Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics)
Abstract
:1. Introduction
2. Fissure Ridge Morphology and Internal Architecture
3. Fissure Ridges vs. Mounds
4. Facies
5. Growth Mechanisms
6. Banded Ca-Carbonate Veins (Banded Travertine Auct.)
7. Tectonic Settings Favoring Fissure Ridge Development
8. Advantages of Using Fissure Ridges for Neotectonic and Seismotectonic Studies
9. Concluding Remarks and Neotectonics/Seismotectonics Implications
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hancock, P.L.; Chalmers, R.M.L.; Altunel, E.; Çakir, Z. Travitonics: Using travertines in active fault studies. J. Struct. Geol. 1999, 21, 903–916. [Google Scholar] [CrossRef]
- Brogi, A.; Alcicek, M.C.; Yalciner, C.C.; Capezzuoli, E.; Liotta, D.; Meccheri, M.; Rimondi, V.; Ruggieri, G.; Gandin, A.; Boschi, C.; et al. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey). Tectonophysics 2016, 680, 211–232. [Google Scholar] [CrossRef]
- Curewitz, D.; Karson, J.A. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. J. Volcanol. Geotherm. Res. 1997, 79, 149–168. [Google Scholar] [CrossRef]
- Sibson, R.H. Fluid involvement in normal faulting. J. Geodyn. 2000, 29, 469–499. [Google Scholar] [CrossRef]
- Muir-Wood, R. Neohydrotectonics. Z. Geomorphol. Suppl. 1993, 94, 275–284. [Google Scholar]
- Chafetz, H.S.; Folk, R.L. Travertines; depositional morphology and the bacterially constructed constituents. J. Sediment. Res. 1984, 54, 289–316. [Google Scholar] [CrossRef]
- Ford, T.D.; Pedley, H.M. A review of tufa and travertine deposits of the world. Earth-Sci. Rev. 1996, 41, 117–175. [Google Scholar] [CrossRef]
- Bargar, K.E. Geology and Thermal History of Mammoth Hot Springs, Yellowstone National Park, Wyoming; US Geological Survey: Washington, DC, USA, 1978; pp. 1–55. [Google Scholar] [CrossRef]
- Altunel, E.; Hancock, P.L. Active fissuring, faulting and travertine deposition at Pamukkale (W Turkey). Z. Geomorphol. Supp. 1993, 94, 285–302. [Google Scholar]
- Altunel, E.; Hancock, P.L. Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geol. J. 1993, 28, 335–346. [Google Scholar] [CrossRef]
- Brogi, A.; Capezzuoli, E.; Alcicek, M.C.; Gandin, A. Evolution of a fault-controlled fissure-ridge type travertine deposit in the western Anatolia extensional province: The Cukurbag fissure-ridge (Pamukkale, Turkey). J. Geol. Soc. 2014, 171, 425–441. [Google Scholar] [CrossRef]
- Mádl-Szőnyi, J.; Tóth, A. Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol. J. 2015, 23, 1359–1380. [Google Scholar] [CrossRef]
- Capezzuoli, E.; Ruggieri, G.; Rimondi, V.; Brogi, A.; Liotta, D.; Alcicek, M.C.; Alcicek, H.; Bulbul, A.; Gandin, A.; Meccheri, M.; et al. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Golemezli travertine depositional system (western Anatolia, Turkey). Sediment. Geol. 2018, 364, 180–203. [Google Scholar] [CrossRef]
- Uysal, I.T.; Feng, Y.; Zhao, J.X.; Altunel, E.; Weatherley, D.; Karabacak, V.; Cengiz, O.; Golding, S.D.; Lawrence, M.G.; Collerson, K.D. U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures. Earth Planet. Sci. Lett. 2007, 257, 450–462. [Google Scholar] [CrossRef]
- Uysal, I.T.; Feng, Y.X.; Zhao, J.X.; Isik, V.; Nuriel, P.; Golding, S.D. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chem. Geol. 2009, 265, 442–454. [Google Scholar] [CrossRef]
- Frery, E.; Gratier, J.P.; Ellouz-Zimmerman, N.; Loiselet, C.; Braun, J.; Deschamps, P.; Blamart, D.; Hamelin, B.; Swennen, R. Evolution of fault permeability during episodic fluid circulation: Evidence for the effects of fluid-rock interactions from travertine studies (Utah-USA). Tectonophysics 2015, 651, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Guido, D.M.; Campbell, K.A. Diverse subaerial and sublacustrine hot spring settings of the Cerro Negro epithermal system (Jurassic, Deseado Massif), Patagonia, Argentina. J. Volcanol. Geotherm. Res. 2012, 229, 1–12. [Google Scholar] [CrossRef]
- Guido, D.M.; Campbell, K.A. Upper Jurassic travertine at El Macanudo, Argentine Patagonia: A fossil geothermal field modified by hydrothermal silicification and acid overprinting. Geol. Mag. 2018, 155, 1394–1412. [Google Scholar] [CrossRef]
- Altunel, E.; Hancock, P.L. Structural attributes of travertine-filled extensional fissures in the Pamukkale Plateau, Western Turkey. Int. Geol. Rev. 1996, 38, 768–777. [Google Scholar] [CrossRef]
- Çakir, Z. Along-strike discontinuity of active normal faults and its influence on Quaternary travertine deposition; Examples from western Turkey. Turk. J. Earth Sci. 1999, 8, 67–80. [Google Scholar]
- Guo, L.; Riding, R. Rapid facies changes in Holocene fissure ridge hot spring travertines, Rapolano Terme, Italy. Sedimentology 1999, 46, 1145–1158. [Google Scholar] [CrossRef]
- Atabey, E. The formation of fissure ridge type laminated travertine-tufa deposits microscopical characteristics and diagenesis, Kirşehir Central Anatolia. Bull. Miner. Res. Explor. 2002, 123, 59–65. [Google Scholar]
