Site Amplification Analysis of Dushanbe City Area, Tajikistan to Support Seismic Microzonation
Abstract
:1. Introduction
2. Local Geology and Previous Microzonations
3. Applied Geophysical Methods
3.1. Horizontal to Vertical Spectral Ratio (HVSR) Measurements from Mobile Seismic Stations
3.2. Seismic Refraction Tomography (SRT)
3.3. Microtremor Array Measurements (MAMs)
3.4. Standard Spectral Ratio (SSR) Measurements from Temporary Seismic Stations
4. Data Processing and Results
4.1. Comparison of the Borehole Data
4.2. Results of the Seismic Refraction Tomography (SRT) Profiles
4.3. Results of the Horizontal to Vertical Spectral Ratio (HVSR) Measurements from Mobile Seismic Stations
4.4. Results of the Microtremor Array Measurements (MAMs)
4.5. Data Processing of the Earthquake Data
4.6. The Standard Spectral Ratio (SSR) and S-Waves Results
5. Discussion
5.1. North and Northwest Territories of Dushanbe City
5.2. West and Southwest Side of Dushanbe City
5.3. East and North-East of Dushanbe City
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Babaev, A.M.; Ischuk, A.R.; Negmatullaev, S.K. Seismic Conditions of the Territory of Tajikistan; Publication of the International University of Tajikistan: Dushanbe, Tajikistan, 2005; pp. 93–98. [Google Scholar]
- Negmatullaev, S.K.; Rodzhan, K.; Lunev, A.A.; Zolotarev, A.I. Strong Motion Service of Tajikistan; Donish: Dushanbe, Tajikistan, 1987; p. 150. (In Russian) [Google Scholar]
- Katok, A.P. The Khait Earthquake of 1949 July 10: Effect on Regime of Dushanbe and Garm; Academy Science USSR: Dushanbe, Tajukistan, 1965; pp. 8–14. (In Russian) [Google Scholar]
- Medvedev, S.; Sponheuer, W.; Karník, V. Neue seismische Skala Intensity Scale of Earthquakes, 7. Tagung der Europäischen Seismologischen Kommission vom 24. 9. bis 30. 9. 1962 in Jena, DDR; Akademie-Verlag: Berlin, Germany, 1964; pp. 69–76. [Google Scholar]
- Ishihara, K.; Okusa, S.; Oyagi, N.; Ischuk, A. Liquefaction induced flow slide in the collapsible loess deposit in Soviet Tajik. Soils Found. 1990, 30, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Nechaev, V.A. Seismic Microzonation of Stalinabad Territory on the Basis of Instrumental-Geological Method; Academy Science, USSR: Dushanbe, Tajikistan, 1959; pp. 22–35. (In Russian) [Google Scholar]
- Bune, V.I.; Gorshkov, G.P. Seismic Zonation of USSR; Nauka: Moscow, Russia, 1980; p. 307. (In Russian) [Google Scholar]
- Babaev, A.M.; Koshlakov, G.V.; Mirzoev, K.M. Seismic zonation of the area of Tajikistan; Donish: Dushanbe, Tajikistan, 1978; pp. 60–68. (In Russian) [Google Scholar]
- Bindi, D.; Abdrakhmatov, K.; Parolai, S.; Mucciarelli, M.; Grünthal, G.; Ischuk, A.; Mikhailova, N.; Zschau, J. Seismic hazard assessment in Central Asia: Outcomes from a site approach. Soil Dyn. Earthq. Eng. 2012, 37, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Pilz, M.; Bindi, D.; Boxberger, T.; Hakimov, F.; Moldobekov, B.; Murodkulov, S.; Orunbaev, S.; Pittore, M.; Stankiewicz, J.; Ullah, S.; et al. First Steps toward a Reassessment of the Seismic Risk of the City of Dushanbe (Tajikistan). Seismol. Res. Lett. 2013, 84, 1026–1038. [Google Scholar] [CrossRef]
- Rafi, Z.; Lindholm, C.; Bungum, H. Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir. Nat. Hazards 2012, 61, 1317–1354. [Google Scholar] [CrossRef]
