Morphoneotectonics of the Abruzzo Periadriatic Area (Central Italy): Morphometric Analysis and Morphological Evidence of Tectonics Features
Abstract
:1. Introduction
2. Geological, Seismotectonic, and Morphological Settings of the Study Area
3. Materials and Methods
3.1. DEM-Based Preliminary Analysis
3.2. Sub-Basins-Derived Indexes
3.3. Drainage Network-Derived Indexes and Markers
3.4. Structural Geomorphological Field Mapping
3.5. Detailed Analysis and Mapping of Fluvial Terraces
4. Results
4.1. Drainage Network
4.2. DEM–Based Morphometric Analysis
4.2.1. Sub-Basins-Derived Indexes
4.2.2. Stream Length-Gradient Index (SL Index)
4.2.3. Normalized Channel Steepness Index (ksn)
4.3. Morphological Field Evidence of Tectonics
4.4. Fluvial Terraces’ Spatial and Temporal Arrangement
- Tronto River;
- Vomano River;
- Pescara River;
- Sangro River.
5. Discussion
- S1 (Miocene–Pliocene)—compressive thrust front responsible for the emplacement of the Abruzzo Apennine chain area, marking the transition between the chain and the piedmont area. This family shows a prevalent NNW–SSE, NW–SE, and ~N–S direction. Its spatial arrangement results from the analyses of the main geomorphic indices (i.e., Irta, SL index, and ksn), indicating an area dominated by inherited tectonic structures with high tectonic activity.
- F1 (Upper Pliocene–Lower Pleistocene)—normal fault system which affected the outer part of the chain area and the inner sectors of the piedmont one. They show almost the same orientation as the S1 family (NNW–SSE-, NNE–SSW, and ~N–S-oriented). The detection of this family derives from the alignment of several morphological field evidence of tectonics, especially triangular facets, 90° confluences, and river bends.
- F2 (Upper Pliocene–Lower Pleistocene)—normal fault system with a main strike–slip component, located in the inner and axial part of the piedmont area. This family shows a ~N–S direction (from NNW–SSE to NNE–SSW) and was detected both from morphological field evidence of tectonics and from fluvial terraces analysis. Several river bends, triangular facets, and 90° and counterflow confluences lining up in these directions; moreover, these structural elements can be considered responsible for the dissection and NE-ward tilting of the ancient fluvial terraces.
- F3 (Middle Pleistocene–lower Middle Pleistocene)—normal fault system with a prevalent NNE–SSW and NW–SE trend. The detection of this family was derived from the alignments of triangular facets, rectilinear fluvial segments, hanging and beheaded valleys, counterflow confluences, and river bends. They are placed along the main river valleys, and they can be considered responsible for the migration towards the South of the main river valleys (in good agreement with the main asymmetry of the basins) and for the inclination of the terraced fluvial deposits. These tectonic structures also suggest the presence of differentiated tilting processes with differential uplift rates, as reported in several previous studies, i.e., [70,116,162,163], and testified, confirmed, and quantified by this study. Taking into account this analysis, it is possible to testify the difficulty in making an exact and direct correlation of the terraced deposits all over the basins present in the study area as they are subject to tilting, uplift rates, and depositional/erosive processes fairly different from each other.
- F4 (Upper Pleistocene)— transtensive fault system mainly located in the central–outer part of the Abruzzo Periadriatic Area. These tectonic structures show a ~NNW–SSE (varying from NW–SE to E–W) direction. Their mapping was derived from the connections and/or alignments of several morphological field evidence (i.e., rectilinear fluvial segments, river bends, and 90° confluences) detected in the study area. This family could be associated with deep and blind structures, which do not show superficial evidence but can be considered currently active as confirmed by several works [54,105,164,165] and historical and recent seismicity (i.e., Central-southern Apennines 1456, Mw 7.2; Capitanata 1627, Mw 6.7; Gran Sasso 1950, Mw 5.7; San Giuliano di Puglia 2012, Mw 5.2; Abruzzo Coast 2020, Mw 3.1).
- Central–Eastern Apennine Chain (CE–AC)—chain area affected by intense Plio–Quaternary uplift (about 1 mm/year [38,88]). The area was involved by compressive tectonics (thrust fronts) up to Pliocene. In this area, there is a clear prevalence of structural-related (morphostructural) elements with the presence of exhumed thrusts.
- Outer Apennine Chain (Ou–AC)—chain area affected by Plio–Quaternary uplift (rate > 0.7 mm/year [163]) and involved by extensional tectonics between the Pliocene and the Lower Pleistocene. Erosional and depositional (morphosculptural) landforms dominate the area with active processes induced by the regional uplift and are locally influenced by tectonic control (minor faults) and/or rock control (hard rock outcropping).
- Inner Piedmont (In–P)—the inner portion of the piedmont area is affected by moderate Pleistocene uplift (0.7–0.5 mm/year) with evidence of predominantly extensional tectonics without superficial evidence; furthermore, the morphotectonic setting is influenced also by the presence of blind thrusts [161,166]. As in the previous area, the major landforms refer to morphosculptural ones and are represented by erosional processes (fluvial and slope processes) locally influenced by tectonic and lithologic control.
- South–Eastern Piedmont (Ea–P1)—piedmont zone located in the central–southern portion of the Abruzzo Periadriatic Area, with a medium Pleistocene uplift rate (0.5–0.3 mm/year) and evidence of main extensional tectonics without superficial evidence; also in this sector, the emplacement of deep blind thrusts influences its morphotectonic setting. In this morphotectonic area, the major landforms are represented by structure–controlled (morphostructural) elements with flat hills (mesa landforms) characterized by gentle to steep slopes; locally, NE-ward tilting processes gave rise to cuesta or hogback (especially in the southernmost area) landforms.
- North–Eastern Piedmont (Ea–P2)—sector located in the central–northern sector of the Abruzzo Periadriatic Area, with a medium Pleistocene uplift rate (0.5–0.3 mm/year) and evidence of extensional and transtensive tectonics and influences of deep blind thrusts. In this sector, the major landforms are represented by erosional and depositional (morphosculptural) landforms, locally influenced by lithological and tectonic control.
