Wildfires and Monsoons: Cryptic Drivers for Highly Variable Provenance Signals within a Carboniferous Fluvial System
Abstract
:1. Introduction
Paleoenvironment and Geological Setting of the Mullaghmore Sandstone Formation
2. Materials and Methods
2.1. Sedimentology and Petrography
2.2. Pb-in-K-Feldspar Analysis
2.3. Apatite and Zircon Analysis
- HM (High-grade metamorphic);
- LM (Low-grade metamorphic);
- I + M (I-type granitoids and mafic igneous);
- UM (Ultramafic igneous);
- S (S-type granitoids);
- ALK (alkali rich igneous).
3. Results
3.1. Field Sedimentology
3.2. Petrography
3.3. Pb-in-K-Feldspar Analysis
- Fpop1a corresponds to the Nagssugtoqidian;
- Fpop1b corresponds to the Lewisian, such as the Stanton Banks;
- Fpop2a corresponds to offshore highs in the northeast Atlantic, such as the Rockall Bank, Porcupine Bank and the Rhinns Complex;
- Fpop2b corresponds to the Annagh Gneiss Complex;
- Fpop3 corresponds to Caledonian granitic suites such as the Donegal Batholith.
3.4. Zircon U-Pb Geochronology
- Zpop1 comprises Archean-aged grains;
- Zpop2 comprises grains of Paleoproterozoic to Mesoproterozoic age;
- Zpop3 comprises grains of Paleozoic age.
3.5. Apatite U-Pb Geochronology
- Apop1 Archean detritus is present in negligible amounts;
- Apop2 comprises Paleoproterozoic to Mesoproterozoic grains;
- Apop3 comprises Paleozoic grains.
3.6. Trace Elements in Apatite
4. Discussion
4.1. Provenance of the Mullaghmore Sandstone Formation
4.2. Temporal Fluvial Variation in Provenance Signals
4.3. Paleoenvironmental and Paleoclimate Considerations for Sediment Provenance
4.4. Final Considerations: Biases in Provenance Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, B.O.; Bull, W.B. Geomorphic Responses to Climatic Change. Geogr. Rev. 1993, 83, 114. [Google Scholar] [CrossRef]
- Leeder, M.R.; Harris, T.; Kirkby, M. Sediment supply and climate change: Implications for basin stratigraphy. Basin Res. 1998, 10, 7–18. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, X. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8Ma: Implications for provenance change. Earth Planet. Sci. Lett. 2010, 290, 438–447. [Google Scholar] [CrossRef]
- McKIE, T. Climatic and Tectonic Controls on Triassic Dryland Terminal Fluvial System Architecture, Central North Sea. Inter. Associat. Sedimentol. Spec. Pub. 2014, 46, 19–57. [Google Scholar]
- Koss, F.G.E.J.E. An Experimental Study of the Effects of Base-Level Change on Fluvial, Coastal Plain and Shelf Systems. J. Sediment. Res. 1994, 64, 90–98. [Google Scholar] [CrossRef]
- Blum, M.D.; Törnqvist, T.E. Fluvial responses to climate and sea-level change: A review and look forward. Sedimentology 2000, 47, 2–48. [Google Scholar] [CrossRef]
- Ericson, J.P.; Vorosmarty, C.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Chakrapani, G. Factors controlling variations in river sediment loads. Curr. Sci. 2005, 88, 569–575. [Google Scholar]
- Moreno, C.J.; Horton, B.K.; Caballero, V.; Mora, A.; Parra, M.; Sierra, J. Depositional and provenance record of the Paleogene transition from foreland to hinterland basin evolution during Andean orogenesis, northern Middle Magdalena Valley Basin, Colombia. J. S. Am. Earth Sci. 2011, 32, 246–263. [Google Scholar] [CrossRef]
- Olivarius, M.; Rasmussen, E.S.; Siersma, V.; Knudsen, C.; Kokfelt, T.F.; Keulen, N. Provenance signal variations caused by facies and tectonics: Zircon age and heavy mineral evidence from Miocene sand in the north-eastern North Sea Basin. Mar. Pet. Geol. 2014, 49, 1–14. [Google Scholar] [CrossRef]
- Castelltort, S.; Driessche, J.V.D. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record? Sediment. Geol. 2003, 157, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Clift, P.D.; Hodges, K.; Heslop, D.; Hannigan, R.; Van Long, H.; Calvès, G. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 2008, 1, 875–880. [Google Scholar] [CrossRef]
- Ashmore, P. Channel Morphology and Bed Load Pulses in Braided, Gravel-Bed Streams. Geogr. Ann. Ser. A Phys. Geogr. 1991, 73, 37–52. [Google Scholar] [CrossRef]
- Repasch, M.; Karlstrom, K.; Heizler, M.; Pecha, M. Birth, and evolution of the Rio Grande fluvial system in the past 8 Ma: Progressive downward integration and the influence of tectonics, volcanism, and climate. Earth Sci. Rev. 2017, 168, 113–164. [Google Scholar] [CrossRef] [Green Version]
