Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Sources
2.3. Methods of Data Analysis
2.3.1. Data Processing
2.3.2. Land Use and Land Cover Classification and Changes between 2000 and 2020
2.3.3. Efficiency Analysis of Built-Up Areas Use in Relations to Population
3. Results and Discussion
3.1. Assessment of Land Use and Land Cover Changes in Opole between 2000 to 2020
3.2. Spatial Expansion of the Built-Up Areas in Opole between 2000–2020
3.3. Changes in the Land Consumption and Population Dynamics in Opole between 2000–2020
4. Summary and Conclusions
- The built-up area in Opole has increased by approx. 880 ha in the last 20 years. The percentage of built-up area in relation to the total area of the city increased from 15.4% in 2000 to 21.3% in 2020. Built-up areas increased their area in the city’s spatial structure, mainly at the expense of agricultural areas. The highest intensity of spatial development of the city occurred in 2010–2015, when the built-up area increased by over 300 ha.
- Sentinel images have a higher spatial resolution. Therefore, additional other built-up landmarks, such as roads, traffic routes, and less dense buildings, were detected. Therefore, it can be concluded that publicly available Sentinel and Landsat satellite imagery can be used for LULC spatial analysis at the scale of large cities. Although Landsat images do not detect smaller objects so precisely, they successfully show the general trend and directions of changes in the LULC structure.
- The dynamics of changes in the built-up area revealed that areas away from the city centre expand faster than those around it. The fastest rate of change of built-up area in the last 20 years took place in the zone 3–6 km from Opole city centre, where on average every five years an increase of built-up area by 11.70% was recorded due to the development of multi-family residential estates. A slightly lower growth rate, i.e., 10.43%, was observed in the zone above 6 km from the centre of Opole, where the zone is gradually losing its agricultural character and transforming into dense, mono-functional estates with single-family housing. The spatial and temporal pattern of urban sprawl was revealed by measuring the distance of new urban growth areas from the city centre.
- The largest population increase over 20 years has been in district V, which is in the eastern part of the city. Alternatively, the highest population outflow and significant decrease of population density was recorded in district IV, which is one of the biggest housing districts in Opole. Taking into account the decreasing population between 2000 and 2020 and the decrease in population density in the districts located in the city centre and in the largest residential districts, it can be concluded that a significant part of the population has settled in the peripheral districts or suburban areas or has moved to another city.
- The average growth rate of built-up area in each successive 5-year study period as compared to the previous one was 8.3%. The average rate of population decline in each successive analysed 5-year period was about 2%. Despite the progressing depopulation process in the analysed periods of time, an increase in built-up areas was recorded, which confirms the ongoing demographic suburbanisation process in Opole.
- Ratio of Land Consumption Rate to Population Growth Rate (LCRPGR), which is a global measure of SDG 3.11.3, had a negative value in every analysed time period, indicating inefficient land use during the urbanisation process. Opole is a city with an uncoordinated development because the relationship between land use and population growth is not synchronised. Also, the negative values of Land Use Efficiency (LUE) obtained for particular research periods reflected the change rate of the built-up area per capita and revealed that the expansion of urban areas in Opole was accompanied by a decline in population.
- There is a need for integrated approaches in urban policy and sustainable development strategies of Opole, taking into account the spatial and temporal scale of changes in processes determining the development of the city. In Opole, it is necessary to implement solutions preventing demographic suburbanisation as a result of progressing depopulation and uncontrolled development of built-up areas. For this purpose, monitoring and detailed analyses of LULC changes using GIS technology and publicly available and up-to-date remote sensing data in relation to population are necessary. Poland is currently working on a new spatial management reform, which is intended to respond to the problems of suburbanisation and spatial chaos faced by modern cities. Therefore, these phenomena have to be monitored on a larger scale in order to identify the areas being at risk the most and implement the programme measures.