- Outer South–Eastern Piedmont (Ea–P3)—sector corresponding to the southeastern portion of the study area, with a low uplift rate (0.3–0.15 mm/year). It is affected by extensional Pleistocene (from Middle to Upper) tectonics with no superficial evidence and still active deep compressive (offshore blind thrusts [161,166]). In this area, as for Ea–P1, prevail structure-related (morphostructural) elements with the presence of mesa and cuesta landforms.
- Northern Coastal Piedmont (Co–P1)—sector located in the external northeastern portion of the study area and characterized by very low Pleistocene uplift (rate < 0.15 mm/year). The evolution of the area is controlled by deep and blind thrusts. This landscape is dominated by a gentle NE–dipping homocline, incised by the main river valleys and by minor coastal basins.
- Southern Coastal Piedmont (Co–P2)—sectors located in the external southeastern part of the study area, dominated by very low Pleistocene uplifting (rate < 0.15 mm/year). It is influenced by offshore deep and blind thrusts and strike-slip faults (pertaining to the F4 tectonic family). Its landscape is mainly related to the presence of flat or gently inclined surfaces (mesa and cuesta landforms).
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Struth, L.; Garcia-Castellanos, D.; Viaplana-Muzas, M.; Vergés, J. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: From endorheism to exorheism. Geomorphology 2019, 327, 554–571. [Google Scholar] [CrossRef]
- Venkatesan, A.; Jothibasu, A.; Anbazhagan, S. GIS Based Quantitative Geomorphic Analysis of Fluvial System and Implications on the Effectiveness of River Basin Environmental Management. In Environmental Management of River Basin Ecosystems; Ramkumar, M., Kumaraswamy, K., Mohanraj, R., Eds.; Springer Earth System Sciences: Cham, Switzerland, 2015; pp. 201–225. [Google Scholar]
- Bull, W.B.; McFadden, L.D. Tectonic geomorphology north and south of the Garlock fault, California. In Proceedings of the Geomorphology in Arid Regions Process 8th Binghamton Symposium in Geomorphology, Binghamton, NY, USA, 23–24 September 1977; pp. 115–138. [Google Scholar]
- Merritts, D.J.; Vincent, K.R. Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Medocino triple junction region, northern California. Geol. Soc. Am. Bull. 1989, 101, 1373–1388. [Google Scholar] [CrossRef]
- Burbank, D.W.; Anderson, R.S. Tectonic Geomorphology, 2nd ed.; Wiley-Blackwell: Hokken, NJ, USA, 2011. [Google Scholar]
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquakes, Uplift, and Landscape, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Wobus, C.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from topography: Procedures, promise, and pitfalls. Spec. Pap. Geol. Soc. Am. 2006, 398, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Maroukian, H.; Gaki-Papanastassiou, K.; Karymbalis, E.; Vouvalidis, K.; Pavlopoulos, K.; Papanastassiou, D.; Albanakis, K. Morphotectonic control on drainage network evolution in the Perachora Peninsula, Greece. Geomorphology 2008, 102, 81–92. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Pavano, F.; Catalano, S.; Romagnoli, G.; Tortorici, G. Hypsometry and relief analysis of the southern termination of the Calabrian arc, NE-Sicily (southern Italy). Geomorphology 2018, 304, 74–88. [Google Scholar] [CrossRef]
- Jackson, J.; Norris, R.; Youngson, J. The structural evolution of active fault and fold systems in central Otago, New Zealand: Evidence revealed by drainage patterns. J. Struct. Geol. 1996, 18, 217–234. [Google Scholar] [CrossRef]
- Burbank, D.W.; Leland, J.; Fielding, E.; Anderson, R.S.; Brozovic, N.; Reid, M.R.; Duncan, C. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 1996, 379, 505–510. [Google Scholar] [CrossRef]
- Avouac, J.P.; Peltzer, G. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira Fault System. J. Geophys. Res. 1993, 98, 21773–21807. [Google Scholar] [CrossRef] [Green Version]
- Molnar, P. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China. J. Geol. 1994, 102, 583–602. [Google Scholar] [CrossRef]
- Keller, E.A.; Gurrola, L.; Tierney, T.E. Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding. Geology 1999, 27, 515–518. [Google Scholar] [CrossRef]
- Ramsey, L.A.; Walker, R.T.; Jackson, J. Fold evolution and drainage development in the Zagros mountains of Fars province, SE Iran. Basin Res. 2008, 20, 23–48. [Google Scholar] [CrossRef]
- Keller, E.A.; DeVecchio, D.E. Tectonic Geomorphology of Active Folding and Development of Transverse Drainages. In Treatise on Geomorphology; Shroder, J.F., Owen, L.A., Eds.; Elsevier Inc.: London, UK, 2013; pp. 129–147. [Google Scholar]
- Collignon, M.; Yamato, P.; Castelltort, S.; Kaus, B.J.P. Modeling of wind gap formation and development of sedimentary basins during fold growth: Application to the Zagros Fold Belt, Iran. Earth Surf. Process. Landf. 2016, 41, 1521–1535. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wu, D.; Cheng, L.; Zhang, T.; Xiong, J.; Zheng, X.; Li, Y. Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland. Geomorphology 2017, 229, 12–23. [Google Scholar] [CrossRef]
- Graveleau, F.; Dominguez, S. Analogue modelling of the interaction between tectonics, erosion and sedimentation in foreland thrust belts. Comptes Rendus Geosci. 2008, 340, 324–333. [Google Scholar] [CrossRef]
- Graveleau, F.; Hurtrez, J.E.; Dominguez, S.; Malavieille, J. A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics 2011, 513, 68–87. [Google Scholar] [CrossRef]