- DeCelles, P.G. Lithologic provenance modeling applied to the Late Cretaceous synorogenic Echo Canyon Con-glomerate, Utah: A case of multiple source areas. Geology 1988, 16, 1039–1043. [Google Scholar] [CrossRef]
- Spiegel, C.; Siebel, W.; Kuhlemann, J.; Frisch, W. Toward a Comprehensive Provenance Analysis: A Multi-Method Approach and Its Implications for the Evolution of the Central Alps; Geological Society of America: Boulder, CO, USA, 2004. [Google Scholar]
- Hovius, N.; Stark, C.; Hao-Tsu, C.; Jiun-Chuan, L. Supply and Removal of Sediment in a Landslide-Dominated Mountain Belt: Central Range, Taiwan. J. Geol. 2000, 108, 73–89. [Google Scholar] [CrossRef]
- Korup, O. Large landslides and their effect on sediment flux in South Westland, New Zealand. Earth Surf. Process. Landf. 2005, 30, 305–323. [Google Scholar] [CrossRef]
- Milliman, J.D.; Kao, S. Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super-Typhoon Herb (1996) on Taiwanese Rivers. J. Geol. 2005, 113, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Florsheim, J.; Keller, E.A.; Best, D.W. Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California. GSA Bull. 1991, 103, 504–511. [Google Scholar] [CrossRef]
- Nichols, G.; Jones, T. Fusain in Carboniferous shallow marine sediments, Donegal, Ireland: The sedimentological effects of wildfire. Sedimentology 1992, 39, 487–502. [Google Scholar] [CrossRef]
- Falcon-Lang, H. Fire ecology of the Carboniferous tropical zone. Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 164, 339–355. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Lawrence, R.L.; Fonstad, M.; Marcus, W.A.; Aspinall, R. Fluvial response a decade after wildfire in the northern Yellowstone ecosystem: A spatially explicit analysis. Geomorphology 2003, 54, 119–136. [Google Scholar] [CrossRef]
- Lane, P.N.; Sheridan, G.J.; Noske, P.J. Changes in sediment loads and discharge from small mountain catchments following wildfire in southeastern Australia. J. Hydrol. 2006, 331, 495–510. [Google Scholar] [CrossRef]
- Warrick, J.A.; Rubin, D.M. Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California. J. Geophys. Res. Earth Surf. 2007, 112, F02018. [Google Scholar] [CrossRef] [Green Version]
- Silins, U.; Stone, M.; Emelko, M.B.; Bladon, K. Sediment production following severe wildfire and post-fire salvage logging in the Rocky Mountain headwaters of the Oldman River Basin, Alberta. Catena 2009, 79, 189–197. [Google Scholar] [CrossRef]
- Warrick, J.A.; Hatten, J.A.; Pasternack, G.; Gray, A.; Goni, M.; Wheatcroft, R.A. The effects of wildfire on the sediment yield of a coastal California watershed. GSA Bull. 2012, 124, 1130–1146. [Google Scholar] [CrossRef] [Green Version]
- Operstein, V.; Frydman, S. The Influence of Vegetation on Soil Strength. Proceed. Institut. Civil Eng.-Ground Improv. 2000, 4, 81–89. [Google Scholar] [CrossRef]
- Wiel, M.J.V.D.; Darby, S.E. A new model to analyse the impact of woody riparian vegetation on the ge-otechnical stability of riverbanks. Earth Surface Processes and Landforms. J. Br. Geomorphol. Res. Group 2007, 32, 2185–2198. [Google Scholar]
- Schumm, S.A. Speculations Concerning Paleohydrologic Controls of Terrestrial Sedimentation. GSA Bull. 1968, 79, 1573. [Google Scholar] [CrossRef]
- Osterkamp, W.R.; Hupp, C.R. Fluvial processes and vegetation-glimpses of the past, the present, and perhaps the future. Geomorphology 2010, 116, 274–285. [Google Scholar] [CrossRef]
- Hunsinger, G.B.; Mitra, S.; Warrick, J.A.; Alexander, C.R. Oceanic loading of wildfire-derived organic compounds from a small mountainous river. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Dearing, J.; Jones, R.T. Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records. Glob. Planet. Chang. 2003, 39, 147–168. [Google Scholar] [CrossRef]
- Morehead, M.D.; Syvitski, J.P.; Hutton, E.; Peckham, S. Modeling the temporal variability in the flux of sediment from ungauged river basins. Glob. Planet. Chang. 2003, 39, 95–110. [Google Scholar] [CrossRef]
- Douglas, I. The Efficiency of Humid Tropical Denudation Systems. Trans. Inst. Br. Geogr. 1969, 1–16. [Google Scholar] [CrossRef]
- Saunders, I.; Young, A. Rates of surface processes on slopes, slope retreat and denudation. Earth Surf. Process. Landf. 1983, 8, 473–501. [Google Scholar] [CrossRef]
- Allen, J.P.; Fielding, C.R.; Gibling, M.R.; Rygel, M. Fluvial response to paleo-equatorial climate fluctuations during the late Paleozoic ice age. GSA Bull. 2011, 123, 1524–1538. [Google Scholar] [CrossRef] [Green Version]