- The applied survey procedure is universal and can be used by local authorities and planners for any administrative units due to general availability of historical Landsat and Sentinel satellite images.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sapena, M.; Ruiz, L.A. Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization. Comput. Environ. Urban Syst. 2019, 73, 27–39. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Hahs, A.K.; McDonnell, M.J.; McCarthy, M.A.; Vesk, P.A.; Corlett, R.T.; Norton, B.A.; Clemants, S.E.; Duncan, R.P.; Thompson, K.; Schwartz, M.W.; et al. A global synthesis of plant extinction rates in urban areas. Ecol. Lett. 2009, 12, 1165–1173. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, B.H.; Sanna, D.D. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 329–343. [Google Scholar] [CrossRef]
- Yu, Y.; Tong, Y.; Tang, W.; Yuan, Y.; Chen, Y. Identifying Spatiotemporal Interactions between Urbanization and Eco-Environment in the Urban Agglomeration in the Middle Reaches of the Yangtze River, China. Sustainability 2018, 10, 290. [Google Scholar] [CrossRef] [Green Version]
- Kiełkowska, J.; Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S.; van Hoof, J. Urban Adaptation to Climate Change Plans and Policies—The Conceptual Framework of a Methodological Approach. J. Ecol. Eng. 2018, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, W.; Qian, Y.; Yu, W. Urban expansion and local land-cover change both significantly contribute to urban warming, but their relative importance changes over time. Landsc. Ecol. 2017, 32, 763–780. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE 2019, 14, e0208949. [Google Scholar] [CrossRef] [PubMed]
- Mitz, E.; Kremer, P.; Larondelle, N.; Stewart, J.D. Structure of Urban Landscape and Surface Temperature: A Case Study in Philadelphia, PA. Front. Environ. Sci. 2021, 9, 592716. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.Y.; Du, M.; Zhang, W.; Huang, X.; Zhang, Y.Q.; Yang, Y.Y.; Zhang, J.M.; Deng, S.H.; Shen, F.; et al. Identifying the major air pollutants base on factor and cluster analysis, a case study in 74 Chinese cities. Atmos. Environ. 2016, 144, 37–46. [Google Scholar] [CrossRef]
- Toure, S.I.; Stow, D.A.; Shih, H.-c.; Weeks, J.; Lopez-Carr, D. Land cover and land-use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sens. Environ. 2018, 210, 259–268. [Google Scholar] [CrossRef]
- Weng, Y.C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Triantakonstantis, D.; Stathakis, D. Examining urban sprawl in Europe using spatial metrics. Geocarto Int. 2015, 30, 1092–1112. [Google Scholar] [CrossRef]
- Słodczyk, J. Formation of Urban Spaces around the World a History of Planning and Building of Cities; Opole University Publishing House: Opole, Poland, 2020. [Google Scholar]
- Larondelle, N.; Hamstead, Z.A.; Kremer, P.; Haase, D.; McPhearson, T. Applying a novel urban structure classification to compare the relationships of urban structure and surface temperature in Berlin and New York City. Appl. Geogr. 2014, 53, 427–437. [Google Scholar] [CrossRef]
- Mosammam, H.M.; Nia, J.T.; Khani, H.; Teymouri, A.; Kazemi, M. Monitoring land-use change and measuring urban sprawl based on its spatial forms the case of Qom city. Egypt J. Remote Sens. Space Sci. 2017, 20, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Al Jarah, S.H.; Zhou, B.; Abdullah, R.J.; Lu, Y.; Yu, W. Urbanization and urban sprawl issues in city structure: A case of the Sulaymaniah Iraqi Kurdistan Region. Sustainability 2019, 11, 485. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Urban Europe Statistics on Cities, Towns and Suburbs; European Commission: Luxembourg, 2016. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019; Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 20 March 2021).
- Melchiorri, M.; Florczyk, A.J.; Freire, S.; Schiavina, M.; Pesaresi, M.; Kemper, T. Unveiling 25 Years of Planetary Urbanization with Remote Sensing: Perspectives from the Global Human Settlement Layer. Remote Sens. 2018, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, I.R.; Kaloop, M.R. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [Google Scholar] [CrossRef] [Green Version]
- European Environmental Agency (EEA). Urban Sprawl in Europe Joint EEA-FOEN Report; European Environmental Agency—Swiss Federal Office for the Environment: Ittigen, Switzerland, 2016; Available online: https://www.eea.europa.eu/publications/urban-sprawl-in-europe (accessed on 20 March 2021).