- Giardini, D.; Grunthal, G.; Shedlock, K.; Zheng, P. The GSHAP Global Seismic Hazard Map. Annali di Geofisica 1999, 42, 1225–1230. [Google Scholar]
- Zheng, P.; Yang, Z.; Gupta, H.; Bhatia, S.; Shedlock, K. Global Seismic Hazard Assessment Program (GSHAP) in continental Asia. Ann. Geophys. 1999, 42, 1167–1190. [Google Scholar]
- Ischuk, A.; Bjerrum, L.W.; Kamchybekov, M.; Abdrakhmatov, K.; Lindholm, C. Probabilistic Seismic Hazard Assessment for the area of Kyrgyzstan, Tajikistan, and Eastern Uzbekistan, Central Asia. Bull. Seismol. Soc. Am. 2017, 108, 130–144. [Google Scholar] [CrossRef]
- D’Amico, V.; Picozzi, M.; Baliva, F.; Albarello, D. Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence, Italy. Bull. Seismol. Soc. Am. 2008, 98, 1373–1388. [Google Scholar] [CrossRef]
- Bonnefoy-Claudet, S.; Cotton, F.; Bard, P.-Y. The nature of noise wave field and its applications for site effects studies: A literature review. Earth Sci. Rev. 2006, 79, 205–227. [Google Scholar] [CrossRef]
- Bonnefoy-Claudet, S.; Baize, S.; Bonilla, L.F.; Berge-Thierry, C.; Pasten, C.R.; Campos, J.; Volant, P.; Verdugo, R. Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophys. J. Int. 2009, 176, 925–937. [Google Scholar] [CrossRef] [Green Version]
- Domej, G.; Aslanov, U.; Ischuk, A. Geophysical investigations on the contribution of irrigation channels to landslide activity in Tusion, Tajikistan. J. Himal. Earth Sci. 2019, 52, 161–177. [Google Scholar]
- Guéguen, P.; Cornou, C.; Garambois, S.; Banton, J. On the Limitation of the H/V Spectral Ratio Using Seismic Noise as an Exploration Tool: Application to the Grenoble Valley (France), a Small Apex Ratio Basin. Pure. Appl. Geophys. 2007, 164, 115–134. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Fäh, D.; Polom, U.; Roullé, A. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben. Geophys. J. Int. 2007, 170, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Havenith, H.-B.; Umaraliev, R.; Dudnikov, A. Seismic zonation map of Osh, Kyrgyz Republic. In Cross Border Community Based Disaster Preparedness and Risk Mitigation for Vulnerable Rural Populations of the Ferghana Valley; ECHO Project Report; ACTED—Agency for Technical Cooperation and Development: Bishkek, Kyrgyzstan, 2009. [Google Scholar]
- Parolai, S.; Bindi, D.; Augliera, P. Application of the generalized inversion technique (GIT) to a microzonation study: Numerical simulations and comparison with different site-estimation techniques. Bull. Seism. Soc. Am. 2000, 90, 286–297. [Google Scholar] [CrossRef]
- Parolai, S.; Orunbaev, S.; Bindi, D.; Strollo, A.; Usupaev, S.; Picozzi, M.; Di Giacomo, D.; Augliera, P.; D’Alema, E.; Milkereit, C.; et al. Site Effects Assessment in Bishkek (Kyrgyzstan) Using Earthquake and Noise Recording Data. Bull. Seismol. Soc. Am. 2010, 100, 3068–3082. [Google Scholar] [CrossRef] [Green Version]
- Pilz, M.; Parolai, S.; Leyton, F.; Campos, J.; Zschau, J. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophys. J. Int. 2009, 178, 713–728. [Google Scholar] [CrossRef] [Green Version]
- Pilz, M.; Abakanov, T.; Bindi, D.; Boxberger, T.; Moldobekov, B.; Orunbaev, S.; Silacheva, N.; Ullah, S.; Usupaev, S.; Yasunov, P.; et al. An overview on the seismic microzonation and site effect studies in Central Asia. Ann. Geophys. Italy 2015, 58, 104–116. [Google Scholar] [CrossRef]
