Climate Variability in Central Europe during the Last 2500 Years Reconstructed from Four High-Resolution Multi-Proxy Speleothem Records
Abstract
:1. Introduction
2. Sites and Samples
3. Methods
3.1. 230Th/U-Dating
3.2. δ18O and δ13C Values
3.3. Trace Elements
3.4. Correlation and Principal Component Analysis
4. Results
4.1. 230Th/U-Dating of Bu1
4.2. Stable Isotopes
4.3. Trace Elements
4.4. Correlation and PCA
5. Discussion
5.1. δ18O and δ13C Values
5.2. Trace Elements
5.3. Cold/Dry and Warm/Humid Phases during the Late Holocene in Germany
5.3.1. Cold/Dry Periods
5.3.2. Warm/Humid Periods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Boch, R.; Spötl, C. Reconstructing palaeoprecipitation from an active cave flowstone. J. Quat. Sci. 2011, 26, 675–687. [Google Scholar] [CrossRef]
- Büntgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J.O.; Herzig, F.; Heussner, K.-U.; Wanner, H.; et al. 2500 years of European climate variability and human susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Hass, H.C. Northern Europe climate variations during late Holocene: Evidence from marine Skagerrak. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 123, 121–145. [Google Scholar] [CrossRef]
- Vollweiler, N.; Scholz, D.; Mühlinghaus, C.; Mangini, A.; Spötl, C. A precisely dated climate record for the last 9 kyr from three high alpine stalagmites, Spannagel Cave, Austria. Geophys. Res. Lett. 2006, 33, L20703. [Google Scholar] [CrossRef] [Green Version]
- Helama, S.; Jones, P.D.; Briffa, K.R. Dark Ages Cold Period: A literature review and directions for future research. Holocene 2017, 27, 1600–1606. [Google Scholar] [CrossRef] [Green Version]
- Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr. Ann. 2010, 92, 339–351. [Google Scholar] [CrossRef]
- Büntgen, U.; Myglan, V.S.; Ljundqvist, F.C.; McCormick, M.; Di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef]
- Crowley, T.J.; Lowery, T.S. How warm was the Medieval Warm Period? AMBIO J. Hum. Environ. 2000, 29, 51–54. [Google Scholar] [CrossRef]
- Goosse, H.; Arzel, O.; Luterbacher, J.; Mann, M.E.; Renssen, H.; Riedwyl, N.; Timmermann, A.; Xoplaki, E.; Wanner, H. The origin of the European “Medieval Warm Period”. Clim. Past 2006, 2, 93–113. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.K.; Diaz, H.F. Was there a ‘Medieval Warm Period’, and if so, where and when? Clim. Chang. 1994, 26, 109–142. [Google Scholar] [CrossRef]
- Fohlmeister, J.; Schröder-Ritzrau, A.; Scholz, D.; Spötl, C.; Riechelmann, D.F.C.; Mudelsee, M.; Wackerbarth, A.; Gerdes, A.; Riechelmann, S.; Immenhauser, A.; et al. Bunker Cave stalagmites: An archive for central European Holocene climate variability. Clim. Past 2012, 8, 1751–1764. [Google Scholar] [CrossRef] [Green Version]
- Wanner, H.; Solomina, O.; Grosjean, M.; Ritz, S.P.; Jetel, M. Structure and origin of Holocene cold events. Quat. Sci. Rev. 2011, 30, 3109–3123. [Google Scholar] [CrossRef]
- Alley, R.B.; Ágústsdóttir, A.M. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 2005, 24, 1123–1149. [Google Scholar] [CrossRef]
- Rohling, E.J.; Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8200 years ago. Nature 2005, 434, 975–979. [Google Scholar] [CrossRef] [PubMed]
- deMenocal, P.B. Cultural responses to climate change during the late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Zhang, D.D.; Brecke, P.; Lee, H.F.; He, Y.-Q.; Zhang, J. Global climate change, war, and population decline in recent human history. Proc. Natl. Acad. Sci. USA 2007, 104, 19214–19219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan-Jones, R.P. Economic change and the transition to Late Antiquity. In Approaching Late Antiquity: The Transformation from Early to Late Empire; Swain, S., Edwards, M., Eds.; Oxford Univ. Press: Oxford, UK, 2004; pp. 20–52. [Google Scholar]
