Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils with Varying Silt Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Properties
2.2. Consolidated Isotropic Undrained Triaxial Tests
2.3. Unconfined Compressive Strength Tests
2.4. Scanning Electron Microscope (SEM) Tests
3. Results and Discussion
3.1. Consolidated Undrained Triaxial Tests
3.1.1. Stress-Strain Behaviour
3.1.2. Critical State Behaviour
3.2. Unconfined Compressive Strength of Stabilised Soils
3.3. Microstructure of Stabilised Soils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. A genetic programming predictive model for parametric study of factors affecting strength of geopolymers. RSC Adv. 2015, 5, 85630–85639. [Google Scholar] [CrossRef]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. The Effect of Different Na2O and K2O Ratios of Alkali Activator on Compressive Strength of Fly Ash Based-geopolymer. Constr. Build. Mater. 2016, 106, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. Strength Development of Soil-Fly Ash Geopolymer: Assessment of Soil, Fly Ash, Alkali Activators, and Water. J. Mater. Civ. Eng. 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A.; Kueh, S.M. Effects of Significant Variables on Compressive Strength of Soil-Fly Ash Geopolymer: Variable Analytical Approach Based on Neural Networks and Genetic Programming. J. Mater. Civ. Eng. 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. Suitability of Sarawak and Gladstone Fly Ash to Produce Geopolymers: A Physical, Chemical, Mechanical, Mineralogical and Microstructural Analysis. Ceram. Int. 2016, 42, 9613–9620. [Google Scholar] [CrossRef] [Green Version]
- Ngu, L.H.; Song, J.W.; Hashim, S.S.; Ong, D.E.L. Lab-scale atmospheric CO2 absorption for calcium carbonate precipitation in sand Greenhouse Gases. Sci. Technol. 2019, 9, 519–528. [Google Scholar]
- Mehdizadeh, A.; Disfani, M.M.; Evans, R.; Arulrajah, A.; Ong, D.E.L. Discussion of ‘Development of an Internal Camera-Based Volume Determination System for Triaxial Testing’ by S. E. Salazar, A. Barnes, and R. A. Coffman. Geotech. Test. J. 2016, 39, 165–168. [Google Scholar]
- Mehdizadeh, A.; Disfani, M.M.; Evans, R.; Arulrajah, A.; Ong, D.E.L. Mechanical Consequences of Suffusion on Undrained Behaviour of a Gap-graded Cohesionless Soil—An Experimental Approach. Geotech. Test. J. 2017, 40, 1026–1042. [Google Scholar] [CrossRef] [Green Version]
- Ong, D.E.L.; Yang, D.Q.; Phang, S.K. Comparison of finite element modelling of a deep excavation using SAGE-CRISP and PLAXIS. In Proceedings of the International Conference on Deep Excavations, Singapore, 28–30 June 2006; pp. 51–64. [Google Scholar]
- Pham, V.N.; Ong, D.E.L.; Oh, O. Prediction of unconfined compressive strength of cement-stabilized sandy soil in Vietnam using artificial neural networks (ANNs) model. Int. J. Geotech. Eng. 2021. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Senian, N.; Li, P.Y.; Hei, N.L.; Ong, D.E.L.; Ginjom, I.R.H.; Nissom, P.M. Ureolytic bacteria isolated from Sarawak limestone caves show high urease enzyme activity comparable to that of Sporosarcina pasteurii (DSM33). Malays. J. Microbiol. 2016, 12, 463–470. [Google Scholar]
- Omoregie, A.I.; Khoshdelnezamiha, G.; Senian, N.; Ong, D.E.L.; Nissom, P.M. Experimental Optimisation of Various Cultural Conditions on Urease Activity for Isolated Sporosarcina Pasteurii Strains and Evaluation of Their Biocement Potentials. Ecol. Eng. 2017, 109, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Omoregie, A.I.; Ngu, L.H.; Ong, D.E.L.; Nissom, P.M. Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatal. Agric. Biotechnol. 2019, 17, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Omoregie, A.I.; Palombo, E.A.; Ong, D.E.L.; Nissom, P.M. Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method. Constr. Build. Mater. 2019, 228, 116828. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Ong, D.E.L.; Nissom, P.M. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Lett. Appl. Microbiol. 2019, 68, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Omoregie, A.I.; Palombo, E.A.; Ong, D.E.L.; Nissom, P.M. A feasible scale-up production of Sporosarcina pasteurii using custom-built stirred tank reactor for in-situ soil biocementation. Biocatal. Agric. Biotechnol. 2020, 24, 101544. [Google Scholar] [CrossRef]