- Guerit, L.; Dominguez, S.; Malavieille, J.; Castelltort, S. Deformation of an experimental drainage network in oblique collision. Tectonophysics 2016, 693, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Lague, D.; Davy, P. Constraints on the long-term colluvial erosion law by analyzing slope-area relationships at various tectonic uplift rates in the Siwaliks Hills (Nepal). J. Geophys. Res. Solid Earth 2003, 108, 2129. [Google Scholar] [CrossRef]
- Viaplana-Muzas, M.; Babault, J.; Dominguez, S.; Van Den Driessche, J.; Legrand, X. Drainage network evolution and patterns of sedimentation in an experimental wedge. Tectonophysics 2015, 664, 109–124. [Google Scholar] [CrossRef]
- Viaplana-Muzas, M.; Babault, J.; Dominguez, S.; Van Den Driessche, J.; Legrand, X. Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt. Basin Res. 2019, 31, 290–310. [Google Scholar] [CrossRef]
- Tomkin, J.H.; Braun, J. Simple models of drainage reorganisation on a tectonically active ridge system. N. Z. J. Geol. Geophys. 1999, 42, 1–10. [Google Scholar] [CrossRef]
- Champel, B.; van der Beek, P.; Mugnier, J.-L.; Leturmy, P. Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature. J. Geophys. Res. 2002, 107, ETG-2. [Google Scholar] [CrossRef]
- van der Beek, P.; Champel, B.; Mugnier, J.L. Control of detachment dip on drainage development in regions of active fault-propagation folding. Geology 2002, 30, 471–474. [Google Scholar] [CrossRef]
- Humphrey, N.F.; Konrad, S.K. River incision or diversion in response to bedrock uplift. Geology 2000, 28, 43–46. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T. Geomorphic assessment of active tectonics in the acambay graben, Mexican volcanic belt. Earth Surf. Process. Landf. 1998, 23, 317–332. [Google Scholar] [CrossRef]
- Gürbüz, A.; Gürer, Ö.F. Tectonic geomorphology of the north anatolian fault zone in the Lake Sapanca basin (eastern Marmara Region, Turkey). Geosci. J. 2008, 12, 215–225. [Google Scholar] [CrossRef]
- Arrowsmith, J.R.; Zielke, O. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology 2009, 113, 70–81. [Google Scholar] [CrossRef]
- Gasparini, N.M.; Whipple, K.X. Diagnosing climatic and tectonic controls on topography: Eastern flank of the northern Bolivian Andes. Lithosphere 2014, 6, 230–250. [Google Scholar] [CrossRef] [Green Version]
- Gaidzik, K.; Ramírez-Herrera, M.T. Geomorphic indices and relative tectonic uplift in the Guerrero sector of the Mexican forearc. Geosci. Front. 2017, 8, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Polidori, L.; Hage, M. El Digital elevation model quality assessment methods: A critical review. Remote Sens. 2020, 12, 3522. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Buccolini, M. Long-term geomorphological evolution in the Abruzzo area, Central Italy: Twenty years of research. Geol. Carpathica 2017, 68, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Parlagreco, L.; Mascioli, F.; Miccadei, E.; Antonioli, F.; Gianolla, D.; Devoti, S.; Leoni, G.; Silenzi, S. New data on Holocene relative sea level along the Abruzzo coast (central Adriatic, Italy). Quat. Int. 2011, 232, 179–186. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Miccadei, E.; Piacentini, T. Morphotectonic study of the lower Sangro River valley (Abruzzi, Central Italy). Geomorphology 2008, 102, 145–158. [Google Scholar] [CrossRef]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Miccadei, E.; Nesci, O.; Pambianchi, G.; Piacentini, T.; Troiani, F. Morphotectonic evolution of the Adriatic piedmont of the Apennines: An advancement in the knowledge of the Marche-Abruzzo border area. Geomorphology 2008, 102, 119–129. [Google Scholar] [CrossRef]
- Currado, C.; Fredi, P. Morphometric parameter of drainage basin and morphotectonic setting of eastern Abruzzo. Mem. della Soc. Geol. Ital. 2000, 55, 411–420. [Google Scholar]
- Lupia Palmieri, E.; Ciccacci, S.; Civitelli, G.; Corda, L.; D’Alessandro, L.; Del Monte, M.; Fredi, P.; Pugliese, F. Geomorfologia quantitativa e morfodinamica del territorio abruzzese: I-il bacino idrografico del Fiume Sinello. Geogr. Fis. Din. Quat. 1995, 18, 31–46. [Google Scholar]
- Lupia Palmieri, E.; Centamore, E.; Ciccacci, S.; D’Alessandro, L.; Del Monte, M.; Fredi, P.; Pugliese, F. Geomorfologia quantitativa e morfodinamica del territorio abruzzese: II-il bacino idrografico del Fiume Tordino. Geogr. Fis. Din. Quat. 1998, 21, 113–129. [Google Scholar]
- Lupia Palmieri, E.; Biasini, A.; Caputo, C.; Centamore, E.; Ciccacci, S.; Del Monte, M.; Fredi, P.; Pugliese, F. Geomorfologia Quantitativa e Morfodinamica del Territorio Abruzzese: III-Il Bacino Idrografico del Fiume Saline. Geogr. Fis. Din. Quat. 2001, 24, 157–176. [Google Scholar]
- Panizza, M.; Castaldini, D.; Bollettinari, G.; Carton, A.; Mantovani, F. Neotectonic research in applied geomorphological studies. Z. Geomorphol. Suppl. 1987, 63, 173–211. [Google Scholar]
- Panizza, M. Breviario dei rapporti fra geomorfologia e neotettonica. Quat. Ital. J. Quat. Sci. 1997, 10, 267–272. [Google Scholar]
- Carabella, C.; Buccolini, M.; Galli, L.; Miccadei, E.; Paglia, G.; Piacentini, T. Geomorphological analysis of drainage changes in the NE Apennines piedmont area: The case of the middle Tavo River bend (Abruzzo, Central Italy). J. Maps 2020, 16, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Rapisardi, L. Tratti di Neotattonica al Confine Molisano-Abruzzese; CNR—Progetto finalizzato Geodinamica: Rome, Italy, 1982. [Google Scholar]
- Coltorti, M.; Farabollini, P.; Gentili, B.; Pambianchi, G. Geomorphologic evidence for anti-Apennine faults in the Umbro–Marchean Apennines and in the peri-Adriatic basin, Italy. Geomorphology 1996, 15, 33–45. [Google Scholar] [CrossRef]
- Bigi, S.; Cantalamessa, G.; Centamore, E.; Didaskalou, P.; Dramis, F.; Farabollini, P.; Gentili, B.; Invernizzi, C.; Micarelli, A.; Nisio, S.; et al. La fascia periadriatica marchigiano-abruzzese dal pliocene medio ai tempi attuale: Evoluzione tettonico-sedimentaria e geomorfologica. Stud. Geol. Camerti 1995, Speciale 1995/1, 37–49. [Google Scholar]