- Gerten, C.; Fina, S.; Rusche, K. The Sprawling Planet: Simplifying the Measurement of Global Urbanization Trends. Front. Environ. Sci. 2019, 7, 140. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Rienow, A.; Oldenburg, C.; Thonfeld, F.; Trampnau, B.; Sticksel, S.; Jürgens, C. Monitoring of Urban Sprawl and Densification Processes in Western Germany in the Light of SDG Indicator 11.3.1 Based on an Automated Retrospective Classification Approach. Remote Sens. 2021, 13, 1694. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progr. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Reckien, D.; Karecha, J. Sprawl in European Cities: The Comparative Background. In Urban Sprawl in Europe—Landscapes, Land-UseChange & Policy; Couch, C., Leontidou, L., Petschel-Held, G., Eds.; Blackwell Publishing (RICS Research): Oxford, UK, 2007; pp. 39–67. [Google Scholar] [CrossRef]
- Frenkel, A.; Ashkenazi, M. Measuring Urban Sprawl. How Can We Deal with it? Environ. Plan. B 2008, 35, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Śleszyński, P. Społeczno-ekonomiczne skutki chaosu przestrzennego dla osadnictwa i struktury funkcjonalnej terenów. In Koszty Chaosu Przestrzennego; Kowalewski, A., Markowski, T., Śleszyński, P., Eds.; Studia KPZK PAN: Warszawa, Poland, 2018; Volume 182, pp. 29–80. Available online: https://www.czasopisma.pan.pl/dlibra/publication/123405/edition/107634/content (accessed on 21 March 2021).
- Gibas, P. (Ed.) Analiza Zmian i Prognoza Przyrostu Zabudowy Mieszkaniowej na Obszarze Polski do 2020 Roku; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017. [Google Scholar]
- Kowalewski, A.; Markowski, T.; Śleszyński, P. (Eds.) Kryzys Polskiej Przestrzeni. Źródła, Skutki i Kierunki Działań Naprawczych; PAN KPZK: Warszawa, Poland, 2020; Available online: https://publikacje.pan.pl/dlibra/journal/133295/kryzys-polskiej-przestrzeni-zrodla-skutki-i-kierunki-dzialan-naprawczych-2020-kowalewski-adam-markowski-tadeusz-sleszynski-przemyslaw?language=pl (accessed on 21 March 2021).
- Śleszyński, P.; Kowalewski, A.; Markowski, T.; Legutko-Kobus, P.; Nowak, M. The Contemporary Economic Costs of Spatial Chaos: Evidence from Poland. Land 2020, 9, 214. [Google Scholar] [CrossRef]
- Ehrlich, D.; Kemper, T.; Pesaresi, M.; Corbane, C. Built-up area and population density: Two Essential Societal Variables to address climate hazard impact. Environ. Sci. Policy 2018, 90, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Mudau, N.; Mwaniki, D.; Tsoeleng, L.; Mashalane, M.; Beguy, D.; Ndugwa, R. Assessment of SDG Indicator 11.3.1 and Urban Growth Trends of Major and Small Cities in South Africa. Sustainability 2020, 12, 7063. [Google Scholar] [CrossRef]
- Cai, G.; Zhang, J.; Du, M.; Li, C.; Peng, S. Identification of urban land use efficiency by indicator-SDG 11.3.1. PLoS ONE 2020, 15, e0244318. [Google Scholar] [CrossRef] [PubMed]
- Castanho, R.A.; Naranjo Gómez, J.M.; Kurowska-Pysz, J. Assessing Land Use Changes in Polish Territories: Patterns, Directions and Socioeconomic Impacts on Territorial Management. Sustainability 2019, 11, 1354. [Google Scholar] [CrossRef] [Green Version]
- El Mendili, L.; Puissant, A.; Chougrad, M.; Sebari, I. Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images. Remote Sens. 2020, 12, 423. [Google Scholar] [CrossRef] [Green Version]
- Gibas, P.; Majorek, A. Analysis of Land-Use Change between 2012–2018 in Europe in Terms of Sustainable Development. Land 2020, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Noszczyk, T. Land use change monitoring as a task of local government administration in Poland. J. Ecol. Eng. 2018, 19, 170–176. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Haregeweyn, N.; Belay, A.S.; Hadush, Z.; Gebremedhin, M.A.; Mekonnen, G. The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics. Int. J. Remote Sens. 2017, 38, 4107–4129. [Google Scholar] [CrossRef]
- Anees, M.M.; Sajjad, S.; Joshi, P.K. Characterizing urban area dynamics in historic city of Kurukshetra, India, using remote sensing and spatial metric tools. Geocarto Int. 2018, 34, 1584–1607. [Google Scholar] [CrossRef]