- Ong, D.E.L.; Sim, Y.S.; Leung, C.F. Performance of Field and Numerical Back-Analysis of Floating Stone Columns in Soft Clay Considering the Influence of Dilatancy. Int. J. Geomech. 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Ong, D.E.L.; Leung, C.F.; Chow, Y.K. Time-dependent pile behaviour due to excavation-induced soil movement in clay. In Proceedings of the 12th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Boston, MA, USA, 22–26 June 2003; Massachusetts Institute of Technology: Cambridge, MA, USA, 2003; Volume 2, pp. 2035–2040. [Google Scholar]
- Ong, D.E.L.; Leung, C.F.; Chow, Y.K. Piles subject to excavation-induced soil movement in clay. In Proceedings of the 13th European Conference on Soil Mechanics and Geotechnical Engineering, Prague, Czech Republic, 1 January 2003; Volume 2, pp. 777–782. [Google Scholar]
- Chong, E.E.M.; Ong, D.E.L. Data-Driven Field Observational Method of a Contiguous Bored Pile Wall System Affected by Accidental Groundwater Drawdown. Geosciences 2020, 10, 268. [Google Scholar] [CrossRef]
- Ong, D.E.L.; Choo, C.S. Sustainable Bored Pile Construction in Erratic Phyllite. In Proceedings of the ASEAN-Australian Engineering Congress, Kuching, Malaysia, 14–16 July 2011; pp. 30–45, ISBN 78-967-10485. [Google Scholar]
- Ong, D.E.L.; Leung, C.F.; Chow, Y.K.; Ng, T.G. Severe Damage of a Pile Group due to Slope Failure. J. Geotech. Geoenviron. Eng. 2015, 141. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, Y.; Bolton, M.; Ong, D.E.L.; Oh, E. Effect of Cement and Bentonite Mixture on The Consolidation Behavior of Soft Estuarine Soils. Int. J. Geomate 2020, 18, 49–54. [Google Scholar] [CrossRef]
- Sun, J.; Oh, E.; Ong, D.E.L. Influence of Degree of Saturation (DOS) on Dynamic Behavior of Unbound Granular Materials. Geosciences 2021, 11, 89. [Google Scholar] [CrossRef]
- Peerun, M.I.; Ong, D.E.L.; Choo, C.S. Interpretation of geomaterial behavior during shearing aided by PIV technology. J. Mater. Civ. Eng. 2019, 31. [Google Scholar] [CrossRef] [Green Version]
- Peerun, M.I.; Ong, D.E.L.; Choo, C.S.; Cheng, W.C. Effect of interparticle behavior on the development of soil arching in soil-structure interaction. Tunn. Undergr. Space Technol. 2020, 106, 103610. [Google Scholar] [CrossRef]
- Cheng, W.C.; Li, G.; Ong, D.E.L.; Chen, S.L.; Ni, J.C. Modelling liner forces response to very close-proximity tunnelling in soft alluvial deposits. Tunn. Undergr. Space Technol. 2020, 103, 103455. [Google Scholar] [CrossRef]
- Cheng, W.C.; Li, G.; Ong, D.E.L. Lubrication characteristics of pipejacking in soft alluvial deposit. Geotech. Asp. Undergr. Constr. Soft Ground 2021. [Google Scholar] [CrossRef]
- Kang, G.; Tsuchida, T.; Athapaththu, A.M.R.G. Strength mobilization of cement-treated dredged clay during the early stages of curing. Soils Found. 2015, 55, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, Y.; Xiao, H.; Lee, F.H. Determination of representative strength of deep cement-mixed clay from core strength data. Geotechnique 2017, 67, 350–364. [Google Scholar] [CrossRef]
- Yao, K.; Pan, Y.; Jia, L.; Yi, J.T.; Hu, J.; Wu, C. Strength evaluation of marine clay stabilized by cementitious binder. Mar. Georesour. Geotechnol. 2020, 38, 730–743. [Google Scholar] [CrossRef]
- Oh, E. Geotechnical and Ground Improvement Aspects of Motorway Embankments in Soft Clay. Ph.D. Thesis, Griffith University, Southeast Queensland, Australia, 2007. Available online: http://hdl.handle.net/10072/367085 (accessed on 14 May 2021).
