Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains
Abstract
:1. Introduction
2. Study area
2.1. Geographical Features
2.2. Experience with Relative Dating in Eastern Altai
3. Methods
3.1. Geomorphology Study
3.2. Moraine Relative-Dating Method
3.3. Mineralogy Composition of the Moraine Samples
3.4. Specific Surface Area of Moraine Samples and Pore Size Distribution
3.5. Mesostructure and Fractal Properties of Moraine Samples
3.6. Identification of Biota on the Rock Surface
4. Results
4.1. Geomorphology of the Studied Area
4.2. The Results of Relative Dating
4.3. Mineralogy Composition of Moraines
4.4. Specific Surface Area of Moraines and Pore Size Distribution
4.5. Mesostructure and Fractal Properties of Moraine Samples
4.6. Rock Colonization by Biota
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, G.A. Age Determination of Young Rocks and Artifacts; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Speranskij, B.F. Osnovnye momenty kajnozojskoj istorii jugo-vostochnogo Altaja. ZSGT Bull. 1937, 5, 50–66. [Google Scholar]
- Shukina, E.N. Zakonomernosti razmeshhenija chetvertichnyh otlozhenij i stratigrafija ih na territorii Altaja. In Stratigraphy of Quaternary (Anthropogenic) Deposits of the Asian Part of the USSR and Their Comparison with European Ones; USSR Academy of Sciences: Moscow, Russia, 1960; pp. 127–165. [Google Scholar]
- Svitoch, A.A.; Faustov, S.S. Rezul’taty izuchenija novejshih otlozhenij nekotoryh razrezov Chujskoj vpadiny v svjazi s istoriej oledenenija Gornogo Altaja. In Sovremennoe i Drevnee Oledenenie Ravninnyh i Gornyh Rajonov SSSR (Sbornik Statej); Izdvo GO SSSR: Leningrad, Russia, 1978; pp. 114–124. [Google Scholar]
- Bogachkin, B.M. Istoriya Tektonicheskogo Razvitiya Gornogo Altaya v Kajnozoe (The History of the Cenozoic Tectonic Development of Gorny Altai); Nauka: Moscow, Russia, 1981. [Google Scholar]
- Okishev, P.A. Dynamics of Altai Glaciation in the Late Pleistocene and Holocene; Tomsk University: Tomsk, Russia, 1982. [Google Scholar]
- Devyatkin, E. Cenozoic Deposits and Neotectonics of Southeastern Altai. Proc. GIN AN SSSR 1965, 126, 244. [Google Scholar]
- Obruchev, V.A. Altai Sketches (Sketch First). Notes on the Traces of Ancient Glaciation in the Russian Altai. Altajskie Jetjudy (Jetjud Pervyj). Zametki o Sledah Drevnego Oledenenija v Russkom Altae. Zemlevedenie 1914, 4, 50–97. [Google Scholar]
- Grane, I.G. On the Importance of the Ice Age for the Morphology of the Northeastern Altai. O Znachenii Lednikovogo Perioda Dlja Morfologii Severo-Vostochnogo Altaja. Proc. West Sib. Branch Russ. Geogr. Soc. 1916, 38, 1–22. [Google Scholar]
- Nehoroshev, V.P. Past Glaciation of Altai. Drevnee Oledenenie Altaja. Proc. Comm. Study Quat. Acad. Sci. USSR 1932, 1, 23–29. [Google Scholar]
- Aksarin, A.V. O chetvertichnyh otlozhenijah Chujskoj stepi v Jugo-Vostochnom Altae. ZSGT Bull. 1937, 5, 71–81. [Google Scholar]
- Rakovec, O.A.; Shmidt, G.A. Trudy komissii po izucheniju chetvertichnogo perioda AN SSSR. O Chetvertichnyh Oledenenijah Gornogo Altaja 1963, 22, 5–31. [Google Scholar]
- Ivanovskiy, L.N. Formy Lednikovogo Rel’efa i Ih Paleogeograficheskoe Znachenie Na Altae. Forms of Glacial Relief and Their Palaeogeographic Significance in the Altai; Nauka: Leningrad, Russia, 1967. [Google Scholar]
- Butvilovskij, V.V. Paleogeografija Poslednego Oledenenija i Golocena Altaja: Sobytijno-Katastroficheskaja Model’; Tomsk University: Tomsk, Russia, 1993. [Google Scholar]