- Mayer, L.; Menichetti, M.; Nesci, O.; Savelli, D. Morphotectonic approach to the drainage analysis in the North Marche region, central Italy. Quat. Int. 2003, 101–102, 157–167. [Google Scholar] [CrossRef]
- Frankel, K.L.; Pazzaglia, F.J. Tectonic geomoomorphology, drainage basin metrics, and active mountain fronts. Geogr. Fis. Din. Quat. 2005, 28, 7–21. [Google Scholar]
- Molin, P.; Fubelli, G. Morphometric evidence of the topographic growth of the central Apennines. Geogr. Fis. Din. Quat. 2005, 28, 47–61. [Google Scholar]
- Miccadei, E.; Piacentini, T.; Pozzo, A.D.; Corte, M.L.; Sciarra, M. Morphotectonic map of the Aventino-Lower Sangro valley (Abruzzo, Italy), scale 1:50,000. J. Maps 2013, 9, 390–409. [Google Scholar] [CrossRef] [Green Version]
- Miccadei, E.; Carabella, C.; Paglia, G.; Piacentini, T. Paleo-drainage network, morphotectonics, and fluvial terraces: Clues from the verde stream in the middle Sangro river (central italy). Geoscience 2018, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Sembroni, A.; Molin, P.; Soligo, M.; Tuccimei, P.; Anzalone, E.; Billi, A.; Franchini, S.; Ranaldi, M.; Tarchini, L. The uplift of the Adriatic flank of the Apennines since the Middle Pleistocene: New insights from the Tronto River basin and the Acquasanta Terme Travertine (central Italy). Geomorphology 2020, 352, 106990. [Google Scholar] [CrossRef]
- Castiglioni, B. Ricerche morfologiche nei terreni pliocenici dell’Italia Centrale. Pubblicazioni dell’Istituto di Geografia della R. Università di Roma: Rome, Italy, 1935; pp. 1–81. [Google Scholar]
- Demangeot, J. Geomorphologie des Abruzzes Adriatiques. Cent. Rech. Doc. Cartogr. Mem. Doc. 1965, 403. [Google Scholar] [CrossRef]
- Ambrosetti, P.; Bonadonna, F.P.; Bosi, C.; Carraro, F.; Cita, B.M.; Giglia, G.; Manetti, P.; Martinis, B.; Merlo, C.; Panizza, M.; et al. Proposta di un Progetto Operativo per L’elaborazione Della Carta Neotettonica D’Italia; CNR—Progetto finalizzato Geodinamica: Rome, Italy, 1976; pp. 1–49. [Google Scholar]
- Cazzini, F.; Zotto, O.D.; Fantoni, R.; Ghielmi, M.; Ronchi, P.; Scotti, P. Oil and gas in the adriatic foreland, Italy. J. Pet. Geol. 2015, 38, 225–279. [Google Scholar] [CrossRef]
- Casero, P.; Bigi, S. Structural setting of the Adriatic basin and the main related petroleum exploration plays. Mar. Pet. Geol. 2013, 42, 135–147. [Google Scholar] [CrossRef]
- Videpi Project, A. Progetto ViDEPI-Visibilità dei dati afferenti all’attività di esplorazione petrolifera in Italia. Available online: https://www.videpi.com/videpi/pozzi/pozzi.asp (accessed on 23 April 2021).
- Valkanou, K.; Karymbalis, E.; Papanastassiou, D.; Soldati, M.; Chalkias, C.; Gaki-Papanastassiou, K. Μorphometric Analysis for the Assessment of Relative Tectonic Activity in Evia Island, Greece. Geophys. Sci. 2020, 10, 264. [Google Scholar] [CrossRef]
- Hack, J.T. Stream-Profile Analysis and Stream-Gradient Index. J. Res. US Geol. Surv. 1973, 1, 421–429. [Google Scholar]
- Buczek, K.; Górnik, M. Evaluation of tectonic activity using morphometric indices: Case study of the Tatra Mts. (Western Carpathians, Poland). Environ. Earth Sci. 2020, 79, 176. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, D.; Troiani, F.; Servizi, T.; Nesci, O.; Veneri, F. SLIX: A GIS toolbox to support along-stream knickzones detection through the computation and mapping of the stream length-gradient (SL) index. ISPRS Int. J. Geo-Inform. 2020, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Flint, J.J. Stream gradient as a function of order, magnitude, and discharge. Water Resour. Res. 1974, 10, 969–973. [Google Scholar] [CrossRef]
- Spagnolo, M.; Pazzaglia, F.J. Testing the geological influences on the evolution of river profiles: A case from the northern Apennines (Italy). Geogr. Fis. Din. Quat. 2005, 28, 103–113. [Google Scholar]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Ori, G.; Serafini, G.; Visentin, C.; Ricci Lucchi, F.; Casnedi, R.; Colalongo, M.L.; Mosna, S. The Pliocene-Pleistocene Adriatic foredeep (Marche and Abruzzo, Italy): An integrated approach to surface and subsurface geology. In Proceedings of the 3rd E.A.P.G. Conference, Adriatic Foredeep Field Trip, Guide Book, Firenze, Italy, 26–30 May 1991; p. 85. [Google Scholar]
- Di Celma, C.; Pieruccini, P.; Farabollini, P. Major controls on architecture, sequence stratigraphy and paleosols of middle Pleistocene continental sediments (“Qc Unit”), eastern central Italy. Quat. Res. 2015, 83, 565–581. [Google Scholar] [CrossRef]
- Trincardi, F.; Correggiari, A.; Roveri, M. Late Quaternary transgressive erosion and deposition in a modern epicontinental shelf: The Adriatic semienclosed basin. Geo-Mar. Lett. 1994, 14, 41–51. [Google Scholar] [CrossRef]
- Trincardi, F.; Asioli, A.; Cattaneo, A.; Correggiari, A.; Vigliotti, L.; Accorsi, C.A. Transgressive offshore deposits on the Central Adriatic shelf: Architecture complexity and the record of the Younger Dryas short-term event. Alp. Mediterr. Quat. 1996, 9, 753–761. [Google Scholar]
- Ridente, D.; Trincardi, F.; Piva, A.; Asioli, A.; Cattaneo, A. Sedimentary response to climate and sea level changes during the past~ 400 ka from borehole PRAD1-2 (Adriatic margin). Geochem. Geophys. Geosys. 2008, 9, Q09R04. [Google Scholar] [CrossRef]
- Vezzani, L.; Festa, A.; Ghisetti, F.C. Geology and tectonic evolution of the Central-Southern Apennines, Italy. Spec. Pap. Geol. Soc. Am. 2010, 469, 1–58. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P.; Di Luzio, E.; Cavinato, G.P.; Parotto, M. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 2008, 27, 36. [Google Scholar] [CrossRef]
