The Neglected Involvement of Organic Matter in Forming Large and Rich Hydrothermal Orogenic Gold Deposits
Abstract
:1. Introduction
2. Orogenic Gold Deposits
3. Fluid Composition and Generation
4. Sources of Gold
5. Gold Solubility
6. Gold Precipitation
7. The Fundamental Involvement of Organic Matter
8. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemm, D.; Klemm, R.; Murr, A. Gold of the Pharaohs—6000 years of gold mining in Egypt and Nubia. J. Afr. Earth Sci. 2001, 33, 643–659. [Google Scholar] [CrossRef]
- Coulson, M. Gold as an investment. Appl. Earth Sci. 2005, 114, 122–128. [Google Scholar] [CrossRef]
- Reuters Staff. Available online: https://www.reuters.com/article/us-gold-mining-artisanal-explainer-idUSKBN1ZE0YU (accessed on 20 March 2021).
- Phillips, G.N.; Powell, R. Formation of gold deposits: A metamorphic devolatilization model. J. Metamorph. Geol. 2010, 28, 689–718. [Google Scholar] [CrossRef]
- Wyman, D.A.; Cassidy, K.F.; Hollings, P. Orogenic gold and the mineral systems approach: Resolving fact, fiction and fantasy. Ore Geol. Rev. 2016, 78, 322–335. [Google Scholar] [CrossRef]
- Gaboury, D. Parameters for the formation of orogenic gold deposits. App. Earth Sci. 2019, 128, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Groves, D.I.; Santosh, M.; Deng, J.; Wang, Q.; Yang, L.; Zhang, L. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Depos. 2020, 55, 275–292. [Google Scholar] [CrossRef]
- Tomkins, A.G. On the source of orogenic gold. Geology 2013, 41, 1255–1256. [Google Scholar] [CrossRef] [Green Version]
- Groves, D. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Miner. Depos. 1993, 28, 366–374. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar]
- Fontboté, L.; Kouzmanov, K.; Chiaradia, M.; Pokrovski, G.S. Sulfide minerals in hydrothermal deposits. Elements 2017, 13, 97–103. [Google Scholar] [CrossRef]
- Craw, D.; Campbell, J.R. Tectonic and structural setting for active mesothermal gold vein systems, Southern Alps, New Zealand. J. Struct. Geol. 2004, 26, 995–1005. [Google Scholar] [CrossRef]
- Bradley, D.C. Secular trends in the geologic record and the supercontinent cycle. Earth-Sci. Rev. 2011, 108, 16–33. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Bradley, D.; Leach, D.L. Secular variations in economic geology. Econ. Geol. 2010, 105, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, A.G. A biogeochemical influence on the secular distribution of orogenic gold. Econ. Geol. 2013, 108, 193–197. [Google Scholar] [CrossRef]
- Large, R.R.; Gregory, D.D.; Steadman, J.A.; Tomkins, A.G.; Lounejeva, E.; Danyushevsky, L.V.; Halpin, J.A.; Maslennikov, V.; Sack, P.J.; Mukkerjee, I.; et al. Gold in the oceans through time. Earth Planet. Sci. Lett. 2015, 428, 139–150. [Google Scholar] [CrossRef]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Lyons, T.W.; Gill, B.C. Ancient Sulfur Cycling and Oxygenation of the Early Biosphere. Elements 2010, 6, 93–99. [Google Scholar] [CrossRef]
- Pitcairn, I.K.; Olivo, G.R.; Teagle, D.A.H.; Craw, D. Sulfide evolution during prograde metamorphism of the Otago and Alpine Schists, New Zealand. Can. Miner. 2010, 48, 1267–1295. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Econ. Geol. 2011, 106, 1–31. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V.V. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef]