- Fielding, C.R.; Allen, J.P.; Alexander, J.; Gibling, M.R. Facies model for fluvial systems in the seasonal tropics and subtropics. Geology 2009, 37, 623–626. [Google Scholar] [CrossRef]
- Welland, M. Sand: The Never-Ending Story; University of California Press: Oakland, CA, USA, 2009. [Google Scholar]
- Yang, S.-L.; Zhao, Q.-Y.; Belkin, I.M. Temporal variation in the sediment load of the Yangtze River and the influences of human activities. J. Hydrol. 2002, 263, 56–71. [Google Scholar] [CrossRef]
- Gregory, K. The human role in changing river channels. Geomorphology 2006, 79, 172–191. [Google Scholar] [CrossRef]
- Zheng, M.; Qin, F.; Yang, J.; Cai, Q. The spatio-temporal invariability of sediment concentration and the flow–sediment relationship for hilly areas of the Chinese Loess Plateau. Catena 2013, 109, 164–176. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Dong, P. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 2010, 83, 135–147. [Google Scholar] [CrossRef]
- Chalov, S.R.; Jarsjö, J.; Kasimov, N.S.; Romanchenko, A.O.; Pietro, J.; Thorslund, J.; Promakhova, E.V. Spa-tio-temporal variation of sediment transport in the Selenga River Basin, Mongolia, and Russia. Environ. Earth Sci. 2015, 73, 663–680. [Google Scholar] [CrossRef]
- Kwon, Y.-I.; Boggs, S.; Jr, S.B. Provenance interpretation of Tertiary sandstones from the Cheju Basin (NE East China Sea): A comparison of conventional petrographic and scanning cathodoluminescence techniques. Sediment. Geol. 2002, 152, 29–43. [Google Scholar] [CrossRef]
- Franklin, J.; Tyrrell, S.; Morton, A.; Frei, D.; Mark, C. Triassic sand supply to the Slyne Basin, offshore western Ireland—New insights from a multi-proxy provenance approach. J. Geol. Soc. 2019, 176, 1120–1135. [Google Scholar] [CrossRef]
- Hietpas, J.; Samson, S.; Moecher, D.; Chakraborty, S. Enhancing tectonic and provenance information from detrital zircon studies: Assessing terrane-scale sampling and grain-scale characterization. J. Geol. Soc. 2011, 168, 309–318. [Google Scholar] [CrossRef]
- Anders, B.; Tyrrell, S.; Chew, D.; Mark, C.; O’Sullivan, G.; Murray, J.; Graham, J.; Badenszki, E. Spatial variation in provenance signal: Identifying complex sand sourcing within a Carboniferous basin using multiproxy provenance analysis. J. Geol. Soc. 2021, 179, jgs2021-045. [Google Scholar] [CrossRef]
- Graham, J.R. The carboniferous geology of north mayo. Ir. J. Earth Sci. 2010, 28, 25–45. [Google Scholar] [CrossRef]
- Scotese, C.; McKerrow, W.S. Revised World maps and introduction. Geol. Soc. Lond. Mem. 1990, 12, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Blakey, R.C.; Fielding, C.R.; Frank, T.D.; Isbell, J.L. Gondwana paleogeography from assembly to breakup—A 500 m.y. odyssey. Geol. Soc. Am. Spec. Pap. 2008, 441, 1–28. [Google Scholar] [CrossRef]
- Barham, M.; Murray, J.; Joachimski, M.M.; Williams, D.M. The onset of the Permo-Carboniferous glaciation: Reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean. J. Geol. Soc. 2012, 169, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Leeder, M. Tectonic and palaeogeographic models for Lower Carboniferous Europe. Geol. J. Spec. Issue 1987, 12, 1–20. [Google Scholar]
- Pulham, A.J. Controls on internal structure and architecture of sandstone bodies within Upper Carboniferous fluvial-dominated deltas, County Clare, western Ireland. Geol. Soc. Lond. Spéc. Publ. 1989, 41, 179–203. [Google Scholar] [CrossRef]
- Nauton-Fourteu, M.; Tyrrell, S.; Chew, D.M.; Drakou, F.; Pfaff, K.; Jobe, Z. Deep-versus shallow-marine sandstone provenance in the mid-Carboniferous Clare Basin, western Ireland. J. Geol. Soc. 2021, 178, jgs2020-216. [Google Scholar] [CrossRef]
- Clayton, G.; Higgs, K. The Tournaisian marine transgression in Ireland. J. Earth Sci. 1979, 2, 1–10. [Google Scholar]
- Clayton, G.; Graham, J.R.; Higgs, K.T.; Sevastopulo, G.D.; Welsh, A. Late Devonian and Early Carboniferous palaeogeography of southern Ireland and southwest Britain. Ann. Société Géologique Belg. 1986, 109, 103–111. [Google Scholar]
- Graham, J.R.; Sevastopulo, G.D. The stratigraphy of latest Devonian and earliest Carboniferous rocks in Ireland. Palaeobiodiversity Palaeoenvironments 2020, 101, 515–527. [Google Scholar] [CrossRef]
- Worthington, R.P.; Walsh, J.J. Structure of Lower Carboniferous basins of NW Ireland, and its implications for structural inheritance and Cenozoic faulting. J. Struct. Geol. 2011, 33, 1285–1299. [Google Scholar] [CrossRef]