- Santilano, A.; Trumpy, E.; Gola, G.; Donato, A.; Scrocca, D.; Ferrarini, F.; Brozzetti, F.; De Nardis, R.; Lavecchia, G.; Manzella, A. A methodology for assessing the favourability of geopressured-geothermal systems in sedimentary basin plays: A case study in Abruzzo (Italy). Geofluids 2019, 2019, 28. [Google Scholar] [CrossRef]
- Farabollini, P.; Nisio, S. Evoluzione geomorfologica Quaternaria del Bacino del fiume Vomano (Abruzzo). Alp. Mediterr. Quat. 1997, 10, 101–104. [Google Scholar]
- Crescenti, U.; D’Amato, C.; Balduzzi, A.; Tonna, M. Il Plio-Pleistocene del sottosuolo abruzzese-marchigiano tra Ascoli Piceno e Pescara. Geol. Rom. 1980, 19, 63–84. [Google Scholar]
- Casnedi, R. L’avanfossa abruzzese fra i fiumi Vomano e Pescara nel Pliocene inferiore: Rapporti fra sedimentazione e tettonica. Stud. Geol. Camerti 1991, 1991, 375–379. [Google Scholar]
- Ricci Lucchi, F. The foreland basin system of the Northern Apennines and related clastic wedges: A preliminary outline. Giornale di Geologia 1986, 3, 165–185. [Google Scholar]
- Carruba, S.; Casnedi, R.; Perotti, C.R.; Tornaghi, M.; Bolis, G. Tectonic and sedimentary evolution of the lower Pliocene Periadriatic foredeep in Central Italy. Int. J. Earth Sci. 2006, 95, 665–683. [Google Scholar] [CrossRef]
- Parotto, M.; Cavinato, G.P.; Miccadei, E.; Tozzi, M. Line CROP 11: Central Apennines. In CROP Atlas: Seismic Reflection Profiles of the Italian Crust; Scrocca, D., Doglioni, C., Innocenti, F., Manetti, P., Mazzotti, A., Bertelli, L., Burbi, L., D’Offizi, S., Eds.; Memorie Descrittive della Carta Geologica d’Italia: Rome, Italy, 2004; pp. 145–153. [Google Scholar]
- Ori, G.G.; Roveri, M.; Vannoni, F. Plio-Pleistocene sedimentation in the Apenninic- Adriatic foredeep (central Adriatic Sea, Italy). Forel Basins 1986, 8, 183–198. [Google Scholar] [CrossRef]
- Cantalamessa, G.; Di Celma, C. Sequence response to syndepositional regional uplift: Insights from high-resolution sequence stratigraphy of late Early Pleistocene strata, Periadriatic Basin, central Italy. Sediment. Geol. 2004, 164, 283–309. [Google Scholar] [CrossRef]
- Bigi, S.; D’Ambrogi, C.; Carminati, E. The Geology of the Periadriatic basin and of the Adriatic Sea. Mar. Pet. Geol. 2013, 42, 1–3. [Google Scholar] [CrossRef]
- Ascione, A.; Cinque, A.; Miccadei, E.; Villani, F.; Berti, C. The Plio-Quaternary uplift of the Apennine chain: New data from the analysis of topography and river valleys in Central Italy. Geomorphology 2008, 102, 105–118. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, L.; Miccadei, E.; Piacentini, T. Morphostructural elements of central-eastern Abruzzi: Contributions to the study of the role of tectonics on the morphogenesis of the Apennine chain. Quat. Int. 2003, 101–102, 115–124. [Google Scholar] [CrossRef]
- Papanikolaou, I.D.; Roberts, G.P.; Michetti, A.M. Fault scarps and deformation rates in Lazio-Abruzzo, Central Italy: Comparison between geological fault slip-rate and GPS data. Tectonophysics 2005, 408, 147–176. [Google Scholar] [CrossRef]
- C.N.R. Neotectonic Map of Italy (Scale 1:500.000). In Progetto Finalizzato Geodinamica; Ambrosetti, P., Bartolini, C., Bosi, C., Carraro, F., Ciaranfi, N., Panizza, M., Papani, G., Vezzani, L., Zanferrari, A., Eds.; Consiglio Nazionale delle Ricerche (CNR): Rome, Italy, 1987. [Google Scholar]
- Centamore, E.; Nisio, S. Effects of uplift and tilting in the Central-Northern Apennines (Italy). Quat. Int. 2003, 101–102, 93–101. [Google Scholar] [CrossRef]
- Currado, C.; D’Ambrogi, C. Plio-Pleistocene morphostructural evolution of Chieti sector in the Periadriatic Basin: An example of integrated analysis. Mem. Della Soc. Geol. Ital. 2002, 57, 501–508. [Google Scholar]
- Artoni, A. The Pliocene-Pleistocene stratigraphic and tectonic evolution of the Central sector of the Western Periadriatic Basin of Italy. Mar. Pet. Geol. 2013, 42, 82–106. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Cavinato, G.P.; Cinque, A. Indizi geomorfologici di tettonica plio-quaternaria sul piedimonte adriatico dell’Appenmino Abruzzese. Alp. Mediterr. Quat. 1996, 9, 299–302. [Google Scholar]
- Bolis, G.; Carruba, S.; Casnedi, R.; Perotti, C.R.; Ravaglia, A.; Tornaghi, M. Compressional tectonics overprinting extensional structures in the Abruzzo Periadriatic Foredeep (Central Italy) during Pliocene times. Boll. Della Soc. Geol. Ital. 2003, 122, 251–266. [Google Scholar]
- Centamore, E.; Dramis, F.; Fubelli, G. Plio-Pleistocene tectonics in the Marche-Abruzzi peri-Adriatic belt. Rend. Online Soc. Geol. Ital. 2012, 21, 69–70. [Google Scholar]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Carabella, C.; Boccabella, F.; Buccolini, M.; Ferrante, S.; Pacione, A.; Gregori, C.; Pagliani, T.; Piacentini, T.; Miccadei, E. Geomorphology of landslide–flood-critical areas in hilly catchments and urban areas for EWS (Feltrino Stream and Lanciano town, Abruzzo, Central Italy). J. Maps 2021, 17, 40–53. [Google Scholar] [CrossRef]
- Esposito, G.; Carabella, C.; Paglia, G.; Miccadei, E. Relationships between morphostructural/geological framework and landslide types: Historical landslides in the hilly piedmont area of abruzzo region (central Italy). Land 2021, 10, 287. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. The Italian earthquake catalogue CPTI15-Version 3.0. 2021. Available online: https://emidius.mi.ingv.it/CPTI15-DBMI15/description_CPTI15_en.htm (accessed on 8 January 2021). [CrossRef]
- ISIDe Working Group Italian Seismological Instrumental and Parametric Database (ISIDe). 2007. Available online: http://terremoti.ingv.it/iside (accessed on 8 January 2021).