- Finch, E.G.; Tomkins, A.G. Pyrite-pyrrhotite stability in a metamorphic aureole: Implications for orogenic gold genesis. Econ. Geol. 2017, 112, 661–674. [Google Scholar] [CrossRef]
- Tomkins, A.G. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochim. Cosmochim. Acta 2010, 74, 3246–3259. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Phillips, G.N.; Evans, K.A. Role of CO2 in the formation of gold deposits. Nature 2004, 429, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common vs evolving fluid and metal sources through time. Lithos 2015, 223, 2–26. [Google Scholar] [CrossRef]
- Gorczyk, W.; Gonzalez, C.M.; Hobbs, B. Carbon dioxide as a proxy for orogenic gold source. Ore Geol. Rev. 2020, 127, 103829. [Google Scholar] [CrossRef]
- Lang, J.R.; Baker, T. Intrusion-related gold systems: The present level of understanding. Miner. Depos. 2001, 36, 477–489. [Google Scholar] [CrossRef]
- Augustin, J.; Gaboury, D. Multi-stage and multi-sourced fluid and gold in the formation of orogenic gold deposits in the world-class Mana district of Burkina Faso—Revealed by LA-ICP-MS analysis of pyrites and arsenopyrites. Ore Geol. Rev. 2019, 104, 495–521. [Google Scholar] [CrossRef]
- Ridley, J.R.; Diamond, L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol. 2000, 13, 146–162. [Google Scholar]
- Yardley, B.W.D.; Bodnar, R.J. Fluids in the continental crust. Geochem. Perspect. 2014, 3, 1–127. [Google Scholar] [CrossRef] [Green Version]
- Prokofiev, V.Y.; Naumov, V.B. Physicochemical parameters and geochemical features of ore-forming fluids for orogenic gold deposits throughout geological time. Minerals 2020, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Elmer, F.L.; White, R.W.; Powell, R. Devolatilization of metabasic rocks during greenschist–amphibolite facies metamorphism. J. Metam. Geol. 2006, 24, 497–513. [Google Scholar] [CrossRef]
- Gretchen, L.; Früh-Green, G.L. Fluids in metamorphism: Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 2010, 6, 173–178. [Google Scholar]
- Gaboury, D. Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments?: Insight from volatiles in fluid inclusions. Geology 2013, 41, 1207–1210. [Google Scholar] [CrossRef]
- Chi, G.; Dubé, B.; Williamson, K.; Williams-Jones, A.E. Formation of the Campbell-Red Lake gold deposit by H2O-poor, CO2-dominated fluids. Miner. Depos. 2006, 40, 726–741. [Google Scholar] [CrossRef]
- Mumm, A.S.; Oberthür, T.; Vetter, U.; Blenkinsop, T.G. High CO2 content of fluid inclusions in gold mineralisations in the Ashanti Belt, Ghana: A new category of ore forming fluids? Miner. Depos. 1997, 32, 107–118. [Google Scholar] [CrossRef]
- Klemd, R.; Hirdes, W. Origin of an unusual fluid composition in Early Proterozoic Palaeoplacer and lode-gold deposits in Birimian greenstone terranes of West Africa. S. Afr. J. Geol. 1997, 100, 405–414. [Google Scholar]
- Gaboury, D.; Genna, D.; Trottier, J.; Bouchard, M.; Augustin, J.; Malcolm, K. The Perron gold deposit, Archean Abitibi belt, Canada: Exceptionally high-grade mineralization related to higher gold-carrying capacity of hydrocarbon-rich fluids. Minerals 2021, in press. [Google Scholar]
- Oliver, N.H.S.; Allibone, A.; Nugus, M.J.; Vargas, C.; Jongens, R.; Peattie, R.; Chamberlain, V.A. The Super-Giant, High Grade, Paleoproterozoic Metasedimentary Rock—and Shear-Vein-Hosted Obuasi (Ashanti) Gold Deposit, Ghana, West Africa. Econ. Geol. 2021, 116, 1329–1353. [Google Scholar] [CrossRef]