- Efimtcev, N.A. Chetvertichoe oledenenie zapadnoj Tuvy i vos tochnoj chasti Gornogo Altaja (Quaternary glaciation of western Tyva and eastern part of Gorny Altai); Academy of Science Publishe: Moscow, Russia, 1961. [Google Scholar]
- Borisov, B.A.; Minina, E.A. Plejstocenovye oledenenija Altae-Sajanskoj gornoj strany i ih korreljacija i rekonstrukcii. In Paleoklimaty i oledenenija v plejstocene; Nauka: Moscow, Russia, 1989; pp. 217–223. [Google Scholar]
- Seliverstov, Y.P. Neogen-chetvertichnye obrazovanija i nekotorye voprosy paleogeografii gor i vpadin juga Sibiri (Altaj, Sajany, Tuva). Neogene-Quaternary formations and some questions paleogeography of mountains and depressions in the south of Siberia (Altai, Sayany, Tuva). In Chetvertichnyj period Sibiri Quaternary of Siberia; Moscow, Russia, 1966; pp. 117–127. [Google Scholar]
- Grunert, J.; Lehmkuhl, F.; Walther, M. Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quat. Int. 2000, 65-66, 171–192. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Xu, X.; Cui, Z.; Xiong, H. Quaternary glacial history of the Kanas Valley, Chinese Altai, NW China, constrained by electron spin resonance and optically stimulated luminescence datings. J. Asian Earth Sci. 2017, 147, 164–177. [Google Scholar] [CrossRef]
- Zolnikov, I.; Deev, E.; Kotler, S.; Rusanov, G.; Nazarov, D. New results of OSL dating of Quaternary sediments in the Upper Katun’ valley (Gorny Altai) and adjacent area. Russ. Geol. Geophys. 2016, 57, 933–943. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Klinge, M.; Rother, H.; Hülle, D. Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Ann. Glaciol. 2016, 57, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yin, X.; Harbor, J.M.; Lai, Z.; Liu, S.; Li, Z. Quaternary glacial chronology of the Kanas River valley, Altai Mountains, China. Quat. Int. 2013, 311, 44–53. [Google Scholar] [CrossRef]
- Dong, G.; Zhou, W.; Fu, Y.; Zhang, L.; Zhao, G.; Li, M. The last glaciation in the headwater area of the Xiaokelanhe River, Chinese Altai: Evidence from 10Be exposure-ages. Quat. Geochronol. 2020, 56, 101054. [Google Scholar] [CrossRef]
- Blomdin, R.; Stroeven, A.P.; Harbor, J.M.; Gribenski, N.; Caffee, M.W.; Heyman, J.; Rogozhina, I.; Ivanov, M.N.; Petrakov, D.A.; Walther, M.; et al. Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia. Quat. Geochronol. 2018, 47, 54–71. [Google Scholar] [CrossRef]
- Gribenski, N.; Jansson, K.N.; Lukas, S.; Stroeven, A.; Harbor, J.; Blomdin, R.; Ivanov, M.; Heyman, J.; Petrakov, D.A.; Rudoy, A.; et al. Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai. Quat. Sci. Rev. 2016, 149, 288–305. [Google Scholar] [CrossRef]
- Gribenski, N.; Jansson, K.N.; Preusser, F.; Harbor, J.M.; Stroeven, A.; Trauerstein, M.; Blomdin, R.; Heyman, J.; Caffee, M.W.; Lifton, N.; et al. Re-evaluation of MIS 3 glaciation using cosmogenic radionuclide and single grain luminescence ages, Kanas Valley, Chinese Altai. J. Quat. Sci. 2018, 33, 55–67. [Google Scholar] [CrossRef]
- Agatova, A.; Nepop, R.K. Pleistocene glaciations of the SE Altai, Russia, based on geomorphological data and absolute dating of glacial deposits in Chagan reference section. Geochronometria 2017, 44, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Nepop, R.; Agatova, A.; Bronnikova, M.; Zazovskaya, E.; Ovchinnikov, I.; Moska, P. Radiocarbon dating of organic-rich deposits: Difficulties of paleogeographical interpretations in highlands of Russian Altai. Geochronometria 2020, 47, 138–153. [Google Scholar] [CrossRef]