- Gruppo di lavoro Gruppo di Lavoro CPTI Catalogo Parametrico dei Terremoti Italiani. 2004. Available online: https://emidius.mi.ingv.it/CPTI04/ (accessed on 8 January 2021).
- Chiarabba, C.; Jovane, L.; DiStefano, R. A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 2005, 395, 251–268. [Google Scholar] [CrossRef]
- Miccolis, S.; Filippucci, M.; de Lorenzo, S.; Frepoli, A.; Pierri, P.; Tallarico, A. Seismogenic Structure Orientation and Stress Field of the Gargano Promontory (Southern Italy) From Microseismicity Analysis. Front. Earth Sci. 2021, 9, 589332. [Google Scholar] [CrossRef]
- Mantovani, E.; Tamburelli, C.; Babbucci, D.; Viti, M.; Cenni, N. Tectonics and Seismicity in the periAdriatic Zones: Implications for Seismic Hazard in Italy. In Earthquakes-From Tectonics to Buildings; IntechOpen: London, UK, 2020; pp. 1–20. [Google Scholar]
- Kastelic, V.; Vannoli, P.; Burrato, P.; Fracassi, U.; Tiberti, M.M.; Valensise, G. Seismogenic sources in the Adriatic Domain. Mar. Pet. Geol. 2013, 42, 191–213. [Google Scholar] [CrossRef] [Green Version]
- Di Bucci, D.; Angeloni, P. Adria seismicity and seismotectonics: Review and critical discussion. Mar. Pet. Geol. 2013, 42, 182–190. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A. Tinitaly, A Digital Elevation Model. of Italy with a 10 Meters Cell Size (Version 1.0) [Data Set]; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2007. [CrossRef]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Quantitative classification of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Schwanghart, W.; Scherler, D. Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Oguchi, T. Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf. Process. Landforms 1997, 22, 107–120. [Google Scholar] [CrossRef]
- Pavano, F.; Romagnoli, G.; Tortorici, G.; Catalano, S. Morphometric evidences of recent tectonic deformation along the southeastern margin of the Hyblean Plateau (SE-Sicily, Italy). Geomorphology 2019, 342, 1–19. [Google Scholar] [CrossRef]
- Bhat, M.A.; Dar, T.; Bali, B.S. Morphotectonic analysis of Aripal Basin in the North-Western Himalayas (India): An evaluation of tectonics derived from geomorphic indices. Quat. Int. 2020, 568, 103–115. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Bhat, S.A.; Rashid, I. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the upper Indus Basin. J. Earth Syst. Sci. 2012, 121, 659–686. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, N.; Jackson, J.A.; Dramis, F.; Funiciello, R. Interactions between mantle upwelling, drainage evolution and active normal faulting: An example from the central Appennines (Italy). Geophys. J. Int. 2001, 147, 475–497. [Google Scholar] [CrossRef]
- Piacentini, T.; Miccadei, E. The role of drainage systems and intermontane basins in the Quaternary landscape of the Central Apennines chain (Italy). Rend. Lincei 2014, 25, 139–150. [Google Scholar] [CrossRef]
- Geurts, A.H.; Cowie, P.A.; Duclaux, G.; Gawthorpe, R.L.; Huismans, R.S.; Pedersen, V.K.; Wedmore, L.N.J. Drainage integration and sediment dispersal in active continental rifts: A numerical modelling study of the central Italian Apennines. Basin Res. 2018, 30, 965–989. [Google Scholar] [CrossRef]
- Geurts, A.H.; Whittaker, A.C.; Gawthorpe, R.L.; Cowie, P.A. Transient landscape and stratigraphic responses to drainage integration in the actively extending central Italian Apennines. Geomorphology 2020, 353, 107013. [Google Scholar] [CrossRef]
- Chen, Y.C.; Sung, Q.; Cheng, K.Y. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 2003, 56, 109–137. [Google Scholar] [CrossRef]
- Walcott, R.C.; Summerfield, M.A. Scale dependence of hypsometric integrals: An analysis of southeast African basins. Geomorphology 2008, 96, 174–186. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azañón, J.M.; Booth-Rea, G.; Azor, A.; Delgado, J. Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. J. Geophys. Res. Earth Surf. 2009, 114, 1–15. [Google Scholar] [CrossRef]
- Prasicek, G.; Otto, J.C.; Montgomery, D.R.; Schrott, L. Multi-scale curvature for automated identification of glaciated mountain landscapes. Geomorphology 2014, 209, 53–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langbein, W.B. Topographic Characteristics of Drainage Basins. US Geol. Soc. Water Supply Pap. 1947, 968, 125–157. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Bull. Geol. Soc. Am. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
- Ji, Y.; Su, S.; Liu, Z.; Huang, Q. Assessment of tectonic activity based on the geomorphic indices in the middle reaches of the upstream of Jinsha River, China. Geol. J. 2021, 1–18. [Google Scholar] [CrossRef]
- Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J.M.; Azañón, J.M.; Pérez-Peña, J.V. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike-slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain). Tectonophysics 2012, 580, 27–42. [Google Scholar] [CrossRef]
- Balla Ateba, C.; Owona, S.; Nsangou Ngapna, M.; Manga Tsimi, V.; Minyem, D.; Mvondo Ondoa, J. Lithostructural controls in Douala-Buea Region landscape (SW Cameroon margin): Insights from morphometric analysis. J. Mt. Sci. 2021, 18, 68–87. [Google Scholar] [CrossRef]