- Kazak, J.K. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland). Sustainability 2018, 10, 1083. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, K.; Myronidis, D. Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks. Sustainability 2021, 13, 5323. [Google Scholar] [CrossRef]
- Sandu, A.; Groza, O. What pattern(s) for the urbal sprawl of the post-socialist Romanian cities? Inform. Geoinform. Remote Sens. 2017, 17, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environ. Dev. Sustain. 2020, 22, 661–692. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Wu, C.S.; Chen, X.D.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Bielecka, E. GIS Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends. Geosciences 2020, 10, 421. [Google Scholar] [CrossRef]
- Tahir, M.; Imam, E.; Hussain, T. Evaluation of land use/land cover changes in Mekelle City, Ethiopia using Remote Sensing and GIS. Comput. Ecol. Softw. 2013, 3, 9–16. [Google Scholar] [CrossRef]
- Erasu, D. Remote Sensing-Based Urban Land Use/Land Cover Change Detection and Monitoring. J. Remote Sens. GIS 2017, 6, 196. [Google Scholar] [CrossRef]
- An, Y.; Tsou, J.Y.; Wong, K.; Zhang, Y.; Liu, D.; Li, Y. Detecting Land Use Changes in a Rapidly Developing City during 1990–2017 Using Satellite Imagery: A Case Study in Hangzhou Urban Area, China. Sustainability 2018, 10, 3303. [Google Scholar] [CrossRef] [Green Version]
- Dhanaraj, K.; Angadi, D.P. Land use land cover mapping and monitoring urban growth using remote sensing and GIS techniques in Mangaluru, India. GeoJournal 2020. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Bielecka, E.; Jenerowicz, A.; Pokonieczny, K.; Borkowska, S. Land Cover Changes and Flows in the Polish Baltic Coastal Zone: A Qualitative and Quantitative Approach. Remote Sens. 2020, 12, 2088. [Google Scholar] [CrossRef]
- Kukulska-Kozieł, A.; Szylar, M.; Cegielska, K.; Noszczyk, T.; Hernik, J.; Gawronski, K.; Dixon-Gough, R.; Jombach, S.; Valanszki, I.; Kovacs, K.F. Towards three decades of spatial development transformation in two contrasting post-Soviet cities-Krakow and Budapest. Land Use Policy 2019, 85, 328–339. [Google Scholar] [CrossRef]
- Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S. The Impact of a Large City on Land Use in Suburban Area—The Case of Wrocław (Poland). J. Ecol. Eng. 2018, 19, 89–98. [Google Scholar] [CrossRef]
- Wiatkowska, B.; Słodczyk, J. Spatial Diversity of Environmental Governance in the Aspect of Sustainable Development of the Polish-Czech Border Area. In Development and Administration of Border Areas of the Czech Republic and Poland Support for Sustainable Development; Ardielli, E., Ed.; VŠB—Technical University of Ostrava: Ostrava, Czech Republic, 2018; pp. 292–301, WOS:000476581800037. [Google Scholar]
- Cieślak, I.; Biłozor, A.; Szuniewicz, K. The Use of the CORINE Land Cover (CLC) Database for Analyzing Urban Sprawl. Remote Sens. 2020, 12, 282. [Google Scholar] [CrossRef] [Green Version]
- Grigorescu, I.; Kucsicsa, G.; Popovici, E.A.; Mitrică, B.; Mocanu, B.; Dumitraşcu, I. Modelling land use/cover change to assess future urban sprawl in Romania. Geocarto Int. 2021, 36, 721–739. [Google Scholar] [CrossRef]
- Śleszyński, P.; Gibas, P.; Sudra, P. The Problem of Mismatch between the CORINE Land Cover Data Classification and the Development of Settlement in Poland. Remote Sens. 2020, 12, 2253. [Google Scholar] [CrossRef]
- Jia, K.; Wei, X.; Gu, X.; Yo, Y.; Xie, X.; Li, B. Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int. 2014, 29, 941–951. [Google Scholar] [CrossRef]
- Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606. [Google Scholar] [CrossRef] [Green Version]
- Kopecká, M.; Szatmári, D.; Rosina, K. Analysis of Urban Green Spaces Based on Sentinel-2A: Case Studies from Slovakia. Land 2017, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- UN-GGIM: Europe. The Territorial Dimension in SDG Indicators: Geospatial Data Analysis and Its Integration with Statistical Data; Instituto Nacional de Estatística: Lisbon, Portugal, 2019; Available online: https://un-ggim-europe.org/wp-content/uploads/2019/05/UN_GGIM_08_05_2019-The-territorial-dimension-in-SDG-indicators-Final.pdf (accessed on 22 March 2021).