- Ulysse, S.; Boisson, D.; Prépetit, C.; Havenith, H.B. Site Effect Assessment of the Gros-Morne Hill Area in Port-au-Prince, Haiti, Part A: Geophysical-Seismological Survey Results. Geosciences 2018, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Head Institute of Engineering and Technical Surveys of the State Construction Committee of Tajikistan (HIETSCCT). Collection of borehole data from the Dushanbe city area. Personal communication, 2019. [Google Scholar]
- Zolotarev, G.S.; Fachorenko, W.S.; Lipmija, W.I.; Hergow, D.; Rohdijow, N.A.; Jaodokowa, P. Polygon-Based Engineering and Geological Map of the Dushanbe Region; Soviet Academy of Science: Moscow, Russia, 1985; p. 15. (In Russian) [Google Scholar]
- Kopilov, A.L. The Map of the Seismic Microzonation of the Dushanbe Area Made Using the Method of Acoustic Stiffness; Quarterly Report; GIINTIZ Institute: Dushanbe, Tajikistan, 1989; p. 170. (In Russian) [Google Scholar]
- Kukhtikov, M.M. Tectonic Zonation and the Most Important Regularities of the Structure and Development of Gissaro-Alai in Paleozoic; Donish: Dushanbe, Tajikistan, 1968; pp. 34–43. (In Russian) [Google Scholar]
- Bekker, Y.; Koshlakov, G.; Kuznetsov, E. On Tectonics of Dushanbe Region (Hissar Valley) Based on the Results of Geological and Geophysical Research on Prognostic Test Sites; Nauka: Moscow, Russia, 1974; pp. 24–29. (In Russian) [Google Scholar]
- Babaev, A.M.; Lyskov, L. The Newest Tectonics of Dushanbe Polygon Area; Nauka: Moscow, Russia, 1985; pp. 29–41. (In Russian) [Google Scholar]
- Durkin, A.T. The Structure of Earth Crust of Territory of Tajikistan on Materials of Deep Seismic Researches; Donish: Dushanbe, Tajikistan, 1993; pp. 54–63. (In Russian) [Google Scholar]
- Abdrakhmatov, K. Establishment of the Central Asia Seismic Risk Initiative (CASRI); ISTC Project No. KR 1176, 2009; Technical Report on the Work Performed from: 02.01.2006 to 04.30.2009; Institute of Seismology, National Academia of Sciences: Bishkek, Kyrgyzstan, 2009. [Google Scholar]
- Mikhailova, N.; Mukambayev, A.; Aristova, I.; Kulakova, G.; Ullah, S.; Pilz, M.; Bindi, B. Central Asia earthquake catalogue from ancient time to 2009. Ann. Geophys. Italy 2015, 58, 102–111. [Google Scholar] [CrossRef]
- Tsshoher, V.O. Seismic Zonation of the Urban Area and Antiseismic Engineering Building Codes; Soviet Academy of Science: Moscow, Russia, 1938; p. 103. (In Russian) [Google Scholar]
- Nazarov, A.G.; Nechaev, V.A. Seismic Microzonation Map—The Administrative Area of Stalinabad; Academy Science, USSR: Dushanbe, Tajikistan, 1953; p. 15. (In Russian) [Google Scholar]
- Kogan, L.A.; Nechaev, V.A.; Romanov, O.G. Seismic Microzonation in Tajikistan; Donish: Dushanbe, Tajikistan, 1974; p. 379. (In Russian) [Google Scholar]
- Oripov, G.O. The Map of Seismic Microzonation of the Area of Dushanbe; Quarterly Report; GIINTIZ Institute: Dushanbe, Tajikistan, 1975; p. 150. (In Russian) [Google Scholar]
- Nakamura, Y.A. Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface; Quarterly Report; Railway Technical Research Institute: Tokyo, Japan, 1989; Volume 30, pp. 25–33. [Google Scholar]
- Wathelet, M. GEOPSY Geophysical Signal Database for Noise Array Processing. Software, LGIT, Grenoble. 2006. Available online: www.geopsy.org (accessed on 15 November 2019).