- Argyriou, A.V.; Teeuw, R.M.; Soupios, P.; Sarris, A. Neotectonic control on drainage systems: GIS-based geomorphometric and morphotectonic assessment for Crete, Greece. J. Struct. Geol. 2017, 104, 93–111. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.K.; Pradhan, S.P. Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. J. Mt. Sci. 2019, 16, 1943–1961. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–87. [Google Scholar] [CrossRef]
- Pánek, T. The use of morphometric parameters in tectonic geomorphology (on the example of the Western Beskydy Mts). Acta Univ. Carol. Geogre 2004, 1, 111–126. [Google Scholar]
- Rai, P.K.; Mohan, K.; Mishra, S.; Ahmad, A.; Mishra, V.N. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Appl. Water Sci. 2017, 7, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Psomiadis, E.; Charizopoulos, N.; Soulis, K.X.; Efthimiou, N. Investigating the correlation of tectonic and morphometric characteristics with the hydrological response in a Greek river catchment using earth observation and geospatial analysis techniques. Geoscience 2020, 10, 377. [Google Scholar] [CrossRef]
- Melton, M.A. The geomorphic and palaeoclimatic significance of alluvial deposits in Southern Arizona. J. Geol. 1965, 73, 1–38. [Google Scholar] [CrossRef]
- Molin, P.; Pazzaglia, F.J.; Dramis, F. Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, southern Italy. Am. J. Sci. 2004, 304, 559–589. [Google Scholar] [CrossRef]
- Menier, D.; Mathew, M.; Pubellier, M.; Sapin, F.; Delcaillau, B.; Siddiqui, N.; Ramkumar, M.; Santosh, M. Landscape response to progressive tectonic and climatic forcing in NW Borneo: Implications for geological and geomorphic controls on flood hazard. Sci. Rep. 2017, 7, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, S.; Castaldini, D.; Soldati, M. DEM-based drainage network analysis using steepness and Hack SL indices to identify areas of differential uplift in Emilia–Romagna Apennines, northern Italy. Arab. J. Geosci. 2017, 10, 3. [Google Scholar] [CrossRef]
- Pavano, F.; Pazzaglia, F.J.; Catalano, S. Knickpoints as geomorphic markers of active tectonics: A case study from northeastern Sicily (southern Italy). Lithosphere 2016, 8, 633–648. [Google Scholar] [CrossRef] [Green Version]
- Castillo, M.; Muñoz-Salinas, E.; Ferrari, L. Response of a landscape to tectonics using channel steepness indices (ksn) and OSL: A case of study from the Jalisco Block, Western Mexico. Geomorphology 2014, 221, 204–214. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Roe, G.H.; Montgomery, D.R.; Hallet, B. Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology 2002, 30, 143–146. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Gerbasi, F.; Daverio, F. Morphotectonic map of the Osento River basin (Abruzzo, Italy), scale 1:30,000. J. Maps 2012, 8, 62–73. [Google Scholar] [CrossRef]
- Gioia, D.; Schiattarella, M.; Giano, S.I. Right-angle pattern of minor fluvial networks from the ionian terraced belt, southern Italy: Passive structural control or foreland bending? Geoscience 2018, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Merritts, D.J.; Vincent, K.R.; Wohl, E.E. Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces. J. Geophys. Res. Solid Earth 2004, 99, 31–50. [Google Scholar] [CrossRef]
- Maddy, D. Uplift-driven valley incision and river terrace formation in southern England. J. Quat. Sci. 1997, 12, 539–545. [Google Scholar] [CrossRef]
- Kiden, P.; Törnqvist, T.E. Can river terrace flights be used to quantify Quaternary tectonic uplift rates? J. Quat. Sci. 1998, 13, 573–575. [Google Scholar] [CrossRef]
- Lavé, J.; Avouac, J.P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. Solid Earth 2000, 105, 5735–5770. [Google Scholar] [CrossRef] [Green Version]
- Wegmann, K.W.; Pazzaglia, F.J. Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: Climatic, lithologic, and tectonic controls on terrace genesis in an active orogen. Quat. Sci. Rev. 2009, 28, 137–165. [Google Scholar] [CrossRef]
- Personius, S.F. Late Quaternary stream incision and uplift in the forearc of the Cascadia subduction zone, western Oregon. J. Geophys. Res. 1995, 100, 20193–20210. [Google Scholar] [CrossRef]
- Pazzaglia, F.J.; Brandon, M.T. A fluvial record of long-term steady-state uplift and erosion across the Cascadia forearc high, western Washington State. Am. J. Sci. 2001, 301, 385–431. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T.; Gaidzik, K.; Forman, S.L. Spatial Variations of Tectonic Uplift-Subducting Plate Effects on the Guerrero Forearc, Mexico. Front. Earth Sci. 2021, 8, 573081. [Google Scholar] [CrossRef]
- Lavé, J.; Avouac, J.P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. Solid Earth 2001, 106, 26561–26591. [Google Scholar] [CrossRef] [Green Version]
- Vannoli, P.; Basili, R.; Valensise, G. New geomorphic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy). J. Seismol. 2004, 8, 297–312. [Google Scholar] [CrossRef]
- Agostini, S.; Di Canzio, E.; Rossi, M.A. Abruzzo (Italy): The Plio-Pleistocene proboscidean-bearing sites. In Proceedings of the The World of Elephants-International Congress; Cavarretta, G., Gioia, P., Mussi, M., Palombo, M.R., Eds.; Consiglio Nazionale delle Ricerche (CNR): Rome, Italy, 2001; pp. 163–166. [Google Scholar]
- ISPRA Geological Map of Italy, Scale 1:50,000, Sheet 339 Teramo. Available online: https://www.isprambiente.gov.it/Media/carg/339_TERAMO/Foglio.html (accessed on 28 March 2021).