- Leeder, M.R. Upper Palaeozoic basins of the British Isles—Caledonide inheritance versus Hercynian plate margin processes. J. Geol. Soc. 1982, 139, 479–491. [Google Scholar] [CrossRef]
- Sevastopulo, G.D.; Wyse Jackson, P.N. Carboniferous: Mississippian (Tournaisian and Viséan). In The Geology of Ireland; Holland, C., Sanders, I., Eds.; Dunedin Academic Press Ltd.: Edinburgh, UK, 2009. [Google Scholar]
- Philcox, M.E.; Baily, H.; Clayton, G.; Sevastopulo, G.D. Evolution of the Carboniferous Lough Allen Basin, Northwest Ireland. Geol. Soc. Lond. Spéc. Publ. 1992, 62, 203–215. [Google Scholar] [CrossRef]
- Somerville, I.D.; Cózar, P.; Aretz, M.; Herbig, H.-G.; Mitchell, W.I.; Medina-Varea, P. Carbonate facies and biostromal distribution in a tectonically controlled platform in northwest Ireland during the late Viséan (Mississippian). Proc. Yorks. Geol. Soc. 2009, 57, 165–192. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.R. The Mullaghmore Sandstone Formation of north-west Ireland: A regional Mississippian lowstand deposit. Ir. J. Earth Sci. 2017, 35, 19. [Google Scholar] [CrossRef]
- George, T.N.; Oswald, D.H. The Carboniferous rocks of the Donegal syncline. Q. J. Geol. Soc. 1957, 113, 137–183. [Google Scholar] [CrossRef]
- Hubbard, J.A.E.B. Facies Patterns in the Carrowmoran Sandstone (Visean) of Western Co. Sligo, Ireland. Proc. Geol. Assoc. 1966, 77, 233–254. [Google Scholar] [CrossRef]
- Graham, J.R. Dinantian river systems and coastal zone sedimentation in northwest Ireland. Geol. Soc. Lond. Spéc. Publ. 1996, 107, 183–206. [Google Scholar] [CrossRef]
- Connolly, N. Sedimentology Analysis and Correlation of the Mullaghmore Sandstone Formation in the North and Northwest of Ireland. PhD Thesis, Trinity College Dublin, Dublin, Ireland, 2003. [Google Scholar]
- Ketzer, J.M.; Morad, S.; Evans, R.; Al-Aasm, I. Distribution of Diagenetic Alterations in Fluvial, Deltaic, and Shallow Marine Sandstones within a Sequence Stratigraphic Framework: Evidence from the Mullaghmore Formation (Carboniferous), NW Ireland. J. Sediment. Res. 2002, 72, 760–774. [Google Scholar] [CrossRef]
- Higgs, K. Stratigraphic Palynology of the Carboniferous Rocks in Northwest Ireland. Bull. Geol. Surv. Irel. 1984, 3, 171–202. [Google Scholar]
- Clayton, G. Dinantian miospores and intercontinental correlation. Congrès Int. Stratigr. Géologie Carbonifère 1985, 10, 9–23. [Google Scholar]
- Poty, E.; Devuyst, F.-X.; Hance, L. Upper Devonian, and Mississippian foraminiferal and rugose coral zonations of Belgium and northern France: A tool for Eurasian correlations. Geol. Mag. 2006, 143, 829–857. [Google Scholar] [CrossRef]
- Wright, V.P. Equatorial aridity and climatic oscillations during the early Carboniferous, southern Britain. J. Geol. Soc. 1990, 147, 359–363. [Google Scholar] [CrossRef]
- Wright, V.P.; Vanstone, S.D. Onset of Late Palaeozoic glacio-eustasy and the evolving climates of low latitude areas: A synthesis of current understanding. J. Geol. Soc. 2001, 158, 579–582. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J. The Early Carboniferous (Courceyan—Arundian) monsoonal climate of the British Isles: Evidence from growth rings in fossil woods. Geol. Mag. 1999, 136, 177–187. [Google Scholar] [CrossRef]
- Davies, S.J.; Fielding, C. The record of Carboniferous sea-level change in low-latitude sedimentary successions from Britain and Ireland during the onset of the late Paleozoic ice age Resolving the Late Paleozoic Ice Age in Time and Space. Geol. Soc. Am. Boulder 2008, 441, 187–204. [Google Scholar]
- Fielding, C.R.; Frank, T.D.; Isbell, J.L. The Late Paleozoic Ice Age-A Review of Current Understanding and Synthesis of Global Climate Patterns Resolving the Late Paleozoic Ice Age in Time and Space; Geological Society of America: Boulder, CO, USA, 2008; pp. 343–354. [Google Scholar]
- Montañez, I.P.; Poulsen, C.J. The Late Paleozoic Ice Age: An Evolving Paradigm. Annu. Rev. Earth Planet. Sci. 2013, 41, 629–656. [Google Scholar] [CrossRef] [Green Version]
- Collinson, M.E.; Scott, A.C. Implications of vegetational change through the geological record on models for coal-forming environments. Geol. Soc. Lond. Spéc. Publ. 1987, 32, 67–85. [Google Scholar] [CrossRef]