- Nakamura, Y. What is the Nakamura’s method? Seismol. Res. Lett. 2019, 90, 1437–1443. [Google Scholar] [CrossRef]
- Bard, P.-Y. Microtremor measurements: A tool for site effect estimation. In The Effects of Surface Geology on Seismic Motion; Irikura, K., Kudo, K., Okada, H., Sasatami, T., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 1251–1279. [Google Scholar]
- Bonnefoy-Claudet, S.; Köhler, A.; Cornou, C.; Wathelet, M.; Bard, P.-Y. Effects of Love waves on microtremor H/V ratio. Bull. Seism. Soc. Am. 2008, 98, 288–300. [Google Scholar] [CrossRef]
- Field, E.H.; Jacob, K.H. A comparison and test of various site response estimation techniques, including three that are non-reference-site dependent. Bull. Seism. Soc. Am. 1995, 86, 991–1005. [Google Scholar]
- Fäh, D.; Kind, F.; Giardini, D. A theoretical investigation of average H/V ratios. Geophys. J. Int. 2001, 145, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Bard, P.-Y.; SESAME-Team. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing, and Interpretations; SESAME European Research Project Report; European Commission—Research General Directorate Project No. EVG1-CT-2000-00026 SESAME; European Commission: Grenoble, France, 2004; p. 62. Available online: ftp://ftp.geo.uib.no/pub/seismo/software/sesame/user-guidelines/sesame-hv-user-guidelines.pdf (accessed on 15 November 2019).
- Al-Heety, A.J.R.; Shanshal, Z.M. Integration of Seismic Refraction Tomography and Electrical Resistivity Tomography in Engineering Geophysics for Soil Characterization. Arab J. Geosci. 2016, 9, 731–741. [Google Scholar] [CrossRef]
- Lankston, R.W. The seismic refraction method: A viable tool for mapping shallow targets into the 1990s. Geophysics 1989, 54, 1535–1542. [Google Scholar] [CrossRef]
- Yilmaz, O.; Eser, M.; Berilgen, M. Seismic, Geotechnical, and Earthquake Engineering Site Characterization. In Proceedings of the 76th Annual International Meeting; SEG, Expanded Abstract. SEG: Tulsa, OK, USA, 2006; Volume 25, pp. 1401–1405. [Google Scholar]
- Zhang, J.; Toksöz, M.N. Non-linear refraction travel time tomography. Geophysics 1998, 63, 1726–1737. [Google Scholar] [CrossRef]
- Demanet, D. Tomographies 2D et 3D à partir de Mesures Géophysiques en Surface et en Forage. Unpublished. Ph.D. Thesis, Liége University, Liége, Belgium, 2000; p. 153. [Google Scholar]
- Dines, K.A.; Lytle, R.J. Computerized geophysical tomography. Proc. IEEE 1979, 67, 1065–1073. [Google Scholar] [CrossRef]
- Claprood, M. Spatially Averaged Coherency Spectrum (SPAC) Ambient Noise Array Method. In Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock; Geological Survey of Canada, Open File 7078; Hunter, J.A., Crow, H.L., Eds.; Geological Survey of Canada: Ottawa, BC, Canada, 2012; pp. 94–102. [Google Scholar]
- Horike, M. Inversion of phase velocity of long–period microtremors to the S–wave–velocity structure down to the basement in urbanized areas. J. Phys. Earth 1985, 33, 59–96. [Google Scholar] [CrossRef] [Green Version]
- Ishida, H.; Nozawa, T.; Niwa, M. Estimation of deep surface structure based on phase velocities and spectral ratios of long period microtremors. In Proceedings of the 2nd International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 4 April 1998; Volume 2, pp. 697–704. [Google Scholar]
- Satoh, T.; Kawase, H.; Shin’Ichi, M. Estimation of S-wave velocity structures in and around the Sendai Basin, Japan, using arrays records of microtremors. Bull. Seismol. Soc. Am. 2001, 91, 206–218. [Google Scholar] [CrossRef]