- Pigois, J.P.; Groves, D.I.; Fletcher, I.R.; McNaughton, N.J.; Snee, L.W. Age constraints on Tarkwaian palaeoplacer and lode-gold formation in the Tarkwa-Damang district, SW Ghana. Miner. Depos. 2003, 38, 695–714. [Google Scholar] [CrossRef]
- Gaboury, D.; Nabil, H.; Ennaciri, A.; Maacha, L. Structural setting and fluid composition of gold mineralization along the central segment of the Keraf suture, Neoproterozoic Nubian Shield, Sudan: Implications for the source of gold. Int. Geol. Rev. 2020. [Google Scholar] [CrossRef]
- Gaboury, D.; Mackezie, D.; Craw, D. Fluid volatile composition associated with orogenic gold mineralization, Otago Schist, New Zealand: Implications of H2 and C2H6 for fluid evolution and gold source. Ore Geol. Rev. 2021, 133, 104086. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; André-Mayer, A.-S.; Jowitt, S.M.; Mudd, G.M. West Africa: The World’s premier paleoproterozoic gold province. Econ. Geol. 2017, 112, 123–143. [Google Scholar] [CrossRef]
- Lüders, V.; Klemd, R.; Oberthür, T.; Plessen, B. Different carbon reservoirs of auriferous fluids in African Archean and Proterozoic gold deposits? Constraints from stable carbon isotopic compositions of quartz-hosted CO2-rich fluid inclusions. Miner. Depos. 2015, 50, 449–454. [Google Scholar] [CrossRef]
- Frimmel, H.E. Earth’s continental crustal gold endowment. Earth Planet. Sci. Lett. 2008, 267, 45–55. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Thompson, J.F.H. Intrusion-related vein gold deposits: Types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. Res. Geol. 1998, 48, 237–250. [Google Scholar] [CrossRef]
- Pitcairn, I.K.; Craw, D.; Teagle, D.A.H. Metabasalts as sources of metals in orogenic gold deposits. Miner Depos. 2015, 50, 373–390. [Google Scholar] [CrossRef]
- Augustin, J.; Gaboury, D. Paleoproterozoic plume-related basaltic rocks in the Mana gold district in western Burkina Faso, West Africa: Implications for exploration and the source of gold in orogenic deposits. Afr. J. Earth Sci. 2017, 129, 17–30. [Google Scholar] [CrossRef]
- Patten, C.G.C.; Pitcairn, I.K.; Molnár, F.; Kolb, J.; Beaudoin, G.; Guillemette, C.; Peillod, A. Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks. Geology 2020. [Google Scholar] [CrossRef]
- Large, R.; Thomas, H.; Craw, D.; Henne, A.; Henderson, S. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. N. Z. J. Geol. Geophys. 2012, 55, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Pitcairn, I.K.; Leventis, N.; Beaudoin, G.; Faure, S.; Guilmette, C.; Dubé, B. A metasedimentary source of gold in Archean orogenic gold deposits. Geology 2021. [Google Scholar] [CrossRef]
- Zhong, R.; Brugger, J.; Tomkins, A.G.; Chen, Y.; Li, W. Fate of gold and base metals during metamorphic devolatilization of a pelite. Geochim. Cosmochim. Acta 2015, 171, 338–352. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Evans, K.; Fisher, L.A.; Zhou, M.-F.; Hu, S.-Y.; Fougerouse, D.; Large, R.R.; Li, J.W. Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system. Geochim. Cosmochim. Acta 2020, 276, 345–362. [Google Scholar] [CrossRef]
- Augustin, J.; Gaboury, D.; Crevier, M. The world-class Wona-Kona gold deposit, Burkina Faso. Ore Geol. Rev. 2016, 78, 667–672. [Google Scholar] [CrossRef]