- Agatova, A.; Nepop, R.; Bronnikova, M.; Zhdanova, A.; Moska, P.; Zazovskaya, E.; Khazina, I. Problems of 14C dating in fossil soils within tectonically active highlands of Russian Altai in the chronological context of the late Pleistocene megafloods. Catena 2020, 195, 104764. [Google Scholar] [CrossRef]
- Lal, D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 1991, 104, 424–439. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Kerschner, H.; Schlüchter, C. Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: The Alpine perspective. Quat. Int. 2007, 164–165, 53–63. [Google Scholar] [CrossRef]
- Putkonen, J.; Swanson, T. Accuracy of cosmogenic ages for moraines. Quat. Res. 2003, 59, 255–261. [Google Scholar] [CrossRef]
- Balco, G.; Schaefer, J. Cosmogenic-nuclide and varve chronologies for the deglaciation of southern New England. Quat. Geochronol. 2006, 1, 15–28. [Google Scholar] [CrossRef]
- Balco, G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 2011, 30, 3–27. [Google Scholar] [CrossRef]
- Flint, R.F.; Fidalgo, F. Glacial Geology of the East Flank of the Argentine Andes between Latitude 39° 10’S. and Latitude 41° 20’S. Geol. Soc. America Bull. 1964, 75, 335–352. [Google Scholar] [CrossRef]
- Sharp, R.P.; Birman, J.H. Additions to the Classical Sequence of Pleistocene Glaciations. Geol. Soc. Am. Bull. 1963, 74, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Birman, J.H. Glacial Geology Across the Crest of the Sierra Nevada, California. Underst. Open-Vent Volcanism Relat. Hazards 1964, 75, 1–83. [Google Scholar] [CrossRef]
- Flint, R.F.; Fidalgo, F. Glacial Drift in the Eastern Argentine Andes between Latitude 41° 10’ S. and Latitude 43° 10’ S. Geol. Soc. America Bull. 1969, 80, 1043–1052. [Google Scholar] [CrossRef]
- Sharp, R.P. Semiquantitative Differentiation of Glacial Moraines near Convict Lake, Sierra Nevada, California. J. Geol. 1969, 77, 68–91. [Google Scholar] [CrossRef]
- Porter, S.C. Quaternary Glacial Record in Swat Kohistan, West Pakistan. GSA Bull. 1970, 81, 1421–1446. [Google Scholar] [CrossRef]
- Devyatkin, E.V.; Murzaeva, V.J. Opyt raschlenenija moren po kompleksu litologo-geomorfologicheskih priznakov. Izvestija Vsesojuznogo Geograficheskogo Obshhestva 1979, 111, 342–348. [Google Scholar]
- Crook, R.; Gillespie, A.R. Weathering rates in granitic boulders measured by p-wave speeds. In Rates of Chemical Weathering of Rocks and Minerals; Colman, S.M., Dethier, D.P., Eds.; Academic Press: Orlando, FL, USA, 1986; pp. 395–417. [Google Scholar]
- Bursik, M. Relative Dating of Moraines Based on Landform Degradation, Lee Vining Canyon, California. Quat. Res. 1991, 35, 451–455. [Google Scholar] [CrossRef]
- Schmidt, E.A. Non-Destructive Concrete Tester. Concrete 1951, 59, 34–35. [Google Scholar]
- Matthews, J.A.; Shakesby, R.A. The status of the ‘Little Ice Age’ in southern Norway: Relative-age dating of Neoglacial moraines with Schmidt hammer and lichenometry. Boreas 2008, 13, 333–346. [Google Scholar] [CrossRef]
- Winkler, S.; Shakesby, R.A. Anwendung von Lichenometrie und Schmidt-Hammer zur relativen Altersdatierung prä-frühzrezenter Moränen am Beispiel der Vorfelder von Guslar-, Mitterkar-, Rofenkar- und Vernagtferner (Ötztaler Alpen/Österreich). Petermanns Geographische Mitteilungen 1995, 139, 283–304. [Google Scholar]
- Rune Aa, A.; Sjåstad, J.A. Schmidt hammer age evaluation of the moraine sequence in front of Bøyabreen, western Norway. Nor. Geol. Tidsskr. 2000, 80, 27–32. [Google Scholar] [CrossRef]