- Altunel, E.; Karabacak, V. Determination of horizontal extension from fissure-ridge travertines: A case study from the Denizli Basin, southwestern Turkey. Geodin. Acta 2005, 18, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Yanık, G.; Uz, B.; Esenli, F.; Özkul, M.; Yagiz, S.; Jones, B. An example of the fissure-ridge type travertine occurrences: The Cambazli travertine, Turgutlu, west Anatolia. In Proceedings of the 1st International Symposium on Travertine, Denizli, Turkey, 21–25 September 2005; pp. 149–153. [Google Scholar] [CrossRef] [Green Version]
- Mesci, B.L.; Gursoy, H.; Tatar, O. The evolution of travertine masses in the Sivas area (Central Turkey) and their relationships to active tectonics. Turk. J. Earth Sci. 2008, 17, 219–240. [Google Scholar]
- Brogi, A.; Capezzuoli, E. Travertine deposition and faulting: The fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int. J. Earth Sci. 2009, 98, 931–947. [Google Scholar] [CrossRef]
- Selim, H.H.; Yanik, G. Development of the Cambazli (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quat. Int. 2009, 199, 157–163. [Google Scholar] [CrossRef]
- Temiz, U.; Gokten, E.; Eikenberg, J. U/Th dating of fissure ridge travertines from the Kirsehir region (Central Anatolia Turkey): Structural relations and implications for the Neotectonic development of the Anatolian block. Geodin. Acta 2009, 22, 201–213. [Google Scholar] [CrossRef]
- Temiz, U.; Eikenberg, J. U/Th dating of the travertine deposited at transfer zone between two normal faults and their neotectonic significance: Cambazli fissure ridge travertines (the Gediz Graben-Turkey). Geodin. Acta 2011, 24, 95–105. [Google Scholar] [CrossRef]
- De Filippis, L.; Billi, A. Morphotectonics of fissure ridge travertines from geothermal areas of Mammoth Hot Springs (Wyoming) and Bridgeport (California). Tectonophysics 2012, 548, 34–48. [Google Scholar] [CrossRef]
- De Filippis, L.; Faccenna, C.; Billi, A.; Anzalone, E.; Brilli, M.; Ozkul, M.; Soligo, M.; Tuccimei, P.; Villa, I.M. Growth of fissure ridge travertines from geothermal springs of Denizli Basin, western Turkey. Geol. Soc. Am. Bull. 2012, 124, 1629–1645. [Google Scholar] [CrossRef] [Green Version]
- De Filippis, L.; Anzalone, E.; Billi, A.; Faccenna, C.; Poncia, P.P.; Sella, P. The origin and growth of a recently-active fissure ridge travertine over a seismic fault, Tivoli, Italy. Geomorphology 2013, 195, 13–26. [Google Scholar] [CrossRef]
- De Filippis, L.; Faccenna, C.; Billi, A.; Anzalone, E.; Brilli, M.; Soligo, M.; Tuccimei, P. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth-Sci. Rev. 2013, 123, 35–52. [Google Scholar] [CrossRef]
- Mesci, B.L.; Tatar, O.; Piper, J.D.A.; Gursoy, H.; Altunel, E.; Crowley, S. The efficacy of travertine as a palaeoenvironmental indicator: Palaeomagnetic study of neotectonic examples from Denizli, Turkey. Turk. J. Earth Sci. 2013, 22, 191–203. [Google Scholar] [CrossRef]
- Berardi, G.; Vignaroli, G.; Billi, A.; Rossetti, F.; Soligo, M.; Kele, S.; Baykara, M.O.; Bernasconi, S.M.; Castorina, F.; Tecce, F.; et al. Growth of a Pleistocene giant carbonate vein and nearby thermogene travertine deposits at Semproniano, southern Tuscany, Italy: Estimate of CO2 leakage. Tectonophysics 2016, 690, 219–239. [Google Scholar] [CrossRef] [Green Version]
- Matera, P.F.; Ventruti, G.; Zucchi, M.; Brogi, A.; Capezzuoli, E.; Liotta, D.; Yu, T.L.; Shen, C.C.; Huntington, K.W.; Rinyu, L.; et al. Geothermal Fluid Variation Recorded by Banded Ca-Carbonate Veins in a Fault-Related, Fissure Ridge-Type Travertine Depositional System (Iano, southern Tuscany, Italy). Geofluids 2021, 2021. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Capezzuoli, E.; Claes, H.; Alipoor, R.; Muchez, P.; Swennen, R. Substrate geology controlling different morphology, sedimentology, diagenesis and geochemistry of adjacent travertine bodies: A case study from the Sanandaj-Sirjan zone (western Iran). Sediment. Geol. 2019, 389, 127–146. [Google Scholar] [CrossRef]
- Allen, C.C.; Oehler, D.Z. A case for ancient springs in Arabia Terra, Mars. Astrobiology 2008, 8, 1093–1112. [Google Scholar] [CrossRef]
- Rossi, A.P.; Neukum, G.; Pondrelli, M.; van Gasselt, S.; Zegers, T.; Hauber, E.; Chicarro, A.; Foing, B. Large-scale spring deposits on Mars? J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Pondrelli, M.; Rossi, A.P.; Le Deit, L.; Fueten, F.; van Gasselt, S.; Glamoclija, M.; Cavalazzi, B.; Hauber, E.; Franchi, F.; Pozzobon, R. Equatorial layered deposits in Arabia Terra, Mars: Facies and process variability. Geol. Soc. Am. Bull. 2015, 127, 1064–1089. [Google Scholar] [CrossRef] [Green Version]