- Witschel, C. Re-evaluating the Roman West in the 3rd c. A.D. J. Rom. Archaeol. 2004, 17, 251–281. [Google Scholar] [CrossRef]
- Fohlmeister, J.; Plessen, B.; Dudashvili, A.S.; Tjallingii, R.; Wolff, C.; Gafurov, A.; Cheng, H. Winter precipitation changes during the Medieval Climate Anomaly and the Little Ice Age in arid Central Asia. Quat. Sci. Rev. 2017, 178, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.D.; Frank, D.C. Persistent positive North Atlantic Oscillation Mode dominated the Medieval Climate Anomaly. Science 2009, 324, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Trouet, V.; Scourse, J.D.; Raible, C.C. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability. Glob. Planet. Chang. 2012, 84–85, 48–55. [Google Scholar] [CrossRef]
- Wang, T.; Surge, D.; Walker, K.J. Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths, southwest Florida, USA. Quat. Int. 2012, 308–309, 230–241. [Google Scholar] [CrossRef]
- Wassenburg, J.A.; Dietrich, S.; Fietzke, J.; Fohlmeister, J.; Jochum, K.P.; Scholz, D.; Richter, D.K.; Sabaoui, A.; Spötl, C.; Lohmann, G.; et al. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation. Nat. Geosci. 2016, 9, 602–605. [Google Scholar] [CrossRef]
- Baker, A.; Hellstrom, J.C.; Kelly, B.F.J.; Mariethoz, G.; Trouet, V. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci. Rep. 2015, 5, 10307. [Google Scholar] [CrossRef] [Green Version]
- Mischel, S.A.; Scholz, D.; Spötl, C. δ18O values of cave drip water: A promising proxy for the reconstruction of the North Atlantic Oscillation? Clim. Dyn. 2015, 45, 3035–3050. [Google Scholar] [CrossRef]
- Riechelmann, S.; Schröder-Ritzrau, A.; Spötl, C.; Riechelmann, D.F.C.; Richter, D.K.; Mangini, A.; Frank, N.; Breitenbach, S.F.M.; Immenhauser, A. Sensitivity of Bunker Cave to climatic forcings highlighted through multi-annual monitoring of rain-, soil-, and dripwaters. Chem. Geol. 2017, 449, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Riechelmann, D.F.C.; Schröder-Ritzrau, A.; Scholz, D.; Fohlmeister, J.; Spötl, C.; Richter, D.K.; Mangini, A. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site. J. Hydrol. 2011, 409, 682–695. [Google Scholar] [CrossRef]
- Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Spötl, C.; Riechelmann, D.F.C.; Richter, D.K.; Kluge, T.; Marx, T.; Immenhauser, A. Hydrogeochemistry and fractionation pathways of Mg isotopes in a continental weathering system: Lessons from field experiments. Chem. Geol. 2012, 300–301, 109–122. [Google Scholar] [CrossRef]
- Grebe, W. Die Bunkerhöhle in Iserlohn-Letmathe (Sauerland). Mitt. Verb. Dtsch. Höhlen Karstforscher 1993, 39, 22–23. [Google Scholar]
- Mischel, S.A.; Scholz, D.; Spötl, C.; Jochum, K.P.; Schröder-Ritzrau, A.; Fiedler, S. Holocene climate variability in Central Germany and a potential link to the polar North Atlantic: A replicated record from three coeval speleothems. Holocene 2017, 27, 509–525. [Google Scholar] [CrossRef]
- Immenhauser, A.; Buhl, D.; Richter, D.; Niedermayr, A.; Riechelmann, D.; Dietzel, M.; Schulte, U. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—Field study and experiments. Geochim. Cosmochim. Acta 2010, 74, 4346–4364. [Google Scholar] [CrossRef]
