Geologist in the Loop: A Hybrid Intelligence Model for Identifying Geological Boundaries from Augmented Ground Penetrating Radar
Abstract
:1. Introduction
2. Geological Background and Profile of the Test Site
Depth Profiling
3. Ground-Penetrating Radar
4. Data Collection
4.1. Exploration Holes
4.2. Ground Penetrating Radar (GPR)
5. Modelling Process
5.1. Data Representation
5.2. Geologist Point Picking
5.3. Machine Learning Model
6. Results and Discussion
6.1. Location 1
6.2. Location 2
7. Limitations and Future Works
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniels, D.J. A review of GPR for landmine detection. Sens. Imaging 2006, 7, 90. [Google Scholar] [CrossRef]
- Gader, P.D.; Mystkowski, M.; Zhao, Y. Landmine detection with ground penetrating radar using hidden Markov models. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1231–1244. [Google Scholar] [CrossRef]
- Zhao, W.; Tian, G.; Forte, E.; Pipan, M.; Wang, Y.; Li, X.; Shi, Z.; Liu, H. Advances in GPR data acquisition and analysis for archaeology. Geophys. J. Int. 2015, 202, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Goodman, D.; Piro, S. GPR Remote Sensing in Archaeology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 9. [Google Scholar]
- Crocco, L.; Ferrara, V. A review on ground penetrating radar technology for the detection of buried or trapped victims. In Proceedings of the 2014 International Conference on Collaboration Technologies and Systems (CTS), Minneapolis, MN, USA, 19–23 May 2014; pp. 535–540. [Google Scholar]
- Sun, M.; Pan, J.; Le Bastard, C.; Wang, Y.; Li, J. Advanced signal processing methods for ground-penetrating radar: Applications to civil engineering. IEEE Signal Process. Mag. 2019, 36, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Benedetto, A.; Pajewski, L. Civil Engineering Applications of Ground Penetrating Radar; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zajícová, K.; Chuman, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma 2019, 343, 116–129. [Google Scholar] [CrossRef]
- Szymczyk, P.; Szymczyk, M. Classification of geological structure using ground penetrating radar and Laplace transform artificial neural networks. Neurocomputing 2015, 148, 354–362. [Google Scholar] [CrossRef]
- Kelly, C.; Gerhardt, D.; Unrau, J. Using ground penetrating radar for in-seam crack detection in potash. CSEG Rec. Novemb. 2005, 30, 28–35. [Google Scholar]
- de Menezes Travassos, J.; Menezes, P.d.T.L. GPR exploration for groundwater in a crystalline rock terrain. J. Appl. Geophys. 2004, 55, 239–248. [Google Scholar] [CrossRef]
- Lai, W.W.-L.; Derobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. Ndt E Int. 2018, 96, 58–78. [Google Scholar]
- Gizzi, F.T.; Leucci, G. Global research patterns on ground penetrating radar (GPR). Surv. Geophys. 2018, 39, 1039–1068. [Google Scholar] [CrossRef]
- Ida, N.; Meyendorf, N. Handbook of Advanced Nondestructive Evaluation; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. In Proceedings of the Summer School on Machine Learning, Canberra, Australia, 2–14 February 2003; pp. 63–71. [Google Scholar]
- Francke, J. The role of ground penetrating radar in bauxite resource evaluations. In Proceedings of the 2012 14th international conference on ground penetrating radar (GPR), Shanghai, China, 4–8 June 2012; pp. 459–463. [Google Scholar]
- Colkesen, I.; Sahin, E.K.; Kavzoglu, T. Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. J. Afr. Earth Sci. 2016, 118, 53–64. [Google Scholar] [CrossRef]
- Silversides, K.; Melkumyan, A. Multivariate Gaussian process for distinguishing geological units using measure while drilling data. In Mining goes Digital: Proceedings of the 39th International Symposium ’Application of Computers and Operations Research in the Mineral Industry’ (APCOM 2019), Wroclaw, Poland, 4–6 June 2019; CRC Press: Boca Raton, FL, USA, 2019; p. 94. [Google Scholar]
- Zheng, J.; Teng, X.; Liu, J.; Qiao, X. Convolutional Neural Networks for Water Content Classification and Prediction with Ground Penetrating Radar. IEEE Access 2019, 7, 185385–185392. [Google Scholar] [CrossRef]
- Dellermann, D.; Ebel, P.; Söllner, M.; Leimeister, J.M. Hybrid intelligence. Bus. Inf. Syst. Eng. 2019, 61, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.; Eggleton, R.; Foster, L.; Morgan, C. Landscapes and regolith of Weipa, northern Australia. Aust. J. Earth Sci. 2008, 55, S3–S16. [Google Scholar] [CrossRef]
- Grubb, P. Genesis of the Weipa bauxite deposits, NE Australia. Miner. Depos. 1971, 6, 265–274. [Google Scholar] [CrossRef]
- Taylor, G.; Eggleton, R. Genesis of pisoliths and of the Weipa Bauxite deposit, northern Australia. Aust. J. Earth Sci. 2008, 55, S87–S103. [Google Scholar] [CrossRef]
- Taylor, G.; Eggleton, R.; Foster, L.; Tilley, D.; Le Gleuher, M.; Morgan, C. Nature of the Weipa Bauxite deposit, northern Australia. Aust. J. Earth Sci. 2008, 55, S45–S70. [Google Scholar] [CrossRef]
- Gaft, M.; Reisfeld, R.; Panczer, G. Modern Luminescence Spectroscopy of Minerals and Materials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Britt, A.F. Australian Resource Reviews: Bauxite 2017. In Geoscience Australia, Canberra; Commonwealth of Australia (Geoscience Australia): Canberra, Australia, 2018; Available online: http://dx.doi.org/10.11636/9781925297720 (accessed on 17 May 2021).