- Pondrelli, M.; Rossi, A.P.; Le Deit, L.; Schmidt, G.; Pozzobon, R.; Hauber, E.; Salese, F. Groundwater Control and Process Variability on the Equatorial Layered Deposits of Kotido Crater, Mars. J. Geophys. Res. Planets 2019, 124, 779–800. [Google Scholar] [CrossRef]
- Mesci, B.L.; Erkman, A.C.; Gürsoy, H.; Tatar, O. Fossil findings from the Sıcak Çermik fissure ridge-type travertines and possible hominid tracks, Sivas, Central Turkey. Geodin. Acta 2018, 30, 15–30. [Google Scholar] [CrossRef]
- Gradziński, M.; Bella, P.; Holùbek, P. Constructional caves in freshwater limestone: A review of their origin, classification, significance and global occurrence. Earth-Sci. Rev. 2018, 185, 179–201. [Google Scholar] [CrossRef]
- Brogi, A. Faults linkage, damage rocks and hydrothermal fluid circulation: Tectonic interpretation of the Rapolano Terme travertines (southern Tuscany, Italy) in the context of Northern Apennines Neogene-Quaternary extension. Eclogae Geol. Helv. 2004, 97, 307–320. [Google Scholar] [CrossRef]
- Mancini, A.; Frondini, F.; Capezzuoli, E.; Mejia, E.G.; Lezzi, G.; Matarazzi, D.; Brogi, A.; Swennen, R. Evaluating the geogenic CO2 flux from geothermal areas by analysing quaternary travertine masses. New data from western central Italy and review of previous CO2 flux data. Quat. Sci. Rev. 2019, 215, 132–143. [Google Scholar] [CrossRef]
- Jones, B.; Peng, X. Growth and development of spring towers at Shiqiang, Yunnan Province, China. Sediment. Geol. 2017, 347, 183–209. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, X.; Fang, B.; Li, T.; Tang, L. U-series dating of the travertine depositing near the Rongma hot springs in northern Tibet, China, and its paleoclimatic implication. Quat. Int. 2013, 298, 98–106. [Google Scholar] [CrossRef]
- Scheuer, G.; Schweitzer, F. Types and forms of travertine cones. Földtani Közlöny 1985, 115, 385–398, (In Hungarian with English abstract). [Google Scholar]
- Liu, Y.P.; Zhou, X.; Fang, B.; Zhou, H.Y.; Yamanaka, T. A preliminary analysis of the formation of travertine and travertine cones in the Jifei hot spring, Yunnan, China. Environ. Earth Sci. 2012, 66, 1887–1896. [Google Scholar] [CrossRef] [Green Version]
- Atlı, A. The Relationship between Travertine Formations and Regional Tectonics in Hisaralan (Sindirgi) Region. Master’s Thesis, Institute of Science and Technology, Balikesir University, Balıkesir, Turkey, 2018. (In Turkish with English Abstract). [Google Scholar]
- Özkul, M.; Gökgöz, A.; Yüksel, A.K. Travertine spring towers as rare depositional morphologies in geothermal fields: An example from the Hisaralan geothermal area (Sındırgı, Balıkesir, NW Turkey). In Proceedings of the International Earth Science Colloquium on the Aegean Region, Izmir, Turkey, 7–11 October 2019. [Google Scholar]
- Dekov, V.M.; Egueh, N.M.; Kamenov, G.D.; Bayon, G.; Lalonde, S.V.; Schmidt, M.; Liebetrau, V.; Munnik, F.; Fouquet, Y.; Tanimizu, M.; et al. Hydrothermal carbonate chimneys from a continental rift (Afar Rift): Mineralogy, geochemistry, and mode of formation. Chem. Geol. 2014, 387, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Pentecost, A. Travertine; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Jones, B.; Renaut, R.W. Chapter 4 Calcareous spring deposits in continental settings. In Developments in Sedimentology; Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 61, pp. 177–224. [Google Scholar]
- Della Porta, G. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: Comparing depositional geometry, fabric types and geochemical signature. In Microbial Carbonates in Space and Time: Implications for Global Exploration and Production; Bosence, D.W.J., Gibbons, K.A., LeHeron, D.P., Morgan, W.A., Pritchard, T., Vining, B.A., Eds.; Geological Society Special Publication: London, UK, 2015; Volume 418, pp. 17–68. [Google Scholar]
- Della Porta, G.; Capezzuoli, E.; De Bernardo, A. Facies character and depositional architecture of hydrothermal travertine slope aprons (Pleistocene, Acquasanta Terme, Central Italy). Mar. Pet. Geol. 2017, 87, 171–187. [Google Scholar] [CrossRef]
- Gandin, A.; Capezzuoli, E. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 2014, 61, 264–290. [Google Scholar] [CrossRef]
- Guo, L.; Riding, R. Hot-spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology 1998, 45, 163–180. [Google Scholar] [CrossRef]
- Alcicek, M.C.; Alcicek, H.; Altunel, E.; Arenas, C.; Bons, P.; Brogi, A.; Capezzuoli, E.; de Riese, T.; Della Porta, G.; Gandin, A.; et al. Comment on “First records of syn-diagenetic non-tectonic folding in Quaternary thermogene travertines caused by hydrothermal incremental veining” by Billi et al. Tectonophysics 700–701 (2017) 60–79. Tectonophysics 2017, 721, 491–500. [Google Scholar] [CrossRef]
- Gradzinski, M.; Wroblewski, W.; Dulinski, M.; Hercman, H. Earthquake-affected development of a travertine ridge. Sedimentology 2014, 61, 238–263. [Google Scholar] [CrossRef]