- Vigneshwaran, S.; Kumar, S.V. Urban Land Cover Mapping and Change Detection Analysis Using High Resolution Sentinel-2A Data. Environ. Nat. Resour. J. 2019, 17, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Statistics Poland Local Data Bank. Available online: https://bdl.stat.gov.pl/BDL (accessed on 10 March 2021).
- Public Information Bulletin of the Opole Municipality. Available online: https://www.bip.um.opole.pl (accessed on 10 March 2021).
- Boori, M.S.; Netzband, M.; Choudhary, K.; Choudhary, K.; Voženílek, V. Monitoring and modeling of urban sprawl through remote sensing and GIS in Kuala Lumpur, Malaysia. Ecol. Process. 2015, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Mandal, A.C.H.; Majumder, R.; Patra, P.; Bhunia, G.S. Analysis for Mapping of Built-Up Area Using Remotely Sensed Indices-A case Study of Rajarhat Block in Barasat Sadar Sub-Division in West Bengal (India). J. Landsc. Ecol. 2018, 11, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhong, C.; Su, A.; Xiong, C.; Wang, J.; Liu, J. Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sens. 2017, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Hamed, R.; Alabsi, A.A.N. Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomat. Nat. Hazards Risk 2020, 12, 631–652. [Google Scholar] [CrossRef]
- Shikary, C.; Rudra, S. Measuring Urban Land Use Change and Sprawl Using Geospatial Techniques: A Study on Purulia Municipality, West Bengal, India. J. Ind. Soc. Remote Sens. 2021, 49, 433–448. [Google Scholar] [CrossRef]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.A.A.; Hassan, Q.K.; Dewan, A. Spatio-Temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Borsa, M.; Zagajewski, B.; Kulawik, B. Teledetekcja w Planowaniu Przestrzennym; Ministerstwo Infrastruktury i Budownictwa: Warszawa, Poland, 2017. Available online: https://www.gov.pl/web/rozwoj-praca-technologia/teledetekcja-w-planowaniu-przestrzenny (accessed on 10 March 2021).
- Mawenda, J.; Watanabe, T.; Avtar, R. An Analysis of Urban Land Use/Land Cover Changes in Blantyre City, Southern Malawi (1994–2018). Sustainability 2020, 12, 2377. [Google Scholar] [CrossRef] [Green Version]
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- UN-Habitat. United Nations Human Settlements Program. Module 3: Land Consumption Rate. 2018. Available online: https://www.unescwa.org/sites/www.unescwa.org/files/u593/module_3_land_consumption_edited_23-03-2018.pdf (accessed on 20 March 2021).
- Wang, Y.; Huang, C.; Feng, Y.; Zhao, M.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; Politis, P.; Siragusa, A.; Kemper, T.; Pesaresi, M. LUE User Guide: A Tool to Calculate the Land Use Efficiency and the SDG 11.3 Indicator with the Global Human Settlement Layer; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Corbane, C.; Pesaresi, M.; Kemper, T.; Freire, S. Assessment of Land Use Efficiency using GHSL derived indicators. In Atlas of the Human Planet 2016. Mapping Human Presence on Earth with the Global Human Settlement Layer; Pesaresi, M., Melchiorri, M., Siragusa, A., Kemper, T., Eds.; Publications Office of the European Union: Luxembourg, 2016; pp. 77–78. [Google Scholar] [CrossRef]
- Stokowska, A. Detection of Changes in the Urban Areas in Opole between 2000 and 2020 Using Satellite Images and GIS. Bachelor’s Thesis, University of Opole, Opole, Poland, 2021. (In Polish). [Google Scholar]
- Pieńkowski, P.; Podlasiński, M.; Dusza–Zwolińska, E. Evaluation of the location of cities in terms of land cover on the example of Poland. Urban Ecosyst. 2019, 22, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lu, X.X.; Sellers, J.M. A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landsc. Urban Plan. 2007, 82, 184–197. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2017, 96, 10–22. [Google Scholar] [CrossRef]
- Maktav, D.; Erbek, F.S.; Jürgens, C. Remote sensing of urban areas. Int. J. Remote Sens. 2005, 26, 655–659. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Luo, H.; Qi, S.; Tao, S.; Xu, H.; Yao, Y. An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks. Remote Sens. Environ. 2019, 229, 114–132. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, Z. Continuous subpixel monitoring of urban impervious surface using Landsat time series. Remote Sens. Environ. 2020, 238, 110929. [Google Scholar] [CrossRef]
- Przeciwdziałanie Depopulacji Opolszczyzny, Raport; NIK: Warszawa, Poland, 2020. Available online: https://www.nik.gov.pl/plik/id,22773,vp,25472.pdf (accessed on 30 January 2021).