- Sharma, P.K.; Khandelwal, M.; Singh, T.N. A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Acta Diabetol. 2010, 100, 189–195. [Google Scholar] [CrossRef]
- Wolman, M.G. A method of sampling coarse river-bed material. Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Sampson, K.M.; Smith, L.C.; Angeles, L. Relative Ages of Pleistocene Moraines Discerned from Pebble Counts: Eastern Sierra Nevada, California. Phys. Geogr. 2006, 27, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Alexander, E.; DuShey, J. Topographic and soil differences from peridotite to serpentinite. Geomorphology 2011, 135, 271–276. [Google Scholar] [CrossRef]
- Hall, K.; Thorn, C.E.; Matsuoka, N.; Prick, A. Weathering in cold regions: Some thoughts and perspectives. Prog. Phys. Geogr. Earth Environ. 2002, 26, 577–603. [Google Scholar] [CrossRef]
- Meunier, A.; Sardini, P.; Robinet, J.C.; Prêt, D. The petrography of weathering processes: Facts and outlooks. Clay Miner. 2007, 42, 415–435. [Google Scholar] [CrossRef]
- Simonyan, A.V.; Dultz, S.; Behrens, H. Diffusive transport of water in porous fresh to altered mid-ocean ridge basalts. Chem. Geol. 2012, 306-307, 63–77. [Google Scholar] [CrossRef]
- Lessovaia, S.N.; Dultz, S.; Plötze, M.; Andreeva, N.; Polekhovsky, Y.; Filimonov, A.; Momotova, O. Soil development on basic and ultrabasic rocks in cold environments of Russia traced by mineralogical composition and pore space characteristics. Catena 2016, 137, 596–604. [Google Scholar] [CrossRef]
- Chinn, T.J.H. Use of Rock Weathering-Rind Thickness for Holocene Absolute Age-Dating in New Zealand. Arct. Alp. Res. 1981, 13, 33. [Google Scholar] [CrossRef]
- Gellatly, A.F. The Use of Rock Weathering-Rind Thickness to Redate Moraines in Mount Cook National Park, New Zealand. Arct. Alp. Res. 1984, 16, 225. [Google Scholar] [CrossRef]
- Ricker, K.E.; Chinn, T.J.; McSaveney, M.J. A late Quaternary moraine sequence dated by rock weathering rinds, Craigieburn Range, New Zealand. Can. J. Earth Sci. 1993, 30, 1861–1869. [Google Scholar] [CrossRef]
- Oguchi, C.T. Formation of weathering rinds on andesite. Earth Surf. Process. Landforms 2001, 26, 847–858. [Google Scholar] [CrossRef]
- Haeberli, W.; Brandová, D.; Burga, C.; Egli, M.; Frauenfelder, R.; Kääb, A.; Maisch, M.; Dikau, R. Methods for Absolute and Relative Age Dating of Rock-Glacier Surfaces in Alpine Permafrost. In Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; Volume 1, pp. 343–348. [Google Scholar]
- Glazovskaya, M.A. Biogeochemical Weathering of Andesitic Volcanic Rocks in Subantarctic Periglacial Conditions. Izvestiya Akademii Nauk, Seriya Geograficheskaya 2002, 3, 39–48. [Google Scholar]
- Pearson, A.; Swanson, S.; Batbold, D. Relative Age Dating of Moraines and Determination of Maximum Ice Cover in the Egin Davaa Area, Hangay Mountains, Mongolia; Curran Associates Inc.: New York, NY, USA, 2007. [Google Scholar]
- Ganyushkin, D.; Chistyakov, K.; Volkov, I.; Bantcev, D.; Kunaeva, E.; Brandová, D.; Raab, G.; Christl, M.; Egli, M. Palaeoclimate, glacier and treeline reconstruction based on geomorphic evidences in the Mongun-Taiga massif (south-eastern Russian Altai) during the Late Pleistocene and Holocene. Quat. Int. 2018, 470, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Earth Resources Observation and Science (EROS) Center. Available online: https://www.usgs.gov/centers/eros (accessed on 7 June 2021).