- Falcon-Lang, H. The impact of wildfire on an Early Carboniferous coastal environment, North Mayo, Ireland. Palaeogeogr. Palaeoclim. Palaeoecol. 1998, 139, 121–138. [Google Scholar] [CrossRef]
- Berner, R.A.; Canfield, D. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 1989, 289, 333–361. [Google Scholar] [CrossRef]
- Berner, R.A.; Beerling, D.J.; Dudley, R.; Robinson, J.M.; Wildman, R.A., Jr. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 2003, 31, 105–134. [Google Scholar] [CrossRef] [Green Version]
- Berner, R.A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 2009, 309, 603–606. [Google Scholar] [CrossRef]
- Tyrrell, S.; Haughton, P.D.; Daly, J.S.; Shannon, P.M.; Sylvester, P. The Pb isotopic composition of detrital K-feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage. Quant. Mineral. Microanal. Sediments Sediment. Rocks. Mineral. Assoc. Can. Short Course Ser. 2012, 42, 203–217. [Google Scholar]
- Souders, A.K.; Sylvester, P.J. Accuracy, and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS. J. Anal. At. Spectrom. 2010, 25, 975–988. [Google Scholar] [CrossRef]
- Thomson, S.N.; Gehrels, G.E.; Ruiz, J.; Buchwaldt, R. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- McDowell, F.W.; McIntosh, W.C.; Farley, K. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. U–Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Miner. Pet. 2006, 151, 615–630. [Google Scholar] [CrossRef]
- Wiedenbeck, M.A.P.C.; Alle, P.; Corfu, F.Y.; Griffin, W.L.; Meier, M.; Oberli, F.V.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.; Crowley, J.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Pointon, M.A.; Cliff, R.A.; Chew, D.M. The provenance of Western Irish Namurian Basin sedimentary strata inferred using detrital zircon U-Pb LA-ICP-MS geochronology. Geol. J. 2011, 47, 77–98. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualization and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Chew, D.; Petrus, J.; Kamber, B. U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Ludwig, K. User’s Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel. 5; Berkley Geochronological Centre: Berkeley, CA, USA, 2012. [Google Scholar]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Mark, C.; Cogné, N.; Chew, D. Tracking exhumation and drainage divide migration of the Western Alps: A test of the apatite U-Pb thermochronometer as a detrital provenance tool. GSA Bull. 2016, 128, 1439–1460. [Google Scholar] [CrossRef]
- Vermeesch, P.; Resentini, A.; Garzanti, E. An R package for statistical provenance analysis. Sediment. Geol. 2016, 336, 14–25. [Google Scholar] [CrossRef]
- Chew, D.M.; Babechuk, M.G.; Cogné, N.; Mark, C.; O’Sullivan, G.; Henrichs, I.A.; Doepke, D.; McKenna, C.A. (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem. Geol. 2016, 435, 35–48. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hellstrom, J.; Hergt, J.M.; Greig, A.; Maaß, R. Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry. Geostand. Geoanalytical Res. 2007, 31, 331–343. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev. 2020, 201. [Google Scholar] [CrossRef]
- O’Sullivan, G.J.; Chew, D.M.; Morton, A.C.; Mark, C.; Henrichs, I.A. An Integrated Apatite Geochronology and Geochemistry Tool for Sedimentary Provenance Analysis. Geochem. Geophys. Geosystems 2018, 19, 1309–1326. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of Zircon Textures. Rev. Miner. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Finch, R. Structure and Chemistry of Zircon and Zircon-Group Minerals. Rev. Miner. Geochem. 2003, 53, 1–25. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Lawton, T.F.; Gehrels, G.E. Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona. Geology 2009, 37, 503–506. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H. Heavy Minerals in Colour; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Morton, A.C. Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Miner. 1984, 19, 287–308. [Google Scholar] [CrossRef]
- Lee, J.K.W.; Williams, I.; Ellis, D.J. Pb, U and Th diffusion in natural zircon. Nature 1997, 390, 159–162. [Google Scholar] [CrossRef]
- Mezger, K.; Krogstad, E.J. Interpretation of discordant U-Pb zircon ages: An evaluation. J. Metamorph. Geol. 1997, 15, 127–140. [Google Scholar] [CrossRef]
- Cochrane, R.; Spikings, R.A.; Chew, D.; Wotzlaw, J.-F.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; van der Lelij, R. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Et Cosmochim. Acta 2014, 127, 39–56. [Google Scholar] [CrossRef]