- Heffner, K.; Klemens, B.; Solga, B. Challenges of Regional Development in the Context of Population Ageing. Analysis Based on the Example of Opolskie Voivodeship. Sustainability 2019, 11, 5207. [Google Scholar] [CrossRef] [Green Version]
- Uchwała nr LXVI/1248/18 Rady Miasta Opola z dnia 5 lipca 2018 r. w sprawie uchwalenia Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Opola, Załącznik 1. Available online: https://www.bip.um.opole.pl/download/file/bu/suikzp/Uchwala.pdf (accessed on 30 January 2021).
- Heffner, K. Uwarunkowania Funkcjonalno-Przestrzenne Rozwoju Miasta Opola, Ekspertyza. Opole, Poland, 2015. Available online: https://www.bip.um.opole.pl/zalaczniki/40978/zalacznik_nr_9_digi_27-04-2016_11-59-03.pdf (accessed on 30 January 2021).
- Strategia Rozwoju Miasta Opola—Stolicy Polskiej Piosenki na lata 2004–2015; Rada Miasta Opola: Opole, Poland, 2007. Available online: https://www.po.edu.pl/media/funduszeue/2012/strategia_rozwoju_miasta_opola.pdf (accessed on 30 April 2021).
- Zrównoważony Rozwój Miast w Polsce: Krajowa Polityka Miejska w Kontekście Celu 11 Agendy 2030 i Nowej Agendy Miejskiej, Raport; Ministerstwo Inwestycji i Rozwoju: Warszawa, Poland, 2019. Available online: https://www.funduszeeuropejskie.gov.pl/media/72565/raport_pl_final.pdf (accessed on 30 April 2021).
- Strategii Rozwoju Aglomeracji Opolskiej na lata 2014–2020; Stowarzyszenie Aglomeracja Opolska: Opole, Poland, 2014. Available online: https://www.aglomeracja-opolska.pl/sites/default/files/page/attachments/strategia_rozwoju_aglomeracji_opolskiej_na_lata_2014-2020.pdf (accessed on 30 May 2021).
- Strategia Rozwoju Opola do 2030 r. Załącznik do uchwały nr XV/282/19 Rady Miasta Opola z dnia 29 sierpnia 2019 r; Urząd Miasta Opola: Opole, Poland, 2019; Available online: https://www.opole.pl/sites/default/files/field_attachment/2020-02/Strategia%20Rozwoju.pdf (accessed on 30 May 2021).
- Nicolau, R.; David, J.; Caetano, M.; Pereira, J.M.C. Ratio of Land Consumption Rate to Population Growth Rate—Analysis of Different Formulations Applied to Mainland Portugal. ISPRS Int. J. Geo-Inf. 2019, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Fregolent, L.; Tonin, S. (Eds.) Growing Compact; FrancoAngeli: Milano, Italy, 2015; Available online: https://www.francoangeli.it/Area_PDFDemo/1862.193_demo.pdf (accessed on 30 April 2021).