- Ovsyuchenko, A.N.; Butanaev, Y.V.; Kuzhuget, K.S. Paleoseismological studies of a seismotectonic node in the south-west of Tuva. Vestnik Otd. Nauk Zemle Russ. Akad. Nauk 2016, 8, 1–18. [Google Scholar]
- Reisner, G.I.; Rozanov, M.V. On the question of the Mesozoic relief of Western Tuva. Geomorphologiya 1972, 2, 86–91. [Google Scholar]
- Basharina, N.P. Mesozoic Depressions of the Altai-Sayan and Kazakh Fold Regions (Geological Formations and Structure); Nauka: Novosibirsk, Russia, 1975. [Google Scholar]
- Adamenko, S.M.; Devyatkin, E.V.; Strelkov, S.A. Altai. In The History of the Development of the Relief of Siberia and the Far East (Altai-Sayan Mountainous Region); Nauka: Moscow, Russia, 1969; pp. 54–120. [Google Scholar]
- Vishnevsky, A.A.; Devyatkin, E.V.; Belyanko, L.N.; Lavrovich, N.N. State Geological Map of the USSR/Ed. Scale: 1: 200,000. Sheet M-45-XVIII. 1961. [Google Scholar]
- Chistyakov, K.V.; Ganyushkin, D.A.; Moskalenko, I.G.; Zelepukina, E.S.; Amosov, M.I.; Volkov, I.V.; Glebova, A.B.; Guzjel’, N.I.; Zhuravlev, S.A.; Prudnikova, T.N.; et al. Gornyj Massiv Mongun-Tajga; V.V.M.: Saint-Petersburg, Russia, 2012. [Google Scholar]
- Ganyushkin, D.A.; Chistyakov, K.V.; Volkov, I.V.; Bantcev, D.V.; Kunaeva, E.P.; Terekhov, A.V. Present Glaciers and Their Dynamics in the Arid Parts of the Altai Mountains. Geoscience 2017, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Ganyushkin, D.A.; Kunaeva, E.P.; Chistyakov, K.V.; Volkov, I.V. Interpretation of Glaciogenic Complexes From Satellite Images of the Mongun-Taiga Mountain Range. Geogr. Nat. Resour. 2018, 39, 63–72. [Google Scholar] [CrossRef]
- Devyatkin, E.V. Kajnozoj Vnutrennej Azii; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Aleksandrov, G.P.; Gulyaev, Y.S.; Sotnikova, G.G. State Geological Map of the USSR. Ed. P. S. Matrosov. Scale: 1: 200,000. Sheet M-46-XIII. 1966. [Google Scholar]
- Goudie, A.S. The Schmidt Hammer in geomorphological research. Prog. Phys. Geogr. Earth Environ. 2006, 30, 703–718. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Matthews, J.A.; Owen, G. The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quat. Sci. Rev. 2006, 25, 2846–2867. [Google Scholar] [CrossRef]
- Böhlert, R.; Egli, M.; Maisch, M.; Brandová, D.; Ivy-Ochs, S.; Kubik, P.W.; Haeberli, W. Application of a combination of dating techniques to reconstruct the Lateglacial and early Holocene landscape history of the Albula region (eastern Switzerland). Geomorphology 2011, 127, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Miner. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef] [Green Version]
- Wignall, G.; Bates, F.S. Absolute calibration of small-angle neutron scattering data. J. Appl. Crystallogr. 1987, 20, 28–40. [Google Scholar] [CrossRef]
- Keiderling, U. The new ‘BerSANS-PC’ software for reduction and treatment of small angle neutron scattering data. Appl. Phys. A 2002, 74, s1455–s1457. [Google Scholar] [CrossRef]
- IUPAC. The International Union of Pure and Applied Chemistry Classification [Electronic Resource].