- Chew, D.M.; Spikings, R.A. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements 2015, 11, 189–194. [Google Scholar] [CrossRef]
- Henrichs, I.A.; O’Sullivan, G.; Chew, D.M.; Mark, C.; Babechuk, M.G.; McKenna, C.; Emo, R. The trace element and U-Pb systematics of metamorphic apatite. Chem. Geol. 2018, 483, 218–238. [Google Scholar] [CrossRef]
- Harlov, D.E.; Wirth, R.; Förster, H.-J. An experimental study of dissolution–reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contrib. Miner. Pet. 2005, 150, 268–286. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Chew, D.; Samson, S. Detecting magma-poor orogens in the detrital record. Geology 2016, 44, 871–874. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Production and Provenance of Sand; Springer: New York, NY, USA, 1972; pp. 294–326. [Google Scholar]
- Morton, A.C.; Taylor, P.N. Geochemical and isotopic constraints on the nature and age of basement rocks from Rockall Bank, NE Atlantic. J. Geol. Soc. 1991, 148, 631–634. [Google Scholar] [CrossRef]
- Kalsbeek, F.; Nutman, A.P. Anatomy of the Early Proterozoic Nagsuggtoqidian orogen, West Greenland, ex-plored by reconnaissance SHRIMP U-Pb zircon dating. Geology 1996, 24, 515–518. [Google Scholar] [CrossRef]
- van Gool, J.A.; Connelly, J.N.; Marker, M.; Mengel, F.C. The Nagsuggtoqidian Orogen of West Greenland: Tec-tonic evolution and regional correlations from a West Greenland perspective. Can. J. Earth Sci. 2002, 39, 665–686. [Google Scholar] [CrossRef]
- Connelly, J.N.; Thrane, K. Rapid determination of Pb isotopes to define Precambrian allochthonous domains: An example from West Greenland. Geology 2005, 33, 953. [Google Scholar] [CrossRef]
- Nutman, A.P.; Kalsbeek, F.; Friend, C.R. The Nagsuggtoqidian orogen in South-East Greenland: Evidence for Paleoproterozoic collision and plate assembly. Am. J. Sci. 2008, 308, 529–572. [Google Scholar] [CrossRef]
- Scanlon, R.; Daly, J.; Whitehouse, M. The c. 1.8 Ga Stanton Banks Terrane, offshore Western Scotland, a large juvenile Palaeoproterozoic crustal block within the accretionary Lewisian complex. EGS AGU EUG Jt. Assem. 2003, 13248. [Google Scholar]
- Daly, J.S. Pre-Caledonian history of the Annagh Gneiss Complex North-Western Ireland, and correlation with Laurentia-Baltica. Ir. J. Earth Sci. 1996, 15, 5–18. [Google Scholar]
- Muir, R.J.; Fitches, W.R.; Maltman, A.J. Rhinns complex: A missing link in the Proterozoic basement of the North Atlantic region. Geology 1992, 20, 1043–1046. [Google Scholar] [CrossRef]
- Chew, D.; Tyrrell, S.; Daly, J.S.; Cogné, N.; Sun, K.; Badenszki, E. The Basement Geology of the Porcupine High—A Key Transatlantic Link between the Caledonides and Appalachians; Trinity College Dublin: Dublin, Ireland, 2019. [Google Scholar]
- Chew, D. Grampian Orogeny. In The Geology of Ireland; Holland, C., Sanders, I., Eds.; Dunedin Academic Press: Edinburgh, UK, 2009; pp. 69–93. [Google Scholar]
- Archibald, D.B.; Macquarrie, L.M.; Murphy, J.B.; Strachan, R.A.; McFarlane, C.R.; Button, M.; Larson, K.P.; Dunlop, J. The construction of the Donegal composite batholith, Irish Caledonides: Temporal constraints from U-Pb dating of zircon and titanite. GSA Bull. 2021, 133, 2335–2354. [Google Scholar] [CrossRef]
- St-Onge, M.R.; Wodicka, N.; Ijewliw, O. Polymetamorphic Evolution of the Trans-Hudson Orogen, Baffin Island, Canada: Integration of Petrological, Structural and Geochronological Data. J. Pet. 2006, 48, 271–302. [Google Scholar] [CrossRef] [Green Version]
- Garde, A.A.; Hamilton, M.A.; Chadwick, B.; Grocott, J.; McCaffrey, K. The Ketilidian orogen of South Greenland: Geochronology, tectonics, magmatism, and fore-arc accretion during Palaeoproterozoic oblique convergence. Can. J. Earth Sci. 2002, 39, 765–793. [Google Scholar] [CrossRef]
- McAteer, C.A.; Daly, J.S.; Flowerdew, M.J.; Connelly, J.N.; Housh, T.B.; Whitehouse, M.J. Detrital zircon, detrital titanite and igneous clast U–Pb geochronology and basement–cover relationships of the Colonsay Group, SW Scotland: Laurentian provenance and correlation with the Neoproterozoic Dalradian Supergroup. Precambrian Res. 2010, 181, 21–42. [Google Scholar] [CrossRef]
- McLelland, J.; Daly, J.; McLelland, J.M. The Grenville Orogenic Cycle (ca. 1350–1000 Ma): An Adirondack perspective. Tectonophysics 1996, 265, 1–28. [Google Scholar] [CrossRef]