- Haase, D.; Güneralp, B.; Dahiya, B.; Bai, X.; Elmqvist, T. Global urbanization. In Urban Planet: Knowledge towards Sustainable Cities; Elmqvist, T., Bai, X., Frantzeskaki, N., Griffith, C., Maddox, D., McPhearson, T., Parnell, S., Romero-Lankao, P., Simon, D., Watkins, M., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 19–44. [Google Scholar] [CrossRef]
Datasets | Data | Source | Resolution |
---|---|---|---|
Satellite images Landsat 5, sensor: Thematic Mapper (TM) | June 2000 May 2005 July 2010 | U.S. Geological Survey (USGS) | Raster 30 m |
Satellite image Landsat 8, sensor: Operational Land Imager (OLI) | July 2015 July 2020 | U.S. Geological Survey (USGS) | Raster 30 m |
Satellite image Sentinel 2A, sensor: Multi Spectral Imager (MSI) | July 2015 August 2020 | Copernicus Open Access Hub | Raster 10 m |
Orthophotomap Multi-temporal aerial photography | 2000–2020 | Polish Head Office of Geodesy and Cartography (GUGiK), Google Earth | Raster 0.25–0.5 m |
Database of the state border register and areas of territorial divisions of the country | 2020 | Polish Head Office of Geodesy and Cartography (GUGiK) | Vector |
Local Area Development Plans | 2020 | Public Information Bulletin of the Opole Municipality | WMS district |
Civil registry | 2000, 2005, 2010, 2015, 2020 | Opole, Prószków, Komprachcice, Dobrzeń Wielki, Dąbrowa Municipalities | Text district |
Descriptive data and metadata on demographic situation | 2000–2020 | Statistics Poland (GUS) | Text district |
LULC | Landsat 5 (TM), Landsat 8 (OLI) | Sentinel 2 (MSI) | ||||||
---|---|---|---|---|---|---|---|---|
Units | 2000 | 2005 | 2010 | 2015 | 2020 | 2015 | 2020 | |
Built-up area | ha | 2291.05 | 2472.29 | 2652.48 | 2964.25 | 3172.52 | 3304.88 | 3528.97 |
% | 15.4 | 16.6 | 17.8 | 19.9 | 21.3 | 22.2 | 23.7 | |
Agricultural area | ha | 10,461.69 | 10,283.4 | 10,117.1 | 9829.6 | 9617.3 | 9396.3 | 9218.3 |
% | 70.3 | 69.1 | 68 | 66 | 64.6 | 63.1 | 62.0 | |
Forests and semi-natural area | ha | 1879.19 | 1863.6 | 1846.3 | 1824.4 | 1818.8 | 1884.6 | 1856.6 |
% | 12.61 | 12.5 | 12.4 | 12.3 | 12.2 | 12.7 | 12.4 | |
Water area | ha | 256.1 | 268.7 | 272.1 | 269.7 | 279.2 | 296.9 | 284.4 |
% | 1.71 | 1.8 | 1.83 | 1.81 | 1.9 | 2.0 | 1.9 | |
Total area of Opole | ha | 14,888 ha | ||||||
% | 100% |
LULC | Landsat 5 (TM), Landsat 8 (OLI) | Sentinel 2 (MSI) | |||||
---|---|---|---|---|---|---|---|
Units | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 | 2015–2020 | |
Built-up area | ha | +181.2 | +180.2 | +311.8 | +208.2 | +881.4 | +219.1 |
pp | +1.2 | +1.2 | +2.1 | +1.4 | +5.9 | +1.5 | |
Agricultural area | ha | −179.0 | −166.0 | −287.4 | −212.3 | −844.7 | −178.0 |
pp | −1.2 | −1.1 | −2.0 | −1.4 | −5.7 | −1.1 | |
Forests and semi-natural area | ha | −15.6 | −17.3 | −21.9 | −5.7 | −60.4 | −28 |
pp | −0.1 | −0.1 | −0.1 | −0.1 | −0.4 | −0.3 | |
Water area | ha | +12.6 | +3.4 | −2.4 | +9.5 | +23.1 | −12.5 |
pp | +0.1 | 0 | −0.02 | 0.1 | +0.2 | −0.1 |
Equidistant | Units | Landsat 5 (TM), Landsat 8 (OLI) | Sentinel 2 (MSI) | |||||
---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2015 | 2020 | ||
0–3 km | ha | 1106.26 | 1187.57 | 1212.13 | 1289.17 | 1364.31 | 1373.54 | 1431.38 |
% | 48.29 | 48.04 | 45.70 | 43.49 | 43.00 | 41.56 | 40.56 | |