- Wei, X.; Yang, J. A critical state constitutive model for clean and silty sand. Acta Geotech. 2019, 14, 329–345. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Yin, J.H. Stress-strain strength characteristics of a marine soil with different clay contents. Geotech. Test. J. 2002, 25, 459–462. [Google Scholar]
- Wong, S.T.; Ong, D.E.L.; Robinson, R.G. Behaviour of MH silts with varying plasticity indices. Geotech. Res. 2017, 4, 118–135. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, A. Effect of preparation methods on strength and microstructural properties of cemented marine clay. Constr. Build. Mater. 2019, 227, 116690. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, D.W.; Liu, Z.B.; Deng, Y.F. Assessment of unconfined compressive strength of cement stabilized marine clay. Mar. Georesour. Geotechnol. 2019, 26, 19–35. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Rachan, R.; Suddeepong, A. Assessment of strength development in blended cement admixed Bangkok clay. Constr. Build. Mater. 2011, 25, 1521–1531. [Google Scholar] [CrossRef]
- Ma, C.; Chen, L.; Chen, B. Analysis of strength development in soft clay stabilized with cement-based stabilizer. Constr. Build. Mater. 2014, 71, 354–362. [Google Scholar]
- Kwan, P.S.; Bouazza, A.; Fletcher, P.; Ranjith, P.G.; Oh, E.Y.; Shuttlewood, K.; Bolton, M. Behaviour of cement treated Melbourne and Southeast Queensland soft clays in deep stabilization works. In Proceedings of the International Conference Deep Mixing Best Practice and Recent Advances, Stockholm, Sweden, 23–25 May 2005. [Google Scholar]
- Uddin, K.; Balasubramaniam, A.S.; Bergado, D.T. Engineering behavior of cement-treated Bangkok soft clay. Geotech. Eng. 1997, 28, 89–119. [Google Scholar]
- Kang, G.; Tsuchida, T.; Athapaththu, A.M.R.G. Engineering behavior of cement-treated marine dredged clay during early and later stages of curing. Eng. Geol. 2016, 209, 163–174. [Google Scholar] [CrossRef]
- Kang, G.O.; Tsuchida, T.; Kim, Y.S. Strength and stiffness of cement-treated marine dredged clay at various curing stages. Constr. Build. Mater. 2017, 132, 71–84. [Google Scholar] [CrossRef]
- Lee, F.H.; Lee, Y.; Chew, S.H.; Yong, K.Y. Strength and modulus of marine clay-cement mixes. J. Geotech. Geoenviron. Eng. 2005, 131, 178–186. [Google Scholar] [CrossRef]
- Jauberthie, R.; Rendell, F.; Rangeard, D.; Molez, L. Stabilisation of estuarine silt with lime and/or cement. Appl. Clay Sci. 2010, 50, 395–400. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z. Microscopic Mechanism of Cement Improving the Strength of Lime-Fly Ash-Stabilized Yellow River Alluvial Silt. Adv. Civ. Eng. 2020, 2020, 9649280. [Google Scholar]
- Lo, S.R.; Wardani, S.P. Strength and dilatancy of a silt stabilized by a cement and fly ash mixture. Can. Geotech. J. 2002, 39, 77–89. [Google Scholar] [CrossRef]
- Lehane, B.M. Vertically loaded shallow foundation on soft clayey silt. Proc. Inst. Civ. Eng. Geotech. Eng. 2003, 156, 17–26. [Google Scholar] [CrossRef]
- Kelln, C.; Sharma, J.; Hughes, D.; Graham, J. Finite element analysis of an embankment on a soft estuarine deposit using an elastic–viscoplastic soil model. Can. Geotech. J. 2009, 46, 357–368. [Google Scholar] [CrossRef]
- Ferreira, P.M.V.; Bica, A.V.D. Problems in identifying the effects of structure and critical state in a soil with a transitional behaviour. Géotechnique 2006, 56, 445–454. [Google Scholar] [CrossRef]