- Gradziński, M.; Wròblewki, W.; Holùbek, P. Cenozoic freshwater carbonates of the Central Carpathians (Slovakia): Facies, environments, hydrological control and depositional history. In Guidebook for Field Trip; 31st IAS Meeting of Sedimentology, Held in Kraków on 22nd–25th of June 2015; Haczewski, G., Ed.; Polish Geological Society: Krakow, Poland, 2015; Chapter B7; pp. 217–245. [Google Scholar]
- Brogi, A.; Capezzuoli, E.; Moretti, M.; Olvera-Garcia, E.; Matera, P.F.; Garduno-Monroy, V.H.; Mancini, A. Earthquake-triggered soft-sediment deformation structures (seismites) in travertine deposits. Tectonophysics 2018, 745, 349–365. [Google Scholar] [CrossRef]
- De Boever, E.; Brasier, A.T.; Foubert, A.; Kele, S. What do we really know about early diagenesis of non-marine carbonates? Sediment. Geol. 2017, 361, 25–51. [Google Scholar] [CrossRef] [Green Version]
- Faccenna, C.; Soligo, M.; Billi, A.; De Filippis, L.; Funiciello, R.; Rossetti, C.; Tuccimei, P. Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, Central Italy): Possible influence of climate and fault activity. Glob. Planet. Chang. 2008, 63, 299–308. [Google Scholar] [CrossRef]
- Karabacak, V.; Uysal, I.T.; Mutlu, H.; Ünal-İmer, E.; Dirik, R.K.; Feng, Y.-X.; Akıska, S.; Aydoğdu, İ.; Zhao, J.-X. Are U-Th dates correlated with historical records of earthquakes? Constraints from coseismic carbonate veins within the North Anatolian Fault Zone. Tectonics 2019, 38, 2431–2448. [Google Scholar] [CrossRef]
- Kim, Y.S.; Peacock, D.C.P.; Sanderson, D.J. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. J. Struct. Geol. 2003, 25, 793–812. [Google Scholar] [CrossRef]
- Brogi, A.; Capezzuoli, E.; Kele, S.; Baykara, M.O.; Shen, C.C. Key travertine tectofacies for neotectonics and palaeoseismicity reconstruction: Effects of hydrothermal overpressured fluid injection. J. Geol. Soc. 2017, 174, 679–699. [Google Scholar] [CrossRef]
- Briggs, R.O. Effects of loma prieta earthquake on surface waters in Waddell Valley. JAWRA J. Am. Water Resour. Assoc. 1991, 27, 991–999. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, C.H.; Kuo, C.H. Temporal change in groundwater level following the 1999 (M-W = 7.5) Chi-Chi earthquake, Taiwan. Geofluids 2004, 4, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 2010, 10, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Liu, T.K.; Ma, K.F.; Chang, Y.M. Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Brodsky, E.E.; Roeloffs, E.; Woodcock, D.; Gall, I.; Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res.-Solid Earth 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Elkhoury, J.E.; Brodsky, E.E.; Agnew, D.C. Seismic waves increase permeability. Nature 2006, 441, 1135–1138. [Google Scholar] [CrossRef]
- Husen, S.; Smith, R.B.; Waite, G.P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 2004, 131, 397–410. [Google Scholar] [CrossRef]
- Bonini, M. Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily, Italy. Tectonophysics 2009, 474, 723–735. [Google Scholar] [CrossRef]
- Manga, M.; Brumm, M.; Rudolph, M.L. Earthquake triggering of mud volcanoes. Mar. Pet. Geol. 2009, 26, 1785–1798. [Google Scholar] [CrossRef]
- Rudolph, M.L.; Manga, M. Mud volcano response to the 4 April 2010 El Mayor-Cucapah earthquake. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Manga, M.; Dreger, D.; Wong, A. Streamflow increase due to rupturing of hydrothermal reservoirs: Evidence from the 2003 San Simeon, California, Earthquake. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Manga, M.; Brodsky, E. Seismic triggering of eruptions in the far field: Volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 2006, 34, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Brogi, A.; Capezzuoli, E. Earthquake impact on fissure-ridge type travertine deposition. Geol. Mag. 2014, 151, 1135–1143. [Google Scholar] [CrossRef]
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Karabacak, V.; Uysal, I.T.; Unal-Imer, E.; Mutlu, H.; Zhao, J.X. U-Th age evidence from carbonate veins for episodic crustal deformation of Central Anatolian Volcanic Province. Quat. Sci. Rev. 2017, 177, 158–172. [Google Scholar] [CrossRef]
- Koban, C.G.; Schweigert, G. Microbial origin of travertine fabrics—Two examples from Southern Germany (Pleistocene stuttgart travertines and miocene riedöschingen Travertine). Facies 1993, 29, 251–263. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer Science & Business Media: Berlin, Germany, 2004. [Google Scholar]
- Temiz, U.; Gokten, Y.E.; Eikenberg, J. Strike-slip deformation and U/Th dating of travertine deposition: Examples from North Anatolian Fault Zone, Bolu and Yenicag Basins, Turkey. Quat. Int. 2013, 312, 132–140. [Google Scholar] [CrossRef]
- Ronchi, P.; Cruciani, F. Continental carbonates as a hydrocarbon reservoir, an analog case study from the travertine of Saturnia, Italy. AAPG Bull. 2015, 99, 711–734. [Google Scholar] [CrossRef]