3–6 km | ha | 779.20 | 842.33 | 956.65 | 1111.08 | 1206.55 | 1244.23 | 1351.52 |
% | 34.01 | 34.07 | 36.07 | 37.48 | 38.03 | 37.65 | 38.30 | |
over 6 km | ha | 405.59 | 442.39 | 483.70 | 564.00 | 601.66 | 687.11 | 746.07 |
% | 17.70 | 17.89 | 18.24 | 19.03 | 18.96 | 20.79 | 21.14 | |
Total built-up areas | ha | 2291.05 | 2472.29 | 2652.48 | 2964.25 | 3172.52 | 3304.88 | 3528.97 |
% | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Equidistant | Units | Landsat 5 (TM), Landsat 8 (OLI) | Sentinel 2 | ||||
---|---|---|---|---|---|---|---|
2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 | 2015–2020 | ||
0–3 km | ha | +81.31 | +24.56 | +77.04 | +75.14 | +258.05 | +57.84 |
3–6 km | ha | +63.13 | +114.32 | +154.43 | +95.47 | +427.35 | +107.29 |
over 6 km | ha | +36.80 | +41.34 | +80.30 | +37.66 | +196.07 | +58.96 |
Total built-up area | ha | +181.24 | +180.19 | +311.77 | +208.27 | +881.47 | +224.09 |
Year | Equidistant 0–3 km | Equidistant 3–6 km | Equidistant over 6 km | |||
---|---|---|---|---|---|---|
Built-Up Area [ha] | Rate of Change in Built-Up Area [%] | Built-Up Area [ha] | Rate of Change in Built-Up Area [%] | Built-Up Area [ha] | Rate of Change in Built-Up Area [%] | |
2000 | 1106.26 | 0.00 | 779.20 | 0.00 | 405.59 | 0.00 |
2005 | 1187.57 | 7.35 | 842.33 | 8.10 | 442.39 | 9.07 |
2010 | 1212.13 | 2.07 | 956.65 | 13.57 | 483.70 | 9.34 |
2015 | 1289.17 | 6.36 | 1111.08 | 16.14 | 564.00 | 16.60 |
2020 | 1364.31 | 5.83 | 1206.55 | 8.59 | 601.66 | 6.68 |
Average rate of changes | 5.23% | - | 11.70% | - | 10.43% |
Year | Built-Up Area [ha] | Rate of Change in Built-Up Area [%] | Population | Rate of Change in Population [%] | Built-Up Areas per Capita [m2/Person] |
---|---|---|---|---|---|
2000 | 2291.1 | 1.00 | 129,269 | 1.00 | 177.24 |
2005 | 2472.3 | 7.91 | 125,306 | −3.07 | 197.30 |
2010 | 2652.5 | 7.29 | 123,788 | −1.21 | 214.28 |
2015 | 2964.3 | 11.75 | 121,430 | −1.91 | 244.12 |
2020 | 3172.5 | 7.02 | 119,190 | −1.85 | 266.17 |
Average rate of change | - | +8.30% | - | −1.91% | - |
Landsat 5 (TM), Landsat 8 (OLI) | |||||
---|---|---|---|---|---|
Indicators | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 |
Land Consumption Rate (LCR) | 0.0152 | 0.0141 | 0.0222 | 0.0136 | 0.0163 |
Population Growth Rate (PGR) | −0.0062 | −0.0024 | −0.0038 | −0.0037 | −0.0041 |
Ratio of Land Consumption Rate to Population Growth Rate (LCRPGR) | −2.45 | −5.88 | −5.84 | −4.00 | −3.98 |
Land Use Efficiency (LUE) | −0.1132 | −0.0860 | −0.1393 | −0.0903 | −0.5018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiatkowska, B.; Słodczyk, J.; Stokowska, A. Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland. Geosciences 2021, 11, 312. https://doi.org/10.3390/geosciences11080312
Wiatkowska B, Słodczyk J, Stokowska A. Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland. Geosciences. 2021; 11(8):312. https://doi.org/10.3390/geosciences11080312
Chicago/Turabian StyleWiatkowska, Barbara, Janusz Słodczyk, and Aleksandra Stokowska. 2021. "Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland" Geosciences 11, no. 8: 312. https://doi.org/10.3390/geosciences11080312
APA StyleWiatkowska, B., Słodczyk, J., & Stokowska, A. (2021). Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland. Geosciences, 11(8), 312. https://doi.org/10.3390/geosciences11080312