- Nocilla, A.; Coop, M.R.; Colleselli, F. The mechanics of an Italian silt: An example of ‘transitional’ behaviour. Géotechnique 2006, 56, 261–271. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Miura, N.; Nagaraj, T.S. Clay–water∕cement ratio identity for cement admixed soft clays. J. Geotech. Geoenviron. Eng. 2005, 131, 187–192. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, L.; Liu, S.; Deng, Y. Experimental Investigation of Unconfined Compression Strength and Stiffness of Cement Treated Salt-Rich Clay. Mar. Georesour. Geotechnol. 2013, 31, 360–374. [Google Scholar]
- Yun, J.M.; Song, Y.S.; Lee, J.H.; Kim, T.H. Strength Characteristics of the Cement-Stabilized Surface Layer in Dredged and Reclaimed Marine Clay, Korea. Mar. Georesour. Geotechnol. 2006, 24, 29–45. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, A.; Deng, Y.; Cui, Y.; Yu, Z.; Yu, C. Strength performance of cement/slag-based stabilized soft clays. Constr. Build. Mater. 2019, 211, 909–918. [Google Scholar] [CrossRef]
- Terzaghi, K. Erdbaumechanik Auf Bodenphysikalischer Grundlage; Tokiwa Shoin: Chiyoda, Tokyo, 1925. [Google Scholar]
- Zhang, X.; Zhu, Z. Study on the Relationship between Microstructure and Strength of Stabilized/Solidified Silt. Int. J. Struct. Civ. Eng. Res. 2018, 7, 65–71. [Google Scholar] [CrossRef]
- Wijeyakulasuriya, V.; Hobbs, G.; Brandon, A. Some experiences with performance monitoring of embankments on soft clays. In Proceedings of the 8th Australia New Zealand Conference on Geomechanics, Hobart, Australia, 1 January 1999; Institution of Engineers Australia: Barton, Australia, 1999; pp. 783–788. [Google Scholar]
- Yin, J.; Miao, Y.H. An oedometer-based method for preparing reconstituted clay samples. Appl. Mech. Mater. 2015, 719, 193–196. [Google Scholar] [CrossRef]
- Allman, M.A.; Atkinson, J.H. Mechanical properties of reconstituted Bothkennar soil. Géotechnique 1992, 42, 289–301. [Google Scholar] [CrossRef]
- Burland, J.B. On the compressibility and shear strength of natural clays. Géotechnique 1990, 40, 329–378. [Google Scholar] [CrossRef]
- Karstunen, M.; Koskinen, M. Plastic anisotropy of soft reconstituted clays. Can. Geotech. J. 2008, 45, 314–328. [Google Scholar] [CrossRef] [Green Version]
- Hyodo, M.; Tanimizu, H.; Yasufuku, N.; Murata, H. Undrained cyclic and monotonic triaxial behaviour of saturated loose sand. Soils Found. 1994, 34, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Head, K.H. Manual of Soil Laboratory Testing; Effective stress tests; John Wiley & Sons: Singapore, 1980; Volume 3. [Google Scholar]
- ASTM. D2166/D2166M—16 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil; ASTM: Conshohocken, PA, USA, 2000. [Google Scholar]
- Wang, S.; Luna, R. Monotonic behavior of Mississippi River Valley silt in triaxial compression. J. Geotech. Geoenviron. Eng. 2012, 138, 516–525. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Rachan, R.; Chinkulkijniwat, A.; Raksachon, Y.; Suddeepong, A. Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Constr. Build. Mater. 2010, 24, 2011–2021. [Google Scholar] [CrossRef]
- Bolton, M. Soil Improvement Using Optimised Cementitous Materilas Design. Ph.D. Thesis, Griffith University, Southeast Queensland, Australia, 2014. Available online: http://hdl.handle.net/10072/365243 (accessed on 12 May 2021).