- Yamanaka, H.; Takemura, M.; Ishida, H.; Niwa, M. Characteristics of long-period microtremors and their applicability in the exploration of deep sedimentary layers. Bull. Seism. Soc. Am. 1994, 84, 1831–1841. [Google Scholar]
- Asten, M.W. On bias and noise in passive seismic data from finite circular array data processed using SPAC method. Geophysics 2006, 71, 153–162. [Google Scholar] [CrossRef]
- Aki, K. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. 1957, 35, 415–456. [Google Scholar]
- Aki, K. A note on the use of microseisms in determining the shallow structure of the Earth’s crust. Geophysics 1965, 30, 665–666. [Google Scholar] [CrossRef]
- Ohori, M.; Nobata, A.; Wakamatsu, K. A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bull. Seismol. Soc. Am. 2002, 92, 2323–2332. [Google Scholar] [CrossRef]
- Okada, H. The Microtremor Survey Method. American Geophysical Monograph 12; American Geophysical Union: Washington, DC, USA, 2003; pp. 1–14. [Google Scholar]
- Borcherdt, R.D. Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am. 1970, 60, 29–61. [Google Scholar]
- Rodríguez, V.H.; Midorikawa, S. Comparison of spectral ratio techniques for estimation of site effects using microtremor data and earthquake motions recorded at the surface and in boreholes. Earthq. Eng. Struct. Dynam. 2003, 32, 1691–1714. [Google Scholar] [CrossRef]
- Bonilla, L.F.; Steidl, J.H.; Lindley, G.T.; Tumarkin, A.G.; Archuleta, R.J. Site amplification in the San Ferdinando Valley, California: Variability of site effect estimation using S-wave, coda, and H/V methods. Bull. Seism. Soc. Am. 1997, 87, 710–730. [Google Scholar]
- Parolai, S.; Richwalski, S. The importance of converted waves in comparing H/V and RSM site response estimates. Bull. Seismol. Soc. Am. 2004, 94, 304–313. [Google Scholar] [CrossRef]
- Wathelet, M.; Jean-Luc, C.; Cornou, C.; Di Giulio, G.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. [Google Scholar]
- Guéguen, P.; Chatelain, J.L.; Guillier, B.; Yepes, H. An indication of the soil topmost layer response in Quito (Ecuador) using noise H/V spectral ratio. Earthq. Eng. Soil Dynam. 2000, 19, 127–133. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Jongmans, D.; Faccioli, E.; Abdrakhmatov, K.; Bard, P.-Y. Site Effect Analysis around the Seismically Induced Ananevo Rockslide, Kyrgyzstan. Bull. Seismol. Soc. Am. 2002, 92, 3190–3209. [Google Scholar] [CrossRef]
- Wathelet, M. An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef] [Green Version]
Method | Assessed Data | Processing | Results |
---|---|---|---|
175—Horizontal to Vertical Spectral Ratio (HVSR) measurements | passive vibration (ambient noise at 30-min intervals) | Horizontal to Vertical Spectral Ratio (HVSR) | Fundamental Resonance Frequency Map |
9—Seismic Refraction Tomography (SRT) profiles | active vibration (P-wave) | P-wave inversion | P-wave velocity (Vp) patterns, subsurface structures |
5—Microtremor Array Measurements (MAM) | passive vibration (ambient noise at two-hour intervals) | Spatial Autocorrelation (SPAC), Rayleigh Wave | Dispersion curves, S-wave velocity (VS) patterns |
5—temporary seismic stations recordings & 1 permanent reference station | passive vibration (instrumental data) | Standard Spectral Ratio (SSR) from earthquake | Amplification factors |