- Brogi, A.; Liotta, D.; Ruggieri, G.; Capezzuoli, E.; Meccheri, M.; Dini, A. An overview on the characteristics of geothermal carbonate reservoirs in southern Tuscany. Ital. J. Geosci. 2016, 135, 17–29. [Google Scholar] [CrossRef]
- Yildirim, G.; Mutlu, H.; Karabacak, V.; Uysal, I.T.; Dirik, K.; Temel, A.; Yuce, G.; Zhao, J.X. Temporal changes in geochemical-isotopic systematics of the late Pleistocene Akkaya travertines (Turkey)—Implications for fluid flow circulation and seismicity. Geochemistry 2020, 80. [Google Scholar] [CrossRef]
- Karabacak, V.; Mutlu, H.; Deniz, K. Manifestations of Quaternary syn-eruptive fluid circulations on carbonate veins, Central Anatolian Volcanic Province. J. Quat. Sci. 2021, 36, 124–137. [Google Scholar] [CrossRef]
- Sibson, R.H. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 1987, 15, 701–704. [Google Scholar] [CrossRef]
- Nuriel, P.; Rosenbaum, G.; Uysal, T.I.; Zhao, J.; Golding, S.D.; Weinberger, R.; Karabacak, V.; Avni, Y. Formation of fault-related calcite precipitates and their implications for dating fault activity in the East Anatolian and Dead Sea fault zones. In Geology of the Earthquake Source: A Volume in Honour of Rick Sibson; Fagereng, A., Toy, V.G., Rowland, J.V., Eds.; Geological Society Special Publication: London, UK, 2011; Volume 359, pp. 229–248. [Google Scholar]
- Kampman, N.; Burnside, N.M.; Shipton, Z.K.; Chapman, H.J.; Nicholl, J.A.; Ellam, R.M.; Bickle, M.J. Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nat. Geosci. 2012, 5, 352–358. [Google Scholar] [CrossRef]
- Gratier, J.-P.; Frery, E.; Deschamps, P.; Røyne, A.; Renard, F.; Dysthe, D.; Ellouz-Zimmerman, N.; Hamelin, B. How travertine veins grow from top to bottom and lift the rocks above them: The effect of crystallization force. Geology 2012, 40, 1015–1018. [Google Scholar] [CrossRef]
- Rimondi, V.; Costagliola, P.; Ruggieri, G.; Benvenuti, M.; Boschi, C.; Brogi, A.; Capezzuoli, E.; Morelli, G.; Gasparon, M.; Liotta, D. Investigating fossil hydrothermal systems by means of fluid inclusions and stable isotopes in banded travertine: An example from Castelnuovo dell’Abate (southern Tuscany, Italy). Int. J. Earth Sci. 2016, 105, 659–679. [Google Scholar] [CrossRef]
- Vignaroli, G.; Berardi, G.; Billi, A.; Kele, S.; Rossetti, F.; Soligo, M.; Bernasconi, S.M. Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-temporal distribution in the Albegna basin, central Italy: Insights on Tyrrhenian margin neotectonics. Lithosphere 2016, 8, 335–358. [Google Scholar] [CrossRef] [Green Version]
- Chafetz, H.S.; Akdim, B.; Julia, R.; Reid, A. Mn- and Fe-rich black travertine shrubs: Bacterially (and nanobacterially) induced precipitates. J. Sediment. Res. 1998, 68, 404–412. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Guidry, S.A. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: Bacterial vs. abiotic precipitation. Sediment. Geol. 1999, 126, 57–74. [Google Scholar] [CrossRef]
- Vettori, S.; Cantisani, E.; Chelazzi, L.; Cuzman, O.A.; Gatta, G.D.; D’Andria, F. The dark colour of the Ploutonion at Hierapolis of Phrygiae (Turkey). Archaeometry 2019, 61, 296–308. [Google Scholar] [CrossRef]
- Pichler, T.; Veizer, J. The precipitation of aragonite from shallow-water hydrothermal fluids in a coral reef, Tutum Bay, Ambitle Island, Papua New Guinea. Chem. Geol. 2004, 207, 31–45. [Google Scholar] [CrossRef]
- Williams, R.T.; Goodwin, L.B.; Sharp, W.D.; Mozley, P.S. Reading a 400,000-year record of earthquake frequency for an intraplate fault. Proc. Natl. Acad. Sci. USA 2017, 114, 4893–4898. [Google Scholar] [CrossRef] [Green Version]
- Uysal, I.T.; Feng, Y.X.; Zhao, J.X.; Bolhar, R.; Isik, V.; Baublys, K.A.; Yago, A.; Golding, S.D. Seismic cycles recorded in late Quaternary calcite veins: Geochronological, geochemical and microstructural evidence. Earth Planet. Sci. Lett. 2011, 303, 84–96. [Google Scholar] [CrossRef]
- Lippmann, F. Sedimentary Carbonate Minerals, 07/05 ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1973. [Google Scholar]
- Folk, R.L. Interaction between bacteria, nannobacteria, and mineral precipitation in hot-springs of central Italy. Geogr. Phys. Quat. 1994, 48, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Fouke, B.W.; Farmer, J.D.; Des Marais, D.J.; Pratt, L.; Sturchio, N.C.; Burns, P.C.; Discipulo, M.K. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). J. Sediment. Res. 2000, 70, 565–585. [Google Scholar] [CrossRef]
- Lippmann, F. Versuche zur Aufklärung der Bildungsbedingungen von Calcit und Aragonit. Fortschr. Mineral. 1960, 38, 156–161. (In German) [Google Scholar]
- Flinn, D.; Pentecost, A. Travertine-cemented screes on the serpentinite seacliffs of Unst and Fetlar, Shetland. Mineral. Mag. 1995, 59, 259–265. [Google Scholar] [CrossRef]
