–188. [Google Scholar]
- Gudmundsson, A. Form and dimensions of dykes in eastern Iceland. Tectonophysics 1983, 95, 295–307. [Google Scholar] [CrossRef]
- Johannesson, H.; Saemundsson, K. Bedrock Geology, Geological Map of Iceland, Scale 1:500,000; Icelandic Institute of Natural History: Reykjavik, Iceland, 1998. [Google Scholar]
- Bonali, F.L.; Tibaldi, A.; Marchese, F.; Fallati, L.; Russo, E.; Corselli, C.; Savini, A. UAV-based surveying in volcano-tectonics: An example from the Iceland rift. J. Struct. Geol. 2019, 121, 46–64. [Google Scholar] [CrossRef]
- Bonali, F.L.; Tibaldi, A.; Corti, N.; Fallati, L.; Russo, E. Reconstruction of Late Pleistocene-Holocene Deformation through Massive Data Collection at Krafla Rift (NE Iceland) Owing to Drone-Based Structure-from-Motion Photogrammetry. Appl. Sci. 2020, 10, 6759. [Google Scholar] [CrossRef]
- Antoniou, V.; Bonali, F.L.; Nomikou, P.; Tibaldi, A.; Melissinos, P.; Mariotto, F.P.; Vitello, F.R.; Krokos, M.; Whitworth, M. Integrating Virtual Reality and GIS Tools for Geological Mapping, Data Collection and Analysis: An Example from the Metaxa Mine, Santorini (Greece). Appl. Sci. 2020, 10, 8317. [Google Scholar] [CrossRef]
- Stal, C.; Bourgeois, J.; De Maeyer, P.; De Mulder, G.; De Wulf, A.; Goossens, R.; Hendrickx, M.; Nuttens, T.; Stichelbaut, B. Test case on the quality analysis of structure from motion in airborne applications. In Proceedings of the 32nd EARSeL Symposium: Advances in Geosciences, Mykonos, Greece, 21–24 May 2012; p. 11. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Bonali, F.L.; Antoniou, V.; Vlasopoulos, O.; Tibaldi, A.; Nomikou, P. Selfie Drones for 3D Modelling, Geological Mapping and Data Collection: Key Examples from Santorini Volcanic Complex, Greece. In Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2020), Online, 7–9 May 2020; pp. 119–128. [Google Scholar]
- Varvara, A.; Nomikou, P.; Pavlina, B.; Pantelia, S.; Bonali, F.L.; Lemonia, R.; Andreas, M. The story map for Metaxa mine (Santorini, Greece): A unique site where history and volcanology meet each other. In Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2019), Heraklion, Crete, Greece, 3–5 May 2019; pp. 3–5. [Google Scholar]
- Vollgger, S.A.; Cruden, A.R. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. J. Struct. Geol. 2016, 85, 168–187. [Google Scholar] [CrossRef]
- Burns, J.H.R.; Delparte, D. Comparison of commercial structure-from-motion photogrammety software used for underwater three-dimensional modeling of coral reef environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 127. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Miyahara, K.; Okada, Y. COLLADA-based File Format Supporting Various Attributes of Realistic Objects for VR Applications. In Proceedings of the 2009 International Conference on Complex, Intelligent and Software Intensive Systems, Fukuoka, Japan, 16–19 March 2009; IEEE: New York, NY, USA, 2009; pp. 971–976. [Google Scholar]
- Gerloni, I.G.; Carchiolo, V.; Vitello, F.R.; Sciacca, E.; Becciani, U.; Costa, A.; Riggi, S.; Bonali, F.L.; Russo, E.; Fallati, L.; et al. Immersive virtual reality for earth sciences. In Proceedings of the 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), Poznan, Poland, 9–12 September 2018; IEEE: New York, NY, USA, 2018; pp. 527–534. [Google Scholar]
- Cawood, A.J.; Bond, C.E. eRocK: An online, open-access repository of virtual outcrops and geological samples in 3D. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; Volume 20, p. 18248. [Google Scholar]
- Choi, D.H.; Dailey-Hebert, A.; Estes, J.S. Emerging Tools and Applications of Virtual Reality in Education; Choi, D.H., Dailey-Hebert, A., Estes, J.S., Eds.; Information Science Reference: Hershey, PA, USA, 2016. [Google Scholar]
- Pasquaré Mariotto, F.; Tibaldi, A. Structure of a sheet-laccolith system revealing the interplay between tectonic and magma stresses at Stardalur Volcano, Iceland. J. Volcanol. Geotherm. Res. 2007, 161, 131–150. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquaré Mariotto, F.; Bonali, F.L. Virtual Geosites as Innovative Tools for Geoheritage Popularization: A Case Study from Eastern Iceland. Geosciences 2021, 11, 149. https://doi.org/10.3390/geosciences11040149
Pasquaré Mariotto F, Bonali FL. Virtual Geosites as Innovative Tools for Geoheritage Popularization: A Case Study from Eastern Iceland. Geosciences. 2021; 11(4):149. https://doi.org/10.3390/geosciences11040149
Chicago/Turabian StylePasquaré Mariotto, Federico, and Fabio Luca Bonali. 2021. "Virtual Geosites as Innovative Tools for Geoheritage Popularization: A Case Study from Eastern Iceland" Geosciences 11, no. 4: 149. https://doi.org/10.3390/geosciences11040149
APA StylePasquaré Mariotto, F., & Bonali, F. L. (2021). Virtual Geosites as Innovative Tools for Geoheritage Popularization: A Case Study from Eastern Iceland. Geosciences, 11(4), 149. https://doi.org/10.3390/geosciences11040149