data compilation (*) | lithological maps and cross sections data of 60 boreholes | (data evaluation and adaption) | Surface lithology, subsurface structures |
Profile | Position | Terrace | Uppermost Soil Types |
---|---|---|---|
DSP1 | 100 m E of the Varzob River (left bank) | 1st | gravel, with loess on top |
DSP2 | 500 m N of the Luchob River (left bank) | 1st | loess, loam, some gravel/sand |
DSP3 | 2 km N of the Hissar Canal (left bank) | 3rd | loess (up to 40 m) |
DSP4 | 300 m S of the Hissar Canal (right bank) | 3rd | loess (up to 40 m) |
DSP5 | 3 km W of the Varzob River (right bank) | 2nd | gravel, with loess on top |
DSP6 | 2.5 km E of the Varzob River (left bank) | 3rd | gravel, with loess on top |
DSP7 | 4.5 km N of the Kafirnigan River (right bank) | 3rd | loess (>40 m) |
DSP8 | 3 km N of the Kafirnigan River (right bank) | 3rd | loess (>40 m) |
DSP9 | 3 km N of the Kafirnigan River (right bank) | 3rd | loess (>40 m) |
Array | Position | Terrace | Uppermost Soil Types | |
---|---|---|---|---|
DA1 | 3.5 km N of the Kafirnigan River (right bank) | 3rd | loess (>40 m) | |
DA2 | 3.3 km N of the Kafirnigan River (right bank) | 3rd | loess (<40 m) | |
DA3 | 1.5 km W of the Varzob River (right bank) | 2nd | gravel | |
DA4 | 3.2 km W of the Varzob River (right bank) | 3nd | gravel | |
DA5 | 700 m N of the Hissar Canal (left bank) | 3rd | loess (<40 m) |
Station | Position | Terrace | Uppermost Soil Types |
---|---|---|---|
DZET | 14 km N of Dushanbe of the Varzob River (left bank) | 3rd | granite bedrock |
BB2 | 1 km N of the Hissar Canal (left bank) | 3rd | loess (<40 m) |
BB0 | 1 km W of the Varzob River (right bank) | 2nd | loess (<10 m) |
BAU | 800 m E of the Varzob River (left bank) | 1st | loess (<40 m) |
BAV | 2 km W of the Varzob River (right bank) | 3rd | gravel |
BAZ | 3 km N of the Kafirnigan River (right bank) | 3rd | loess (>40 m) |
Year | Month | Data | Time (UTC) | Latitude | Longitude | Magnitude | Depth (km) |
---|---|---|---|---|---|---|---|
2019 | 9 | 3 | 4:34:35 PM | 38.9476 | 70.533 | 4.2 | 12 |
2019 | 9 | 21 | 11:30:58 AM | 38.6512 | 70.1729 | 4.6 | 21 |
2019 | 10 | 15 | 4:20:20 PM | 38.3132 | 68.9488 | 4.0 | 10 |
2019 | 11 | 12 | 2:01:49 PM | 37.7933 | 69.9641 | 4.3 | 10 |
2020 | 1 | 29 | 9:10:46 AM | 38.8107 | 70.5587 | 5.3 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakimov, F.; Domej, G.; Ischuk, A.; Reicherter, K.; Cauchie, L.; Havenith, H.-B. Site Amplification Analysis of Dushanbe City Area, Tajikistan to Support Seismic Microzonation. Geosciences 2021, 11, 154. https://doi.org/10.3390/geosciences11040154
Hakimov F, Domej G, Ischuk A, Reicherter K, Cauchie L, Havenith H-B. Site Amplification Analysis of Dushanbe City Area, Tajikistan to Support Seismic Microzonation. Geosciences. 2021; 11(4):154. https://doi.org/10.3390/geosciences11040154
Chicago/Turabian StyleHakimov, Farkhod, Gisela Domej, Anatoly Ischuk, Klaus Reicherter, Lena Cauchie, and Hans-Balder Havenith. 2021. "Site Amplification Analysis of Dushanbe City Area, Tajikistan to Support Seismic Microzonation" Geosciences 11, no. 4: 154. https://doi.org/10.3390/geosciences11040154
APA StyleHakimov, F., Domej, G., Ischuk, A., Reicherter, K., Cauchie, L., & Havenith, H. -B. (2021). Site Amplification Analysis of Dushanbe City Area, Tajikistan to Support Seismic Microzonation. Geosciences, 11(4), 154. https://doi.org/10.3390/geosciences11040154