- ISPRA Geological Map of Italy, Scale 1:50,000, Sheet 361 Chieti. Available online: http://www.isprambiente.gov.it/Media/carg/361_CHIETI/Foglio.html (accessed on 15 March 2021).
- Ricci, F. Evoluzione Geomorfologica Tardo-Quaternaria della zona costiera Abruzzese. Ph.D. Thesis, University G. d’Annunzio of Chieti, Chieti, Italy, 2005. [Google Scholar]
- Tucker, G.E.; Whipple, K.X. Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison. J. Geophys. Res. Solid Earth 2002, 107, 1–16. [Google Scholar] [CrossRef] [Green Version]
- DISS Working Group Database of Individual Seismogenic Sources (DISS). Version 3.2.1: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas. 2018. Available online: http://diss.rm.ingv.it/diss/index.php/DISS321 (accessed on 25 January 2021).
- Bigi, S.; Centamore, E.; Nisio, S. Caratteri geologico-strutturali dell’area pedeappenninica marchigiano-abruzzese durante il Pleistocene. Stud. Geol. Camerti 1999, 14, 193–200. [Google Scholar]
- Pizzi, A. Plio-Quaternary uplift rates in the outer zone of the central Apennines fold-and-thrust belt, Italy. Quat. Int. 2003, 101–102, 229–237. [Google Scholar] [CrossRef]
- Ciotoli, G.; Lombardi, S.; Morandi, S.; Zarlenga, F. A multidisciplinary, statistical approach to study the relationships between helium leakage and neotectonic activity in a gas province: The Vasto basin, Abruzzo-Molise (central Italy). Am. Assoc. Pet. Geol. Bull. 2004, 88, 335–372. [Google Scholar] [CrossRef]
- Di Bucci, D.; Ravaglia, A.; Seno, S.; Toscani, G.; Fracassi, U.; Valensise, G. Seismotectonics of the southern Apennines and Adriatic foreland: Insights on active regional E-W shear zones from analogue modeling. Tectonics 2006, 25, TC4015. [Google Scholar] [CrossRef] [Green Version]
- Racano, S.; Fubelli, G.; Centamore, E.; Bonasera, M.; Dramis, F. Geomorphological detection of surface effects induced by active blind thrusts in the southern Abruzzi peri-Adriatic belt (Central Italy). Geogr. Fis. Din. Quat. 2020, 43, 3–13. [Google Scholar] [CrossRef]
- Scisciani, V.; Calamita, F.; Tavarnelli, E.; Rusciadelli, G.; Ori, G.G.; Paltrinieri, W. Foreland-dipping normal faults in the inner edges of syn-orogenic basins: A case from the Central Apennines, Italy. Tectonophysics 2001, 330, 211–224. [Google Scholar] [CrossRef]
- Burrato, P.; Vannoli, P.; Fracassi, U.; Basili, R.; Valensise, G. Is blind faulting truly invisible? Tectonic-controlled drainage evolution in the epicentral area of the May 2012, Emilia-Romagna earthquake sequence (northern Italy). Ann. Geophys. 2012, 55, 525–531. [Google Scholar] [CrossRef]
N.° | Basin | Area (km2) | Perimeter (km) | Max. Elevation (m a.s.l.) | Length (km) | N. Sub–Basins (4th–Order) |
---|---|---|---|---|---|---|
1 | Tronto River | 416.99 | 139.73 | 1790.58 | 34.51 | 18 |
2 | Vibrata River | 101.74 | 79.70 | 436.78 | 23.09 | 4 |
3 | Salinello River | 187.01 | 118.95 | 1812.88 | 34.48 | 5 |
4 | Tordino River | 389.73 | 153.82 | 1709.96 | 42.38 | 25 |
5 | Vomano River | 402.42 | 171.12 | 2543.91 | 39.54 | 15 |
6 | Piomba River | 105.99 | 84.94 | 747.54 | 30.62 | 3 |
7 | Fino River | 279.33 | 96.65 | 2467.58 | 30.72 | 11 |
8 | Tavo River | 202.36 | 110.80 | 2021.38 | 28.73 | 11 |
9 | Pescara River | 821.06 | 209.26 | 2791.11 | 41.61 | 39 |
10 | Alento River | 120.86 | 103.33 | 1402.17 | 29.98 | 3 |
11 | Foro River | 241.47 | 110.59 | 1981.24 | 31.69 | 8 |
12 | Moro River | 72.83 | 68.56 | 532.17 | 21.36 | 3 |
13 | Feltrino River | 51.05 | 47.96 | 411.83 | 14.73 | 1 |
14 | Sangro River | 1001.16 | 203.16 | 2792.11 | 49.99 | 51 |
15 | Osento River | 126.18 | 99.63 | 1007.88 | 27.04 | 4 |
16 | Sinello River | 311.62 | 142.75 | 1412.14 | 39.92 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miccadei, E.; Carabella, C.; Paglia, G. Morphoneotectonics of the Abruzzo Periadriatic Area (Central Italy): Morphometric Analysis and Morphological Evidence of Tectonics Features. Geosciences 2021, 11, 397. https://doi.org/10.3390/geosciences11090397
Miccadei E, Carabella C, Paglia G. Morphoneotectonics of the Abruzzo Periadriatic Area (Central Italy): Morphometric Analysis and Morphological Evidence of Tectonics Features. Geosciences. 2021; 11(9):397. https://doi.org/10.3390/geosciences11090397
Chicago/Turabian StyleMiccadei, Enrico, Cristiano Carabella, and Giorgio Paglia. 2021. "Morphoneotectonics of the Abruzzo Periadriatic Area (Central Italy): Morphometric Analysis and Morphological Evidence of Tectonics Features" Geosciences 11, no. 9: 397. https://doi.org/10.3390/geosciences11090397
APA StyleMiccadei, E., Carabella, C., & Paglia, G. (2021). Morphoneotectonics of the Abruzzo Periadriatic Area (Central Italy): Morphometric Analysis and Morphological Evidence of Tectonics Features. Geosciences, 11(9), 397. https://doi.org/10.3390/geosciences11090397