- Dubé, B.; Mercier-Langevin, P.; Ayer, J.; Pilote, J.-L.; Monecke, T. Gold Deposits of the World-Class Timmins-Porcupine Camp, Abitibi Greenstone Belt, Canada; Society of Economic Geologists Special Publication: Littleton, CO, USA, 2020; Volume 23, pp. 53–80. [Google Scholar]
- Gaboury, D.; Keita, M.; Guha, J.; Lu, H.-Z. Mass spectrometric analysis of volatiles in fluid inclusions decrepitated by controlled heating under vacuum. Econ. Geol. 2008, 103, 439–443. [Google Scholar] [CrossRef]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Canfield, D. A new model for Proterozoic ocean chemistry. Nature 1998, 396, 450–453. [Google Scholar] [CrossRef]
- Steadman, J.A.; Large, R.R.; Blamey, N.J.; Mukherjee, I.; Corkrey, R.; Danyushevsky, L.V.; Maslennikov, V.; Hollings, P.; Garven, G.; Brand, U.; et al. Evidence for elevated and variable atmospheric oxygen in the Precambrian. Precambr. Res. 2020, 343, 105722. [Google Scholar] [CrossRef]
- Heinson, G.; Duan, J.; Kirkby, A.; Robertson, K.; Thiel, K.; Aivazpourporgou, S.; Soyer, W. Lower crustal resistivity signature of an orogenic gold system. Sci. Rep. 2021, 11, 15807. [Google Scholar] [CrossRef]
- Rickard, D.; Mussmann, M.; Steadman, J.A. Sedimentary sulfide. Elements 2017, 13, 117–122. [Google Scholar] [CrossRef]
- Stefansson, A.; Seward, T.M. Gold(I) complexing in aqueous sulphide solutions to 500 °C and 500 bar. Geochim. Cosmochim. Acta 2004, 68, 4121–4143. [Google Scholar] [CrossRef]
- Simmons, S.F.; Tutolo, B.M.; Barker, S.L.L.; Goldfarb, R.J.; Robert, F. Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits; Society of Economic Geologists Special Publication: Littleton, CO, USA, 2020; Volume 23, pp. 823–845. [Google Scholar]
- Rauchenstein-Martinek, K.; Wagner, T.; Wälle, M.; Heinrich, C.A. Gold concentrations in metamorphic fluids: A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem. Geol. 2014, 385, 70–83. [Google Scholar] [CrossRef]
- Wagner, T.; Fusswinkel, T.; Wälle, M.; Heinrich, C.A. Microanalysis of fluid inclusions in crustal hydrothermal systems using laser ablation methods. Elements 2016, 12, 323–328. [Google Scholar] [CrossRef]
- Fusswinkel, T.; Wagner, T.; Sakellaris, G. Fluid evolution of the Neoarchean Pampalo orogenic gold deposit (E Finland): Constraints from LA-ICPMS fluid inclusion microanalysis. Chem. Geol. 2017, 450, 96–121. [Google Scholar] [CrossRef]
- Radtke, A.S.; Scheiner, B.J. Studies of hydrothermal gold deposition (I). Carlin gold deposit, Nevada: The role of carbonaceous materials in gold deposition. Econ. Geol. 1970, 65, 87–102. [Google Scholar] [CrossRef]
- Crede, L.S.; Evans, K.A.; Rempel, K.U.; Brugger, J.; Etschmann, B.; Bourdet, J.; Reith, F. Revisiting hydrocarbon phase mobilization of Au in the Au–Hg McLaughlin Mine, Geysers/Clear Lake area, California. Ore Geol. Rev. 2020, 117, 103218. [Google Scholar] [CrossRef]
- Emsbo, P.; Koenig, A.E. Transport of Au in Petroleum: Evidence from the Northern Carlin Trend, Nevada. In Mineral Exploration and Research: Digging Deeper. Proc. 9th Biennial SGA Meeting; Millpress: Dublin, Ireland, 2007; pp. 695–698. [Google Scholar]
- Ge, X.; Selby, D.; Liu, J.; Chen, Y.; Cheng, G.; Shen, C. Genetic relationship between hydrocarbon system evolution and Carlin-type gold mineralization: Insights from Re-Os pyrobitumen and pyrite geochronology in the Nanpanjiang Basin, South China. Chem. Geol. 2021, 559, 119953. [Google Scholar] [CrossRef]