- Riechelmann, S.; Schröder-Ritzrau, A.; Wassenburg, J.A.; Schreuer, J.; Richter, D.K.; Riechelmann, D.F.C.; Terente, M.; Constantin, S.; Mangini, A.; Immenhauser, A. Physicochemical characteristics of drip waters: Influence on mineralogy and crystal morphology of recent cave carbonate precipitates. Geochim. Cosmochim. Acta 2014, 145, 13–29. [Google Scholar] [CrossRef]
- Wackerbarth, A.; Langebroek, P.M.; Werner, M.; Lohmann, G.; Riechelmann, S.; Borsato, A.; Mangini, A. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves. Clim. Past 2012, 8, 1781–1799. [Google Scholar] [CrossRef] [Green Version]
- Waltgenbach, S.; Scholz, D.; Spötl, C.; Riechelmann, D.F.C.; Jochum, K.P.; Fohlmeister, J.; Schröder-Ritzrau, A. Climate and structure of the 8.2 ka event reconstructed from three speleothems from Germany. Glob. Planet. Chang. 2020, 193, 103266. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Prytulak, J.; Richards, D.A.; Elliott, T.; Coath, C.D.; Smart, P.L.; Scholz, D. Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS. Int. J. Mass Spectrom. 2007, 264, 97–109. [Google Scholar] [CrossRef]
- Yang, Q.; Scholz, D.; Jochum, K.P.; Hoffmann, D.L.; Stoll, B.; Weis, U.; Schwager, B.; Andreae, M.O. Lead isotope variability in speleothems—A promising new proxy for hydrological change? First results from a stalagmite from western Germany. Chem. Geol. 2015, 396, 143–151. [Google Scholar] [CrossRef]
- Gibert, L.; Scott, G.R.; Scholz, D.; Budsky, A.; Ferrandez, C.; Martin, R.A.; Ribot, F.; Leria, M. Chronology for the Cueva Victoria fossil site (SE Spain): Evidence for Early Pleistocene Afro-Iberian dispersals. J. Hum. Evol. 2016, 90, 183–197. [Google Scholar] [CrossRef]
- Obert, J.C.; Scholz, D.; Felis, T.; Brocas, W.M.; Jochum, K.P.; Andreae, M.O. 230Th/U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material. Geochim. Cosmochim. Acta 2016, 178, 20–40. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Hoff, J.; Gallup, C.D.; Richards, D.A.; Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chem. Geol. 2000, 169, 17–33. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Scholz, D.; Hoffmann, D.L. StalAge—An algorithm designed for construction of speleothem age models. Quat. Geochronol. 2011, 6, 369–382. [Google Scholar] [CrossRef]
- Spötl, C. Long-term performance of the Gasbench isotope ratio mass spectrometry system for the stable isotope analysis of carbonate microsamples. Rapid Commun. Mass Spectrom. 2011, 25, 1683–1685. [Google Scholar] [CrossRef] [PubMed]
- Jochum, K.P.; Stoll, B.; Herwig, K.; Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 2007, 22, 112–121. [Google Scholar] [CrossRef]
- Jochum, K.P.; Scholz, D.; Stoll, B.; Weis, U.; Wilson, S.A.; Yang, Q.; Schwalb, A.; Börner, N.; Jacob, D.E.; Andreae, M.O. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 2012, 318–319, 31–44. [Google Scholar] [CrossRef]
- Lachniet, M.S. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 2009, 28, 412–432. [Google Scholar] [CrossRef]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Smith, C.L.; Baker, A.; Fuller, L.; Spötl, C.; Mattey, D.; McDermott, F. Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev. 2006, 75, 105–153. [Google Scholar] [CrossRef] [Green Version]
- Fairchild, I.J.; Borsato, A.; Tooth, A.F.; Frisia, S.; Hawkesworth, C.J.; Huang, Y.; McDermott, F.; Spiro, B. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 2000, 166, 255–269. [Google Scholar] [CrossRef]
- Dreybrodt, W.; Scholz, D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochim. Cosmochim. Acta 2011, 75, 734–752. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Treble, P.C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 2009, 28, 449–468. [Google Scholar] [CrossRef]