- Eggleton, R.; Taylor, G.; Le Gleuher, M.; Foster, L.; Tilley, D.; Morgan, C. Regolith profile, mineralogy and geochemistry of the Weipa Bauxite, northern Australia. Aust. J. Earth Sci. 2008, 55, S17–S43. [Google Scholar] [CrossRef]
- Grimes, K. The stratigraphic sequence of old land surfaces in northern Queensland. BMR J. Aust. Geol. Geophys. 1979, 4, 33–46. [Google Scholar]
- Erten, O.; Kizil, M.S.; Topal, E.; McAndrew, L. Spatial prediction of lateral variability of a laterite-type bauxite horizon using ancillary ground-penetrating radar data. Nat. Resour. Res. 2013, 22, 207–227. [Google Scholar] [CrossRef]
- ASTM. Standard guide for using the surface ground penetrating radar method for subsurface investigation. In American Testing and Material Standards. Stand; 6432-99; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- Baker, G.S.; Jordan, T.E.; Pardy, J. An introduction to ground penetrating radar (GPR). Spec. Pap. Geol. Soc. Am. 2007, 432, 1. [Google Scholar]
- Takahashi, K.; Igel, J.; Preetz, H.; Kuroda, S. Basics and application of ground-penetrating radar as a tool for monitoring irrigation process. Problems, Perspectives and Challenges of Agricultural Water Management; Intech: Rijeka, Croatia, 2012; Volume 160. [Google Scholar]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Gokhale, B.V. Rotary Drilling and Blasting in Large Surface Mines; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Francke, J. Applications of GPR in mineral resource evaluations. In Proceedings of the XIII Internarional Conference on Ground Penetrating Radar, Lecce, Italy, 21–25 June 2010; pp. 1–5. [Google Scholar]
- Almutairi, Y.A.; ElAraby, H.M.; Ghrefat, H.A.; Alotaibi, A.M. Mapping lateritic bauxite at Az Zabirah, Saudi Arabia, using ground-penetrating radar exploration method. Arab. J. Geosci. 2019, 12, 1–13. [Google Scholar] [CrossRef]
- Francke, J. The application of image processing and analysis algorithms to complex GPR datasets. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems 2007, Denver, CO, USA, 1–5 April 2007; Society of Exploration Geophysicists: Matulsa, OK, USA; pp. 1270–1277. [Google Scholar]
- Maruddani, B.; Sandi, E. The Development of Ground Penetrating Radar (GPR) Data Processing. Int. J. Mach. Learn. Comput. 2019, 9. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, Y.; Su, Y. Method for compensating signal attenuation using stepped-frequency ground penetrating radar. Sensors 2018, 18, 1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowsland, K.A.; Thompson, J. Simulated annealing. In Handbook of Natural Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1623–1655. [Google Scholar] [CrossRef]
- Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer Science & Business Media: Dordrecht, The Netherlands, 1987; pp. 7–15. [Google Scholar]
- Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436. [Google Scholar]
- Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 116. [Google Scholar]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Liu, Y.; Sen, M.K. An implicit staggered-grid finite-difference method for seismic modelling. Geophys. J. Int. 2009, 179, 459–474. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, M.; Żelaźniewicz, A.; Grad, M.; Guterch, A.; Janik, T.; Group, C.W. Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland—CELEBRATION 2000 experiment, profile CEL02. Tectonophysics 2005, 401, 55–77. [Google Scholar] [CrossRef]
- Cassidy, N.J.; Jol, H. Ground penetrating radar data processing, modelling and analysis. Ground Penetrating Radar Theory Appl. 2009, 141–176. [Google Scholar] [CrossRef]
- Giannopoulos, A. Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 2005, 19, 755–762. [Google Scholar] [CrossRef]
- Lee, E.Y.; Novotny, J.; Wagreich, M. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization. Comput. Geosci. 2016, 91, 119–127. [Google Scholar] [CrossRef]
- Koppe, V.C.; Costa, J.F.C.L.; de Lemos Peroni, R.; Koppe, J.C. Choosing between two kind of sampling patterns using geostatistical simulation: Regularly spaced or at high uncertainty locations? Nat. Resour. Res. 2011, 20, 131–142. [Google Scholar] [CrossRef]
- Olierook, H.K.; Scalzo, R.; Kohn, D.; Chandra, R.; Farahbakhsh, E.; Clark, C.; Reddy, S.M.; Müller, R.D. Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models. Geosci. Front. 2021, 12, 479–493. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ball, A.; O’Connor, L. Geologist in the Loop: A Hybrid Intelligence Model for Identifying Geological Boundaries from Augmented Ground Penetrating Radar. Geosciences 2021, 11, 284. https://doi.org/10.3390/geosciences11070284
Ball A, O’Connor L. Geologist in the Loop: A Hybrid Intelligence Model for Identifying Geological Boundaries from Augmented Ground Penetrating Radar. Geosciences. 2021; 11(7):284. https://doi.org/10.3390/geosciences11070284
Chicago/Turabian StyleBall, Adrian, and Louisa O’Connor. 2021. "Geologist in the Loop: A Hybrid Intelligence Model for Identifying Geological Boundaries from Augmented Ground Penetrating Radar" Geosciences 11, no. 7: 284. https://doi.org/10.3390/geosciences11070284
APA StyleBall, A., & O’Connor, L. (2021). Geologist in the Loop: A Hybrid Intelligence Model for Identifying Geological Boundaries from Augmented Ground Penetrating Radar. Geosciences, 11(7), 284. https://doi.org/10.3390/geosciences11070284