- Fuchs, S.; Schumann, D.; Williams-Jones, A.E.; Vali, H. The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chem. Geol. 2015, 393–394, 55–66. [Google Scholar] [CrossRef]
- Fuchs, S.; Williams-Jones, A.E.; Jackson, S.E.; Przybylowicz, W.J. Metal distribution in pyrobitumen of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: Evidence for liquid hydrocarbon ore fluids. Chem. Geol. 2016, 426, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, S.; Schumann, D.; Martin, R.F.; Couillard, M. The extensive hydrocarbon-mediated fixation of hydrothermal gold in the Witwatersrand Basin, South Africa. Ore Geo. Rev. 2021, 138, 104313. [Google Scholar] [CrossRef]
- Crede, L.S.; Evans, K.A.; Rempel, K.U.; Grice, K.; Sugiyama, I. Gold partitioning between 1-dodecanethiol and brine at elevated temperatures: Implications of Au transport in hydrocarbons for oil-brine ore systems. Chem. Geol. 2019, 504, 28–37. [Google Scholar] [CrossRef]
- Crede, L.S.; Liu, W.; Evans, K.A.; Rempel, K.U.; Testemale, D.; Brugger, J. Crude oils as ore fluids: An experimental in-situ XAS study of gold partitioning between brine and organic fluid from 25 to 250 °C. Geochim. Cosmochim. Acta 2019, 244, 352–365. [Google Scholar] [CrossRef]
- Liu, W.; Chen, M.; Yang, Y.; Mei, Y.; Etschmann, B.; Brugger, J.; Johannessen, B. Colloidal gold in sulphur and citrate-bearing hydrothermal fluids: An experimental study. Ore Geol. Rev. 2019, 114, 103142. [Google Scholar] [CrossRef]
- Petrella, L.; Thébaud, N.; Fougerouse, D.; Evans, K.; Quadir, Z.; Laflamme, C. Colloidal gold transport: A key to high-grade gold mineralization. Miner. Depos. 2020, 55, 1247–1254. [Google Scholar] [CrossRef]
- McLeish, D.F.; Williams-Jones, A.E.; Vasyukova, O.V.; Clark, J.R.; Board, W.S. Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature. Proc. Natl. Acad. Sci. USA 2021, 118, e2100689118. [Google Scholar] [CrossRef]
- Migdisov, A.; Guo, X.; Williams-Jones, A.; Sun, C.; Vasyukova, O.; Sugiyama, I.; Fuchs, S.; Pearce, K.; Roback, R. Hydrocarbons as ore fluids. Geochem. Perspec. Lett. 2017, 5, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Tagirov, B.R.; Seward, T.M. Hydrosulfide/sulfide complexes of zinc to 250 °C and the thermodynamic properties of sphalerite. Chem. Geol. 2010, 269, 301–311. [Google Scholar] [CrossRef]
- Phillips, G.N.; Powell, R. Origin of Witwatersrand gold: A metamorphic devolatilisation—Hydrothermal replacement model. Appl. Earth Sci. 2011, 120, 112–129. [Google Scholar] [CrossRef]
- Hu, S.-Y.; Evans, K.; Fisher, L.; Rempel, K.; Craw, D.; Evans, N.J.; Cumberland, S.; Robert, A.; Grice, K. Associations between sulfides, carbonaceous material, gold and other trace elements in polyframboids: Implications for the source of orogenic gold deposits, Otago Schist, New Zealand. Geochim. Cosmochim. Acta 2016, 180, 197–213. [Google Scholar] [CrossRef]
- Hu, S.-Y.; Evans, K.; Craw, D.; Rempel, K.; Grice, K. Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits. Geology 2016, 45, 167–170. [Google Scholar] [CrossRef]
- Dill, H.G.; Kus, J.; Goldmann, S.; Suárez Ruiz, I.; Neumann, T.; Kaufhold, S. The physical-chemical regime of a sulfide-bearing semi-graphite mineral assemblage in metabasic rocks (SE Germany)—A multidisciplinary study of the missing link between impsonite and graphite. Inter. J. Coal Geol. 2019, 214, 103262. [Google Scholar] [CrossRef]