- Teixeira, J. Experimental Methods for Studying Fractal Aggregates. In On Growth and Form; Springer: Dordrecht, The Netherlands, 1986; Volume 100, pp. 145–162. [Google Scholar]
- Kopitsa, G.P.; Ivanov, V.K.; Grigoriev, S.V.; Meskin, P.E.; Polezhaeva, O.S.; Garamus, V.M. Mesostructure of xerogels of hydrated zirconium dioxide. JETP Lett. 2007, 85, 122–126. [Google Scholar] [CrossRef]
- Ivanov, V.; Kopitsa, G.; Sharikov, F.Y.; Baranchikov, A.Y.; Shaporev, A.S.; Grigoriev, S.V.; Pranzas, P.K. Ultrasound-induced changes in mesostructure of amorphous iron (III) hydroxide xerogels: A small-angle neutron scattering study. Phys. Rev. B 2010, 81, 174201. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Kopitsa, G.P.; Mokrushin, A.S.; Khamova, T.V.; Sizova, S.V.; Khaddazh, M.; Tsvigun, N.V.; Pipich, V.; Gorshkova, Y.E.; et al. A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4. Mater. Chem. Phys. 2019, 225, 347–357. [Google Scholar] [CrossRef]
- Lessovaia, S.N.; Gerrits, R.; Gorbushina, A.A.; Polekhovsky, Y.S.; Dultz, S.; Kopitsa, G.G. Modeling Biogenic Weathering of Rocks from Soils of Cold Environments. In Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature; Frank-Kamenetskaya, O.V., Vlasov, D.Y., Panova, E.G., Lessovaia, S.N., Eds.; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-21614-6. [Google Scholar]
- Fedotov, G.N.; Tret’Yakov, Y.D.; Ivanov, V.K.; Kuklin, A.I.; Pakhomov, E.I.; Islamov, A.K.; Pochatkova, T.N. Fractal Colloidal Structures in Soils of Various Zonalities. Dokl. Chem. 2005, 405, 240–242. [Google Scholar] [CrossRef]
- Calatayud, V.; Rico, V.J. Chemotypes of Dimelaena oreina (Ascomycotina, Physciaceae) in the Iberian Peninsula. Bryologist 1999, 102, 39. [Google Scholar] [CrossRef]
- Innes, J. Lichenometry. Prog. Phys. Geogr. Earth Environ. 1985, 9, 187–254. [Google Scholar] [CrossRef]
- Dmitry, Y.U. Vlasov Changes of Granite Rapakivi under the Biofouling Influence. In Geochemistry; Elena, G.P., Ed.; IntechOpen: Rijeka, Croatia, 2021; ISBN 978-1-83962-851-1. [Google Scholar]
- Gorbushina, A.A. Life on the rocks. Environ. Microbiol. 2007, 9, 1613–1631. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, J.; Dong, G.; Wang, L.; Miller, L. OSL dating of glacier extent during the Last Glacial and the Kanas Lake basin formation in Kanas River valley, Altai Mountains, China. Geomorphology 2009, 112, 306–317. [Google Scholar] [CrossRef]
- Resheniya Vsesoyuznogo stratigraficheskogo soveshchaniya po dokembriyu, paleozoyu i chetvertichnoi sisteme Srednei Sibiri, Novosibirsk. In Chast’ III. Chetvertichnaja sistema. Objasnitel’nye zapiski k regional’nym stratigraficheskim shemam chetvertichnyh otlozhenij Srednej Sibirii (Resolution of the All-Union Stratigraphic Conferences on Precambrian, Paleozoic, and Quaternary of Central Siberia. Part III. Quaternary System. Explanatory Notes to Regional Stratigraphic Schemes of Quaternary Deposits. Novosibirsk, 1979); Vseross Nauchno-Issled/Geological Institute: Leningrad, Russia, 1983.