- Malesani, P.; Vannucci, S. Precipitazione de calcite o di aragonite dale acque termominerali in relazione alla genesi e all’evoluzione dei travertine. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1975, 58, 761–776. (In Italian) [Google Scholar]
- Duchi, V. Riesame del problema della precipitazione di calcite od aragonite da soluzioni naturali. Rendiconti 1978, 34, 605–618. (In Italian) [Google Scholar]
- Rankama, K.; Sahama, T.G. Geochemistry; University of Chicago Press: Chicago, IL, USA, 1950. [Google Scholar]
- Uysal, I.T.; Unal-Imer, E.; Shulmeister, J.; Zhao, J.X.; Karabacak, V.; Feng, Y.X.; Bolhar, R. Linking CO2 degassing in active fault zones to long-term changes in water balance and surface water circulation, an example from SW Turkey. Quat. Sci. Rev. 2019, 214, 164–177. [Google Scholar] [CrossRef]
- Ricketts, J.W.; Ma, L.; Wagler, A.E.; Garcia, V.H. Global travertine deposition modulated by oscillations in climate. J. Quat. Sci. 2019. [Google Scholar] [CrossRef]
- Brogi, A.; Capezzuoli, E.; Aqué, R.; Branca, M.; Voltaggio, M. Studying travertines for neotectonics investigations: Middle–Late Pleistocene syn-tectonic travertine deposition at Serre di Rapolano (Northern Apennines, Italy). Int. J. Earth Sci. 2010, 99, 1383–1398. [Google Scholar] [CrossRef]
- Guo, L.; Riding, R. Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy. Sedimentology 1992, 39, 1067–1079. [Google Scholar] [CrossRef]
- Carrara, C.; Ciuffarella, L.; Paganin, G. Inquadramento geomorfologico e climatico-ambientale dei travertini di Rapolano Terme (SI). Ital. J. Quat. Sci. 1998, 11, 319–329. [Google Scholar]
- Pedley, M. Tufas and travertines of the Mediterranean region: A testing ground for freshwater carbonate concepts and developments. Sedimentology 2009, 56, 221–246. [Google Scholar] [CrossRef]
- Brogi, A.; Liotta, D.; Capezzuoli, E.; Matera, P.F.; Kele, S.; Soligo, M.; Tuccimei, P.; Ruggieri, G.; Yu, T.L.; Shen, C.C.; et al. Travertine deposits constraining transfer zone neotectonics in geothermal areas: An example from the inner Northern Apennines (Bagno Vignoni-Val d’Orcia area, Italy). Geothermics 2020, 85. [Google Scholar] [CrossRef]
- Altunel, E. Active Tectonics and the Evolution of Quaternary Travertines at Pamukkale, Western Turkey; University of Bristol: Bristol, UK, 1994. [Google Scholar]
- Yalçiner, C.Ç. Investigation of the subsurface geometry of fissure-ridge travertine with GPR, Pamukkale, western Turkey. J. Geophys. Eng. 2013, 10. [Google Scholar] [CrossRef]
- Brogi, A.; Alcicek, M.C.; Liotta, D.; Capezzuoli, E.; Zucchi, M.; Matera, P.F. Step-over fault zones controlling geothermal fluid-flow and travertine formation (Denizli Basin, Turkey). Geothermics 2021, 89. [Google Scholar] [CrossRef]
- Koen, V.N.; Claes, H.; Soete, J.; Foubert, A.; Öezkul, M.; Swennen, R. Fracture networks and strike-slip deformation along reactivated normal faults in Quaternary travertine deposits, Denizli Basin, western Turkey. Tectonophysics 2013, 588, 154–170. [Google Scholar] [CrossRef]
- Sağlam Selçuk, A.; Erturaç, M.K.; Üner, S.; Özsayin, E.; Pons-Branchu, E. Evolution of Camlik fissure-ridge travertines in the Baskale basin (Van, Eastern Anatolia). Geodin. Acta 2017, 29, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Temiz, U.; Savaş, F. Relationship between Akhüyük fissure ridge travertines and active tectonics: Their neotecteonic significance (Ereğli-Konya, Central Anatolia). Arab. J. Geosci. 2015, 8, 2383–2392. [Google Scholar] [CrossRef]
- Mesci, B.L. Active tectonics of the Ortakoy fissure-ridge-type travertines: Implications for the Quaternary stress state of the neotectonic structures of the Central Anatolia, Turkey. Geodin. Acta 2012, 25, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Karabacak, V.; Ring, U.; Uysal, I.T. The off-fault deformation on the North Anatolian Fault zone and assessment of slip rate from carbonate veins. Tectonophysics 2020, 795, 228633. [Google Scholar] [CrossRef]
- Mesci, B.L.; Gursoy, H.; Ghaleb, B.; Tatar, O. An extensional fracture acting as hot water source for travertine deposition on the North Anatolian Fault Zone, Turkey: The Resadiye Fissure-Ridge. Turk. Jeol. Bul. Geol. 2020, 63, 145–160. [Google Scholar] [CrossRef]
- Tekin, E.; Kayabali, K.; Ayyidiz, T.; Ileri, O. Evidence of microbiologic activity in modern travertines: Sicakcermik geothermal field, central Turkey. Carbonates Evaporites 2000, 15, 18–27. [Google Scholar] [CrossRef]
- Çolak Erol, S.; Özkul, M.; Aksoy, E.; Kele, S.; Ghaleb, B. Travertine occurrences along major strike-slip fault zones: Structural, depositional and geochemical constraints from the Eastern Anatolian Fault System (EAFS), Turkey. Geodin. Acta 2015, 27, 155–174. [Google Scholar] [CrossRef]
- Kalender, L.; Okan, O.O.; Inceoz, M.; Cetindag, B.; Yildirim, V. Geochemistry of travertine deposits in the Eastern Anatolia District: An example of the Karakocan-Yogunagac (Elazig) and Mazgirt-Dedebag (Tunceli) travertines, Turkey. Turk. J. Earth Sci. 2015, 24, 607–626. [Google Scholar] [CrossRef]