- Magoon, L.B.; Dow, W.G. The Petroleum System—From Source to Trap; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994; Volume 60. [Google Scholar]
- Sherwood Lollar, B.; Westgate, T.; Ward, J.; Slater, G.F.; Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 2002, 416, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Reeves, E.P.; Fiebig, J. Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere. Elements 2020, 16, 25–31. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Savchuk, Y.S.; Asadulin, E.E.; Volkov, A.V.; Aristov, V.V. The Muruntau deposit: Geodynamic position and a variant of genetic model of the ore-forming system. Geol. Ore Depos. 2018, 60, 365–397. [Google Scholar] [CrossRef]
- Steele-MacInnis, S.; Manning, C.E. Hydrothermal properties of geologic fluids. Elements 2020, 16, 375–380. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Bourdet, J.; Eadington, P. Fluorescence and Infrared Spectroscopy of Inclusion; Oil. Internal Report EP129625 Australia; CSIRO: Canberra, Australia, 2012; p. 60. [Google Scholar]
- Zotov, A.V.; Kuzmin, N.N.; Reukov, V.L.; Tagirov, B.R. Stability of AuCl2− from 25 to 1000 °C at pressures to 5000 bar and consequences for hydrothermal gold mobilization. Minerals 2018, 8, 286. [Google Scholar] [CrossRef] [Green Version]
Deposit/District | Au ppm | Moz | CH4 | C2H6 | Age | Country | Status | Remark | Reference |
---|---|---|---|---|---|---|---|---|---|
Campbell-Red Lake mine | 20 | 25 | X | ? | Archean | Canada | Production | One of the world richest gold mine | [36] |
Detour Gold mine | 1 | 20 | X | X | Archean | Canada | Production | The largest Canadian gold deposit | [35] |
HGZ (Perron) * | >30 | ? | X | X | Archean | Canada | Exploration | One of the richest gold deposits not mined | [39] |
Wona Mine (Mana district) | 5 | 10 | X | X | Paleoproterozoic | Burkina Faso | Production | The most gold endowed district in Burkina Faso | [35] |
Ashanti-Obuasi mine | 8 | 70 | X | ? | Paleoproterozoic | Ghana | Production | The largest Birimian gold deposit | [37,40] |
Tarkwa mine | ? | 20 | X | ? | Paleoproterozoic | Ghana | Production | One of the largest gold mines in Ghana | [38,41] |
Gabgaba district ** | 2 | >5 | X | X | Neoproterozoic | Sudan | Production | The largest East Africa gold project | [42] |
Macreas mine | 1 | 10 | X | X | Cretaceous | New Zealand | Production | One of the world largest single Phanerozoic deposit | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaboury, D. The Neglected Involvement of Organic Matter in Forming Large and Rich Hydrothermal Orogenic Gold Deposits. Geosciences 2021, 11, 344. https://doi.org/10.3390/geosciences11080344
Gaboury D. The Neglected Involvement of Organic Matter in Forming Large and Rich Hydrothermal Orogenic Gold Deposits. Geosciences. 2021; 11(8):344. https://doi.org/10.3390/geosciences11080344
Chicago/Turabian StyleGaboury, Damien. 2021. "The Neglected Involvement of Organic Matter in Forming Large and Rich Hydrothermal Orogenic Gold Deposits" Geosciences 11, no. 8: 344. https://doi.org/10.3390/geosciences11080344
APA StyleGaboury, D. (2021). The Neglected Involvement of Organic Matter in Forming Large and Rich Hydrothermal Orogenic Gold Deposits. Geosciences, 11(8), 344. https://doi.org/10.3390/geosciences11080344