- Warken, S.F.; Fohlmeister, J.; Schröder-Ritzrau, A.; Constantin, S.; Spötl, C.; Gerdes, A.; Esper, J.; Frank, N.; Arps, J.; Terente, M.; et al. Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record. Earth Planet. Sci. Lett. 2018, 499, 122–133. [Google Scholar] [CrossRef]
- Huang, Y.; Fairchild, I.J.; Borsato, A.; Frisia, S.; Cassidy, N.J.; McDermott, F.; Hawkesworth, C.J. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chem. Geol. 2001, 175, 429–448. [Google Scholar] [CrossRef]
- Treble, P.; Shelley, J.M.G.; Chappell, J. Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet. Sci. Lett. 2003, 216, 141–153. [Google Scholar] [CrossRef]
- Hellstrom, J.C.; McCulloch, M.T. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth Planet. Sci. Lett. 2000, 179, 287–297. [Google Scholar] [CrossRef]
- McDonald, J.; Drysdale, R.; Hill, D. The 2002-2003 El-Niño recorded in Australian cave drip waters: Implications for reconstructing rainfall histories using stalagmites. Geophys. Res. Lett. 2004, 31, L22202. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Baker, A. Speleothem Science; Wiley-Blackwell: Oxford, UK, 2012. [Google Scholar]
- Wassenburg, J.A.; Immenhauser, A.; Richter, D.K.; Jochum, K.P.; Fietzke, J.; Deininger, M.; Goos, M.; Scholz, D.; Sabaoui, A. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence. Geochim. Cosmochim. Acta 2012, 92, 23–47. [Google Scholar] [CrossRef]
- Riechelmann, S.; Breitenbach, S.F.M.; Schröder-Ritzrau, A.; Mangini, A.; Immenhauser, A. Ventilation and cave air pCO2 in the Bunker-Emst Cave System (NW Germany): Implications for speleothem proxy data. J. Cave Karst Stud. 2019, 81, 98–112. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fohlmeister, J.; Vollweiler, N.; Spötl, C.; Mangini, A. COMNISPA II: Update of a mid-European isotope climate record, 11 ka to present. Holocene 2013, 23, 749–754. [Google Scholar] [CrossRef]
- Neukom, R.; Steiger, N.; Gómez-Navarro, J.J.; Wang, J.; Werner, J.P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 2019, 571, 550–554. [Google Scholar] [CrossRef]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39, L02708. [Google Scholar] [CrossRef] [Green Version]
- Moberg, A.; Sonechkin, D.M.; Holmgren, K.; Datsenko, N.M.; Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 2005, 433, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Trachsel, M.; Kamenik, C.; Grosjean, M.; McCarroll, D.; Moberg, A.; Brázdil, R.; Büntgen, U.; Dobrovolný, P.; Esper, J.; Frank, D.C.; et al. Multi-archive summer temperature reconstruction for the European Alps, AD 1053-1996. Quat. Sci. Rev. 2012, 46, 66–79. [Google Scholar] [CrossRef]
- Goudeau, M.-L.S.; Reichart, G.-J.; Wit, J.C.; de Nooijer, L.J.; Grauel, A.-L.; Bernasconi, S.M.; de Lange, G.J. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 418, 304–318. [Google Scholar] [CrossRef]
- Martín-Chivelet, J.; Muñoz-García, M.B.; Edwards, R.L.; Turrero, M.J.; Ortega, A.I. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Glob. Planet. Chang. 2011, 77, 1–12. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Depth [cm] | 238U [µg g−1] | 232Th [ng g−1] | (234U/238U) | (230Th/238U) | (230Th/232Th) | (234U/238U)initial | Ageuncorrected [ka BP] | Agecorrected [ka BP] |
---|---|---|---|---|---|---|---|---|---|
Bu1-3.1 | 1.4 | 0.04014 ± 0.00028 | 0.0606 ± 0.0023 | 1.3494 ± 0.0057 | 0.0061 ± 0.0014 | 13.2 ± 2.8 | 1.3499 ± 0.0057 | 0.46 ± 0.11 | 0.43 ± 0.11 |
Bu1-3.2 | 4.4 | 0.04178 ± 0.00029 | 0.1193 ± 0.0042 | 1.3417 ± 0.0057 | 0.0138 ± 0.0013 | 15.6 ± 1.5 | 1.3428 ± 0.0057 | 1.12 ± 0.11 | 1.06 ± 0.11 |