- Karabacak, V. General properties of Ihlara Valley (central Anatolia) travertines and their implications on crustal deformation. J. Eng. Archit. Fac. Eskişehir Osman. Univ. 2007, 20, 65–82. [Google Scholar] [CrossRef]
- Temiz, U.; Koçak, İ.; Öksüz, N.; Akbay, S. U-series dating and origin of Yaprakhisar (Guzelyurt-Aksaray) travertines in Central Anatolian Volcanic Province, Turkey. Arab. J. Geosci. 2018, 11. [Google Scholar] [CrossRef]
- Temiz, U.; Savas, F. U/Th Dating of the Akhuyuk Fissure Ridge Travertines in Eregli, Konya (Central Anatolia, Turkey): Their Relationship to Active Tectonics. Arab. J. Sci. Eng. 2018, 43, 3739–3749. [Google Scholar] [CrossRef]
- Rizzo, A.; Uysal, I.T.; Mutlu, H.; Unal-Imer, E.; Dirik, K.; Yuce, G.; Caracausi, A.; Misseri, M.; Temel, A.; Bayari, S.; et al. Geochemistry of fluid inclusions in travertines from Western and Northern Turkey: Inferences on the role of active faults in fluids circulation. Geochem. Geophys. Geosystems 2019. [Google Scholar] [CrossRef]
- Ricketts, J.W.; Karlstrom, K.E.; Priewisch, A.; Crossey, L.J.; Polyak, V.J.; Asmerom, Y. Quaternary extension in the Rio Grande rift at elevated strain rates recorded in travertine deposits, central New Mexico. Lithosphere 2014, 6, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Török, Á.; Claes, H.; Brogi, A.; Liotta, D.; Tóth, Á.; Mindszenty, A.; Kudó, I.; Kele, S.; Shen, C.-C.; Rudy, S. A multi–methodological approach to reconstruct the configuration of a travertine fissure ridge system: The case of the Cukor quarry (Süttő, Gerecse Hills, Hungary). Geomorphology 2019, 345. [Google Scholar] [CrossRef]
- Kele, S.; Korpás, L.; Demény, A.; Kovács-Pálffy, P.; Bajnóczi, B.; Medzihradszky, Z. Paleoenvironmental evaluation of the Tata Travertine Complex (Hungary), based on stable isotopic and petrographic studies. Acta Geol. Hung. 2006, 49, 1–31. [Google Scholar] [CrossRef]
- Henchiri, M.; Ben Ahmed, W.; Brogi, A.; Alcicek, M.C.; Benassi, R. Evolution of Pleistocene travertine depositional system from terraced slope to fissure-ridge in a mixed travertine-alluvial succession (Jebel El Mida, Gafsa, southern Tunisia). Geodin. Acta 2017, 29, 20–41. [Google Scholar] [CrossRef] [Green Version]
- Rahmani Javanmard, S.; Tutti, F.; Omidian, S.; Ranjbaran, M. Mineralogy and stable isotope geochemistry of the Ab Ask travertines in Damavand geothermal field, Northeast Tehran, Iran. Cent. Eur. Geol. 2012, 55, 187–212. [Google Scholar] [CrossRef] [Green Version]
- Rahmani Javanmard, S.; Tutti, F.; Omidian, S.; Ranjbaran, M. Mineralogy and the genesis of fissure-ridge and vein type travertine (in Ab-E Ask) based on petrographic studies and carbon and oxygen isotopes analysis. Iran. J. Geol. 2012, 6, 51–61. [Google Scholar]
- Ranjbaran, M.; Rahmani Javanmard, S. Petrography and geochemistry of Quaternary travertines in the Ab-e Ask region, Mazandaran Province- Iran. Geopersia 2019, 9, 351–365. [Google Scholar] [CrossRef]
- Mohajjel, M.; Taghipour, K. Quaternary travertine ridges in the Lake Urmia area: Active extension in NW Iran. Turk. J. Earth Sci. 2014, 23, 602–614. [Google Scholar] [CrossRef]
- Roshanak, R.; Moore, F.; Zarasvandi, A.; Keshavarzi, B.; Gratzer, R. Stable isotope geochemistry and petrography of the Qorveh-Takab travertines in northwest Iran. Austrian J. Earth Sci. 2018, 111, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Ghazi, J.M.; Olafsdottir, R.; Tongkul, F.; Ghazi, J.M. Geological Features for Geotourism in the Western Part of Sahand Volcano, NW Iran. Geoheritage 2013, 5, 23–34. [Google Scholar] [CrossRef]
- Echeveste, H. Travertines and jasperoids of the Manantial Espejo, a Jurassic hot spring environment. Macizo del Deseado, Santa Cruz Province, Argentina. Lat. Am. J. Sedimentol. Basin Anal. 2005, 12, 33–48. (In Spanish) [Google Scholar]
- Renaut, R.W.; Morley, C.K.; Jones, B.; Renaut, R.W.; Ashley, G.M. Fossil hot-spring travertine in the Turkana Basin, Northern Kenya: Structure, facies, and genesis. In Sedimentation in Continental Rifts; SEPM Society for Sedimentary Geology: Broken Arrow, OK, USA, 2002; Volume 73. [Google Scholar]
- Quade, J.; Rasbury, E.T.; Huntington, K.; Hudson, A.; Vonhof, H.; Anchukaitis, K.; Betancourt, J.; Latorre, C.; Pepper, M. Isotopic characterization of late Neogene travertine deposits at Barrancas Blancas in the eastern Atacama Desert, Chile. Chem. Geol. 2017, 466, 41–56. [Google Scholar] [CrossRef]
- Salminen, P.E.; Brasier, A.T.; Karhu, J.A.; Melezhik, V.A. Travertine precipitation in the Paleoproterozoic Kuetsjarvi Sedimentary Formation, Pechenga Greenstone Belt, NE Fennoscandian Shield. Precambrian Res. 2014, 255, 181–201. [Google Scholar] [CrossRef] [Green Version]