- Sheinkman, V.S. Testing the S-S Technique of TL Dating on the Dead Sea Sections, Its Use in the Altai Mountains and Palaeogeographic Interpretation of Results. Arkheologiya Etnografiya i Antropologiya Evrasii. 2002, 10, 22–37. [Google Scholar]
- Ramsey, C.B. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Okishev, P.A.; Borodavko, P.S. New material on Chuja-Kuray limnocomplexes. Quest. Geogr. Sib. 2001, 24, 18–28. [Google Scholar]
- Herget, J. Reconstruction of Pleistocene ice-dammed lake outburst floods in the Altai Mountains, Siberia. In Reconstruction of Pleistocene Ice-Dammed Lake Outburst Floods in the Altai Mountains, Siberia; Herget, J., Ed.; Geological Society of America: Boulder, CO, USA, 2005; Volume 386, ISBN 978-0-8137-2386-0. [Google Scholar]
- Okishev, P.A. Rel’ef i Oledenenie Russkogo Altaja; Izd. Tomsk UNTA: Tomsk, Russia, 2011. [Google Scholar]
- Panin, A.; Baryshnikov, G. The Chuya spillway upstream from the Chibit town. In Russian Altai in the Late Pleistocene and Holocene: Geomorphological Catastrophes and Landscape Rebound—Fieldtrip Guide; Publishing House of Altai State University: Barnaul, Russia, 2015; pp. 112–114. [Google Scholar]
- Herget, J.; Carling, P.; Agatova, A.; Batbaatar, J.; Borodavko, P.; Gillespie, A.; Nepop, R. Comment on Gribenski, N. Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai. Quat. Sci. Rev. 2017, 149, 288–305. [Google Scholar] [CrossRef]
Moraine Samples | Structural Parameters | ||||
---|---|---|---|---|---|
DS = 6 − n | SBET (Specific Surface Area)/m2/g | dp (Average Pore Diameter)/nm BJH (des) | VP/P0→0.99 (Specific Pore Volume)/ cm3/g | ||
Polygon K1 | 2.18 ± 0.02 | 4.6 ± 1.2 | 2.2 | 8.2 × 10−3 | |
polygon K3 | internal part (unweathered) of the boulder | 2.15 ± 0.02 | 2.7 ± 0.8 | 1.7 | 6.7 × 10−3 |
surface part (oxidized rind) | 2.14 ± 0.02 | 1.3 ± 0.3 | 1.9 | 3.9 × 10−3 |
Moraine Group/Parameters | N1/N2 | C, % | B, % | R | F, % | L, % |
---|---|---|---|---|---|---|
Moraines from the Kargy River’s valley | ||||||
B2 | 0.023 | 39 | 63.3 ± 16.67 | 46 ± 6.7 | 23.8 | 70 |
B1 | 0.013 | 48.3 | 60.5 ± 20.59 | 41 ± 8.3 | 36.8 | 59.5 |
A | 0.055 | 37.5 | 71 ± 19.38 | 43.7 ± 5 | 21 | 65.5 |
Moraines from the northeastern slope of the Mongun-Taiga massif * | ||||||
Holocene | 0.03 | 3.3 | 49.3± 1.57 | 51.3 ± 2.62 | 3.7 | 29.0 |
MIS 2 | 0.33 | 7.0 | 66.3 ± 1.83 | 40.4 ± 1.80 | 32.1 | 79.2 |
MIS 4 | 0.20 | 13.9 | 73.7 ± 2.50 | 44.7 ± 1.63 | 33.2 | 56.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganyushkin, D.A.; Lessovaia, S.N.; Vlasov, D.Y.; Kopitsa, G.P.; Almásy, L.; Chistyakov, K.V.; Panova, E.G.; Derkach, E.; Alekseeva, A. Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains. Geosciences 2021, 11, 342. https://doi.org/10.3390/geosciences11080342
Ganyushkin DA, Lessovaia SN, Vlasov DY, Kopitsa GP, Almásy L, Chistyakov KV, Panova EG, Derkach E, Alekseeva A. Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains. Geosciences. 2021; 11(8):342. https://doi.org/10.3390/geosciences11080342
Chicago/Turabian StyleGanyushkin, Dmitrii A., Sofia N. Lessovaia, Dmitrii Y. Vlasov, Gennady P. Kopitsa, László Almásy, Kirill V. Chistyakov, Elena G. Panova, Ekaterina Derkach, and Anastasiya Alekseeva. 2021. "Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains" Geosciences 11, no. 8: 342. https://doi.org/10.3390/geosciences11080342
APA StyleGanyushkin, D. A., Lessovaia, S. N., Vlasov, D. Y., Kopitsa, G. P., Almásy, L., Chistyakov, K. V., Panova, E. G., Derkach, E., & Alekseeva, A. (2021). Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains. Geosciences, 11(8), 342. https://doi.org/10.3390/geosciences11080342