- Kamruzzaman, A.H.M.; Chew, S.H.; Lee, F.H. Microstructure of cement-treated Singapore marine clay. Proc. Inst. Civ. Eng. Ground Improv. 2006, 10, 113–123. [Google Scholar] [CrossRef]
Soils | Clay (%) | Silt (%) | Sand (%) | LL (%) | PL (%) | PI (%) |
---|---|---|---|---|---|---|
Port of Brisbane soft soil | 79.8 | 18.2 | 2.0 | 91.6 | 36.7 | 54.9 |
Kaolin soil | 19.5 | 79.6 | 0.9 | 59.2 | 48.1 | 11.1 |
Oxide | PoB Soft Soil (%) | Kaolin Soil (%) | Cement (%) |
---|---|---|---|
LOI | 14.84 | 11.81 | 2.42 |
Fe2O3 | 8.48 | 1.38 | 3.20 |
CaO | 1.44 | - | 65.21 |
K2O | 1.61 | 4.02 | 0.45 |
SO3 | 1.47 | 0.02 | 2.98 |
SiO2 | 48.00 | 49.34 | 19.85 |
Al2O3 | 17.12 | 32.71 | 5.06 |
MgO | 2.10 | 1.07 | 1.09 |
Na2O | 3.36 | 0.04 | 0.22 |
Testing No | Percentage of Port of Brisbane Soft Soil | Percentage of Kaolin Soil | Confining Pressure (kPa) |
---|---|---|---|
S1—50 | 100% | 0% | 50 |
S1—100 | 100% | 0% | 100 |
S1—200 | 100% | 0% | 200 |
S2—50 | 75% | 25% | 50 |
S2—100 | 75% | 25% | 100 |
S2—200 | 75% | 25% | 200 |
S3—50 | 50% | 50% | 50 |
S3—100 | 50% | 50% | 100 |
S3—200 | 50% | 50% | 200 |
S4—50 | 25% | 75% | 50 |
S4—100 | 25% | 75% | 100 |
S4—200 | 25% | 75% | 200 |
S5—50 | 0% | 100% | 50 |
S5—100 | 0% | 100% | 100 |
S5—200 | 0% | 100% | 200 |
Soil Groups | Clay Content (%) | Silt Content (%) | M | Friction Angle ° | Cohesion (kPa) |
---|---|---|---|---|---|
S1 | 79.80 | 18.00 | 1.01 | 25.43 | 5.12 |
S2 | 64.73 | 33.41 | 1.05 | 26.54 | 4.58 |
S3 | 49.65 | 48.81 | 1.09 | 27.53 | 2.52 |
S4 | 34.58 | 64.22 | 1.12 | 28.25 | 1.87 |
S5 | 19.50 | 79.62 | 1.14 | 28.80 | 1.86 |
Soil Groups | Silt Content (%) | λ (NCL) | λ (CSL) | λ (NCL)/λ (CSL) |
---|---|---|---|---|
S1 | 18.20 | 0.14 | 0.14 | 1.02 |
S2 | 33.41 | 0.15 | 0.15 | 0.99 |
S3 | 48.81 | 0.13 | 0.13 | 0.97 |
S4 | 64.22 | 0.16 | 0.18 | 0.90 |
S5 | 79.62 | 0.15 | 0.17 | 0.88 |
Soil Group | Port of Brisbane (PoB) Soft Soil | Kaolin Soil | Cement Content (%) |
---|---|---|---|
S1 | 100% | 0% | 10, 15, 20, 25, 30 |
S2 | 75% | 25% | 10, 15, 20, 25, 30 |
S3 | 50% | 50% | 10, 15, 20, 25, 30 |
S4 | 25% | 75% | 10, 15, 20, 25, 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Z.; Oh, E.; Ong, D.E.L. Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils with Varying Silt Contents. Geosciences 2021, 11, 302. https://doi.org/10.3390/geosciences11080302
Liu Y, Liu Z, Oh E, Ong DEL. Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils with Varying Silt Contents. Geosciences. 2021; 11(8):302. https://doi.org/10.3390/geosciences11080302
Chicago/Turabian StyleLiu, Yaxu, Zhuang Liu, Erwin Oh, and Dominic Ek Leong Ong. 2021. "Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils with Varying Silt Contents" Geosciences 11, no. 8: 302. https://doi.org/10.3390/geosciences11080302
APA StyleLiu, Y., Liu, Z., Oh, E., & Ong, D. E. L. (2021). Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils with Varying Silt Contents. Geosciences, 11(8), 302. https://doi.org/10.3390/geosciences11080302