- Ufrecht, W.; Kluge, T. Die Travertine von Böttingen und Laichingen (Miozän, mittlere Schwäbische Alb)–Archive für ein Paläo-Thermalwassersystem. Z. Dtsch. Ges. Geowiss. 2020, 2020, 365–389, (In German with English abstract). [Google Scholar]
- Shiraishi, F.; Morikawa, A.; Kuroshima, K.; Amekawa, S.; Yu, T.L.; Shen, C.C.; Kakizaki, Y.; Kano, A.; Asada, J.; Bahniuk, A.M. Genesis and diagenesis of travertine, Futamata hot spring, Japan. Sediment. Geol. 2020, 405. [Google Scholar] [CrossRef]
- Akdim, B.; Julia, R.A. The travertine mounds of Tafilalet (Morocco): Morphology and genesis based on present-day analogues. Z. Geomorphol. 2005, 49, 373–389. [Google Scholar]
- Kampman, N.; Bickle, M.; Galy, A.; Chapman, H.; Zhou, Z.; Dubacq, B.; Wigley, M.; Warr, O.; Sirikitputtisak, T.; Ballentine, C. Short-term CO2–fluid–mineral interactions in a CO2 injection experiment, Wyoming. Mineral. Mag. 2011, 75, 1149. [Google Scholar]
- El Desouky, H.; Soete, J.; Claes, H.; Ozkul, M.; Vanhaecke, F.; Swennen, R. Novel applications of fluid inclusions and isotope geochemistry in unravelling the genesis of fossil travertine systems. Sedimentology 2015, 62, 27–56. [Google Scholar] [CrossRef]
- Gibert, R.O.; Taberner, C.; Saez, A.; Giralt, S.; Alonso, R.N.; Edwards, R.L.; Pueyo, J.J. Igneous origin of CO2 in ancient and recent hot-spring waters and travertines from the northern Argentinean Andes. J. Sediment. Res. 2009, 79, 554–567. [Google Scholar] [CrossRef]
- Janssens, N.; Capezzuoli, E.; Claes, H.; Muchez, P.; Yu, T.L.; Shen, C.C.; Ellam, R.M.; Swennen, R. Fossil travertine system and its palaeofluid provenance, migration and evolution through time: Example from the geothermal area of Acquasanta Terme (Central Italy). Sediment. Geol. 2020, 398. [Google Scholar] [CrossRef]
- Słowakiewicz, M. Fluid inclusion data in calcite from the Upper Triassic hot-spring travertines in southern Poland. J. Geochem. Explor. 2003, 78–79, 123–126. [Google Scholar] [CrossRef]
Locality | Fissure Ridge Name | References |
---|---|---|
Italy | Terme San Giovanni | [26,80] |
Semproniano | [35,95] | |
Bagni San Filippo | [110] | |
Rapolano Terme | [21,44,58,67,112,113,114,115] | |
Iano | [36] | |
Bagno Vignoni | [116] | |
Tivoli | [6,32,33] | |
Turkey | Bal (Balkayası) (Caberkamara, Gediz basin) | [20] |
Canbazlı (Ahmetli, Gediz basin) | [27,29] | |
Çukurbag (Denizli) | [9,10,11,31,33,117] | |
Çukurbag “little-sister” (Denizli) | [118] | |
Kamara (Denizli) | [2,20,33] | |
Akköy (Denizli) (Karakaya and Hanife hills) | [20,117] | |
Gölemezli (Denizli) | [13,119] | |
“Fissures at Pamukkale plateau” | [9,10,19] | |
Denizli basin | [1,14,15,23,31,101,110,120] | |
Çamlık (Başkale, Van) | [121] | |
Akhüyük (Ereğli, Konya) | [122] | |
Ortaköy (Sivas) | [123] | |
Reşadiye (Tokat) | [65,124,125] | |
Sıcak Çermik Delikkaya, Sarıkaya (Sivas) (Sivas) | [25,125,126] | |
Akkaya (Eskipazar, Karabük) | [88] | |
Kayabaşı, Kuşdili (Kırşehir) | [22,28] | |
Hacılar, Elmalı (Bingöl); Baltaşı, Karakocan(Elazığ) | [127,128] | |
Balkaya, Sarıhıdır (Avanos, Nevşehir) | [89] | |
Ziga (Ihlara, Aksaray) | [82,129] | |
Yeniçağ, Çiğdem, Üçtepeler, Çepni (Bolu) | [85] | |
Tripolis (Barbaros Quarry) | [2] | |
Yaprakhisar-Ziga | [130] | |
Eregli (Konya) | [122,131] | |
Balkaya, Sarıhıdır (Avanos, Nevşehir) | [89] | |
Bolu and Yenicag Basins | [65,85,124,132] | |
United States of America | Mammoth Hot Springs (Wyoming) and Bridgeport (California) | [8,30] |
Utah | [16,93] | |
Rio Grande | [133] | |
Hungary | Sutto | [134] |
Tata | [135] | |
Slovakia | Drevenık | [60,61] |
Tunisia | Gafsa | [136] |
Iran | Ab-e Ask | [137,138,139] |
Lake Urmia | [140] | |
Qorveh-Takab | [141] | |
Sahand Volcano | [142] | |
Sanandaj-Sirjan zone | [37] | |
Argentina | Macizo del Deseado | [143] |
Cerro Negro | [17] | |
Kenya | TurkanaBasin | [144] |
Chile | Barrancas Blancas | [145] |
Scandinavia | Pechenga Greenstone belt | [146] |
Germany | Bottingen and Laichingen | [147] |
Japan | Futamata hot spring | [148] |
Morocco | Tafilalet | [149] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brogi, A.; Capezzuoli, E.; Karabacak, V.; Alcicek, M.C.; Luo, L. Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics). Geosciences 2021, 11, 278. https://doi.org/10.3390/geosciences11070278
Brogi A, Capezzuoli E, Karabacak V, Alcicek MC, Luo L. Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics). Geosciences. 2021; 11(7):278. https://doi.org/10.3390/geosciences11070278
Chicago/Turabian StyleBrogi, Andrea, Enrico Capezzuoli, Volkan Karabacak, Mehmet Cihat Alcicek, and Lianchao Luo. 2021. "Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics)" Geosciences 11, no. 7: 278. https://doi.org/10.3390/geosciences11070278
APA StyleBrogi, A., Capezzuoli, E., Karabacak, V., Alcicek, M. C., & Luo, L. (2021). Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics). Geosciences, 11(7), 278. https://doi.org/10.3390/geosciences11070278