Bu1-3.3 | 6.3 | 0.04589 ± 0.00028 | 0.3399 ± 0.0035 | 1.3425 ± 0.0034 | 0.0127 ± 0.0014 | 6.02 ± 0.43 | 1.3435 ± 0.0034 | 1.127 ± 0.085 | 0.97 ± 0.12 |
Bu1-3.4 | 10.1 | 0.06136 ± 0.00044 | 0.1745 ± 0.0056 | 1.3444 ± 0.0054 | 0.0182 ± 0.0011 | 20.3 ± 1.3 | 1.3458 ± 0.0055 | 1.482 ± 0.090 | 1.421 ± 0.093 |
Bu1-2.1 | 11.8 | 0.05373 ± 0.00031 | 0.1453 ± 0.0035 | 1.3410 ± 0.0025 | 0.0167 ± 0.0013 | 19.7 ± 1.5 | 1.3423 ± 0.0025 | 1.36 ± 0.10 | 1.30 ± 0.11 |
Bu1-2.2 | 12.9 | 0.05177 ± 0.00030 | 0.1479 ± 0.0036 | 1.3396 ± 0.0029 | 0.0176 ± 0.0011 | 19.6 ± 1.2 | 1.3410 ± 0.0028 | 1.438 ± 0.086 | 1.377 ± 0.097 |
Bu1-2.3 | 16 | 0.03663 ± 0.00021 | 0.2516 ± 0.0045 | 1.3297 ± 0.0030 | 0.0200 ± 0.0017 | 9.68 ± 0.69 | 1.3312 ± 0.0030 | 1.73 ± 0.13 | 1.58 ± 0.14 |
Bu1 | Bu4 | NG01 | TV1 | |
---|---|---|---|---|
Mean δ18O [‰] | −5.9 | −5.5 | −6.1 | −6.1 |
Std. dev. δ18O | 0.4 | 0.4 | 0.3 | 0.2 |
Min. δ18O [‰] | −6.9 | −6.3 | −7.0 | −6.8 |
Max. δ18O [‰] | −4.8 | −4.5 | −5.3 | −5.4 |
Mean δ13C [‰] | −10.6 | −9.5 | −10.6 | −8.9 |
Std. dev. δ13C | 0.6 | 0.6 | 0.4 | 0.4 |
Min. δ13C [‰] | −11.9 | −10.9 | −11.3 | −9.9 |
Max. δ13C [‰] | −8.4 | −8.0 | −9.3 | −7.7 |
Resolution [years] | 0.9 | 1.4 | 2.3 | 5.4 |
Time range [ka BP] | 0.20–1.52 | 0–1.83 | 0.08–2.02 | 0.11–2.45 |
Bu1 | δ13C | δ18O | Mg | P | Sr | Ba |
δ13C | 0.37 | 0.41 | −0.24 | −0.36 | −0.60 | |
δ18O | 0.51 | −0.27 | ||||
Mg | −0.30 | −0.28 | −0.34 | |||
P | −0.22 | |||||
Sr | 0.64 | |||||
Ba | ||||||
Bu4 | δ13C | δ18O | Mg | P | Sr | Ba |
δ13C | 0.52 | 0.47 | −0.12 | |||
δ18O | 0.54 | −0.15 | −0.34 | |||
Mg | 0.35 | 0.29 | ||||
P | −0.13 | −0.23 | ||||
Sr | 0.65 | |||||
Ba | ||||||
NG01 | δ13C | δ18O | Mg | P | Sr | Ba |
δ13C | 0.37 | −0.54 | −0.31 | −0.33 | −0.47 | |
δ18O | −0.13 | |||||
Mg | −0.18 | 0.44 | 0.36 | |||
P | ||||||
Sr | 0.51 | |||||
Ba | ||||||
TV1 | δ13C | δ18O | Mg | P | ||
δ13C | 0.38 | −0.40 | ||||
δ18O | −0.25 | |||||
Mg | −0.37 | |||||
P |
Bunker Cave | Herbstlabyrinth Cave System | |
---|---|---|
RWP | warm/humid | |
DACP | cold/dry | cold/dry |
MWP | warm/humid | warm/humid |
LIA | cold/dry | cold/dry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waltgenbach, S.; Riechelmann, D.F.C.; Spötl, C.; Jochum, K.P.; Fohlmeister, J.; Schröder-Ritzrau, A.; Scholz, D. Climate Variability in Central Europe during the Last 2500 Years Reconstructed from Four High-Resolution Multi-Proxy Speleothem Records. Geosciences 2021, 11, 166. https://doi.org/10.3390/geosciences11040166
Waltgenbach S, Riechelmann DFC, Spötl C, Jochum KP, Fohlmeister J, Schröder-Ritzrau A, Scholz D. Climate Variability in Central Europe during the Last 2500 Years Reconstructed from Four High-Resolution Multi-Proxy Speleothem Records. Geosciences. 2021; 11(4):166. https://doi.org/10.3390/geosciences11040166
Chicago/Turabian StyleWaltgenbach, Sarah, Dana F. C. Riechelmann, Christoph Spötl, Klaus P. Jochum, Jens Fohlmeister, Andrea Schröder-Ritzrau, and Denis Scholz. 2021. "Climate Variability in Central Europe during the Last 2500 Years Reconstructed from Four High-Resolution Multi-Proxy Speleothem Records" Geosciences 11, no. 4: 166. https://doi.org/10.3390/geosciences11040166
APA StyleWaltgenbach, S., Riechelmann, D. F. C., Spötl, C., Jochum, K. P., Fohlmeister, J., Schröder-Ritzrau, A., & Scholz, D. (2021). Climate Variability in Central Europe during the Last 2500 Years Reconstructed from Four High-Resolution Multi-Proxy Speleothem Records. Geosciences, 11(4), 166. https://doi.org/10.3390/geosciences11040166