- Cherniak, D.; Watson, E. Pb diffusion in zircon. Chem. Geol. 2001, 172, 5–24. [Google Scholar] [CrossRef]
- Claesson, S.; Vetrin, V.; Bayanova, T.; Downes, H. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic. Lithos 2000, 51, 95–108. [Google Scholar] [CrossRef]
- Zimmermann, S.; Mark, C.; Chew, D.; Voice, P.J. Maximising data and precision from detrital zircon U-Pb analysis by LA-ICPMS: The use of core-rim ages and the single-analysis concordia age. Sediment. Geol. 2018, 375, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Turlin, F.; Deruy, C.; Eglinger, A.; Vanderhaeghe, O.; André-Mayer, A.-S.; Poujol, M.; Moukhsil, A.; Solgadi, F. A 70 Ma record of suprasolidus conditions in the large, hot, long-duration Grenville Orogen. Terra Nova 2018, 30, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Dewey, J.F. Orogeny can be very short. Proc. Natl. Acad. Sci. USA 2005, 102, 15286–15293. [Google Scholar] [CrossRef] [Green Version]
- Cawood, P.A.; Nemchin, A.A.; Smith, M.; Loewy, S. Source of the Dalradian Supergroup constrained by U–Pb dating of detrital zircon and implications for the East Laurentian margin. J. Geol. Soc. 2003, 160, 231–246. [Google Scholar] [CrossRef]
- Tyrrell, S.; Haughton, P.; Daly, J.S.; Kokfelt, T.F.; Gagnevin, D. The Use of the Common Pb Isotope Composition of Detrital K-Feldspar Grains as a Provenance Tool and Its Application to Upper Carboniferous Paleodrainage, Northern England. J. Sediment. Res. 2006, 76, 324–345. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Guidry, M.W.; Mackenzie, F.T. Apatite weathering and the Phanerozoic phosphorus cycle. Geology 2000, 28, 631–634. [Google Scholar] [CrossRef]
- Guidry, M.W.; Mackenzie, F.T. Experimental study of igneous and sedimentary apatite dissolution: Control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim. Cosmochim. Acta 2003, 67, 2949–2963. [Google Scholar] [CrossRef]
- Moecher, D.P.; Samson, S.D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth Planet. Sci. Lett. 2006, 247, 252–266. [Google Scholar] [CrossRef]
- Johansson, A.; Gee, D.G.; Larionov, A.N.; Ohta, Y.; Tebenkov, A.M. Grenvillian and Caledonian evolution of eastern Svalbard —A tale of two orogenies. Terra Nova 2005, 17, 317–325. [Google Scholar] [CrossRef]
- Max, M.D.; Sonet, J. A Grenville age for pre-Caledonian rocks in NW Co. Mayo, Ireland. J. Geol. Soc. 1979, 136, 379–382. [Google Scholar] [CrossRef]
- Brook, M.; Brewer, M.S.; Powell, D. Grenville events in Moine rocks of the Northern Highlands, Scotland. J. Geol. Soc. 1977, 133, 489–496. [Google Scholar] [CrossRef]
- Benda, L.; Miller, D.; Bigelow, P.; Andras, K. Effects of post-wildfire erosion on channel environments, Boise River, Idaho. For. Ecol. Manag. 2003, 178, 105–119. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, D.A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 2001, 26, 1049–1070. [Google Scholar] [CrossRef]
- Garver, J.; Royce, P.; Smick, T. Chromium and nickel in shale of the Taconic foreland; a case study for the provenance of fine-grained sediments with an ultramafic source. J. Sediment. Res. 1996, 66, 100–106. [Google Scholar]
- Davies, N.; Gibling, M.R. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth Sci. Rev. 2013, 120, 40–79. [Google Scholar] [CrossRef]
- Cotter, E. The Evolution of Fluvial Style, with Special Reference to the Central Appalachian Paleozoic; Canadian Society of Petroleum Geologists: Calgary, Canada, 1978. [Google Scholar]
- Murray, A.B.; Paola, C. Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf. Process. Landf. 2003, 28, 131–143. [Google Scholar] [CrossRef]
- Davies, N.; Gibling, M.R. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology 2010, 38, 51–54. [Google Scholar] [CrossRef]
- Graham, J.B.; Aguilar, N.M.; Dudley, R.; Gans, C. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 1995, 375, 117–120. [Google Scholar] [CrossRef]
- Beerling, D.; Lake, J.; Berner, R.; Hickey, L.; Taylor, D.; Royer, D. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere. Geochim. Cosmochim. Acta 2002, 66, 3757–3767. [Google Scholar] [CrossRef]
- Murphy, B.P.; Czuba, J.; Belmont, P. Post-wildfire sediment cascades: A modeling framework linking debris flow generation and network-scale sediment routing. Earth Surf. Process. Landf. 2019, 44, 2126–2140. [Google Scholar] [CrossRef]
- Garzanti, E.; Vezzoli, G.; Andò, S.; Lavé, J.; Attal, M.; France-Lanord, C.; DeCelles, P. Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth Planet. Sci. Lett. 2007, 258, 500–515. [Google Scholar] [CrossRef]
- Bookhagen, B.; Thiede, R.C.; Strecker, M.R. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 2005, 33, 149. [Google Scholar] [CrossRef] [Green Version]
- Clift, P.D.; Giosan, L.; Blusztajn, J.; Campbell, I.; Allen, C.M.; Pringle, M.; Tabrez, A.R.; Danish, M.; Rabbani, M.; Alizai, A.; et al. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology 2008, 36, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Clift, P.D.; Böning, P.; Blusztajn, J.; Murray, R.W.; Ireland, T.; Pahnke, K.; Helm, N.C.; Giosan, L. Continuous Holocene input of river sediment to the Indus Submarine Canyon. Mar. Geol. 2018, 406, 159–176. [Google Scholar] [CrossRef]
- Clift, P.D.; Wan, S.; Blusztajn, J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth Sci. Rev. 2014, 130, 86–102. [Google Scholar] [CrossRef]
- Bookhagen, B.; Thiede, R.C.; Strecker, M.R. Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth Planet. Sci. Lett. 2005, 231, 131–146. [Google Scholar] [CrossRef]
- Colin, C.; Siani, G.; Sicre, M.-A.; Liu, Z. Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River basin over the past 25,000yr. Mar. Geol. 2010, 271, 84–92. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Z.; Rao, K.N.; Sangode, S.J.; Saito, Y.; Chen, T.; Kulkarni, Y.; Kumar, K.C.V.N.; Demudu, G. A mid- to late-Holocene record of vegetation decline and erosion triggered by monsoon weakening and human adaptations in the south-east Indian Peninsula. Holocene 2017, 27, 1976–1987. [Google Scholar] [CrossRef]
- Dickinson, W.R. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet. Sci. Lett. 2008, 275, 80–92. [Google Scholar] [CrossRef]
- Chew, D.; O’Sullivan, G.; Caracciolo, L.; Mark, C.; Tyrrell, S. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth Sci. Rev. 2020, 202, 103093. [Google Scholar] [CrossRef]
- Barham, M.; Kirkland, C.L.; Hovikoski, J.; Alsen, P.; Hollis, J.; Tyrrell, S. Reduce or recycle? Revealing source to sink links through integrated zircon–feldspar provenance fingerprinting. Sedimentology 2020, 68, 531–556. [Google Scholar] [CrossRef]
- Johnson, T.E.; Kirkland, C.L.; Reddy, S.M.; Evans, N.J.; McDonald, B.J. The source of Dalradian detritus in the Buchan Block, NE Scotland: Application of new tools to detrital datasets. J. Geol. Soc. 2016, 173, 773–782. [Google Scholar] [CrossRef]
- Johnson, S.P.; Kirkland, C.L.; Evans, N.J.; McDonald, B.J.; Cutten, H.N. The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar. Geosci. Front. 2018, 9, 1515–1527. [Google Scholar] [CrossRef]
- Nauton-Fourteu, M.; Tyrrell, S.; Morton, A.; Mark, C.; O’Sullivan, G.J.; Chew, D.M. Constraining recycled detritus in quartz-rich sandstones: Insights from a multi-proxy provenance study of the Mid-Carboniferous, Clare Basin, western Ireland. Basin Res. 2020, 33, 342–363. [Google Scholar] [CrossRef]
- Pettit, B.S.; Blum, M.; Pecha, M.; McLean, N.; Bartschi, N.C.; Saylor, J.E.; Saylo, J.E. Detrital-Zircon U-Pb Paleodrainage Reconstruction and Geochronology of the Campanian Blackhawk–Castlegate Succession, Wasatch Plateau and Book Cliffs, Utah, USA. J. Sediment. Res. 2019, 89, 273–292. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anders, B.; Tyrrell, S.; Chew, D.; O’Sullivan, G.; Mark, C.; Graham, J.; Badenszki, E.; Murray, J. Wildfires and Monsoons: Cryptic Drivers for Highly Variable Provenance Signals within a Carboniferous Fluvial System. Geosciences 2022, 12, 20. https://doi.org/10.3390/geosciences12010020
Anders B, Tyrrell S, Chew D, O’Sullivan G, Mark C, Graham J, Badenszki E, Murray J. Wildfires and Monsoons: Cryptic Drivers for Highly Variable Provenance Signals within a Carboniferous Fluvial System. Geosciences. 2022; 12(1):20. https://doi.org/10.3390/geosciences12010020
Chicago/Turabian StyleAnders, Bébhinn, Shane Tyrrell, David Chew, Gary O’Sullivan, Chris Mark, John Graham, Eszter Badenszki, and John Murray. 2022. "Wildfires and Monsoons: Cryptic Drivers for Highly Variable Provenance Signals within a Carboniferous Fluvial System" Geosciences 12, no. 1: 20. https://doi.org/10.3390/geosciences12010020
APA StyleAnders, B., Tyrrell, S., Chew, D., O’Sullivan, G., Mark, C., Graham, J., Badenszki, E., & Murray, J. (2022). Wildfires and Monsoons: Cryptic Drivers for Highly Variable Provenance Signals within a Carboniferous Fluvial System. Geosciences, 12(1), 20. https://doi.org/10.3390/geosciences12010020