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Abstract

:

Previous research suggested that the Alpine glaciers of the Northern Swiss Foreland reached their maximum extensive position during the Middle Pleistocene. Relict tills and glaciofluvial deposits, attributed to the Most Extensive Glaciation (MEG), have been found only beyond the extents of the Last Glacial Maximum (LGM). Traditionally, these sediments have been correlated to the Riss glaciation sensu Penck and Brückner and have been morphostratigraphically classified as the Higher Terrace (HT) deposits. The age of the MEG glaciation was originally proposed to be intermediate to the Brunhes/Matuyama transition (780 ka) and the Marine Isotope Stage 6 (191 ka). In this study, we focused on the glacial deposits in Möhlin (Canton of Aargau, Switzerland), in order to constrain the age of the MEG. The sediments from these deposits were analyzed to determine the provenance and depositional environments. We applied isochron-burial dating, with cosmogenic 10Be and 26Al, to the till layer in the Bünten gravel pit near Möhlin. Our results indicate that a glacier of Alpine origin reached its most extensive position during the Middle Pleistocene (500 ± 100 ka). The age of the MEG thus appears to be synchronous with the most extensive glaciations in the northern hemisphere.
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1. Introduction


The Most Extensive Glaciation (MEG), locally known as Möhlin glaciation, Hosskirch, Mindel, or Most Extensive Helvetic Glaciation (Grösste Helvetische Vergletscherung in German; GHV), is proposed to have occurred during the Middle Pleistocene (774–129 ka; [1]) [2,3,4,5,6]. Previous studies reconstructed its extent by mapping erratic boulders detected beyond the extents of the LGM, along with few relict glacial deposits [5,7,8]. Further, it was suggested that this glaciation reached the interiors of the northern Alpine Foreland and advanced at least until Möhlin (Canton of Aargau), close to Basel in northern Switzerland (Figure 1), where the Rhone, Reuss, Linth, and Rhaetian paleoglaciers coalesced [9,10,11]. In Möhlin, the Bünten Till, one of the few preserved glacial relicts attributed to the MEG outcrops in a gravel pit. This is perceived to be an important locality for reconstructing the MEG in the Swiss northern Alpine Foreland [3,6,8]. The MEG is also esteemed as the first glacier advance that formed overdeepened valleys in the northern Alpine Foreland [4,12]. Moreover, the MEG was tentatively correlated with the complex of Upper Terraces (HT; Hochterrasse in German) and, therefore, with the Riss glaciation (ca. 130–185 ka) [4,8,9,13], using the four-fold glaciation schemes by Penck and Brückner [9]. Despite several attempts, the exact age of the Alpine glacial expansion still remains a question of debate.



Earlier studies demonstrate that the MEG took place between the Brunhes/Matuyama transition (780 ka) [14] and the Marine Isotope Stage (MIS) 6 (130 ka–191 ka [15]). Based on the morphostratigraphy of the Swiss northern Alpine Foreland, Schlüchter [2,16] proposed that the MEG followed the Deckenschotter glaciations and therefore should have occurred just after the Brunhes/Matuyama transition. Analyses of pollen assemblages from the glacial and interglacial sediments of the Lower Aare Valley reveal the MEG to be older than the Holsteinian, an interglacial period generally attributed to MIS 11 (360–420 ka) [4]. In Southern Germany, the Hosskirch glaciation gravel deposits underlie the Holsteinian sediments [5]. According to Keller [6], the MEG is older than the Riss glaciation but younger than the Deckenschotter deposits, thus implying an approximate age of 350 ka. The age of the loess layer (19 ka–ca. 60 ka) overlying the glacial and glaciofluvial sediments in Möhlin, derived from the optically stimulated luminescence (OSL) technique, indicates that the MEG occurred prior to the MIS 6 [17]. U/Th and OSL dating of the Landiswil gravels (Canton of Bern), attributed to the MEG, assigns them an age comparable to MIS 6 [18].



The major objectives of this study were to: (1) put constraints on the age of the MEG in the Alps in context of the northern hemispheric glaciation by focusing on the Bünten Till, which is attributed to the MEG [3,8,18,19] and outcropping in a gravel pit near Möhlin (Figure 1); and (2) reconstruct whether the glacier that deposited the Bünten Till originated from the Alps or the Black Forest. We established the age of the Bünten Till by using isochron-burial dating with cosmogenic 10Be and 26Al. The source of the till was determined by analyzing the sedimentology of clasts within the Bünten Till.
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Figure 1. (a) Simplified geological map of the Möhlin area. The black dotted lines indicate the ridges that have been interpreted as moraines by Penck and Brückner [9]. The black rectangle indicates the extent of Figure 2. The cross-section A–B is given in Figure 3. (b) Extent of the Aare, Reuss, Linth, and the Rhaetian Lobes in the Swiss northern Alpine Foreland during the Last Glacial Maximum (LGM) [20]. The background map and the geological 1:500,000 map are reproduced with the authorization of the Swiss Federal Office of Topography (swisstopo). 
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2. Study Site


The Bünten gravel pit on the Möhlinerfeld, an approximately 4 km long and 3.5 km wide plateau, is located close to Möhlin, approximately 20 km east of Basel, and to the south of the River Rhine (Figure 1 and Figure 2), with a maximum altitude of 379 m above mean sea level (m a.s.l.). Permian, Jurassic, and Triassic bedrocks can be observed to have outcropped towards the south of the Möhlinerfeld. HT gravels and Lower Terraces (NT; Niederterrasse in German) have been reported towards the north of the plateau. In addition, the Möhlinerfeld lies far beyond the extents of the Last Glacial Maximum (LGM) (Figure 1). Penck and Brückner [9] have described two shallow ridges of lengths 3 km and 4 km, respectively, on the plateau, which were previously interpreted as terminal moraines deposited by an Alpine glacier during the Riss glaciation [9,19] (Figure 1 and Figure 2); recent studies have, however, interpreted these ridges as loess rather than terminal moraines [3,16].



The stratigraphy of the Bünten gravel pit has been illustrated in Figure 3a,b [21,22]. Although no bedrock is exposed in the gravel pit or has been reached by drilling [22], Müller-Dick [22] has predicted at least a 30 m thick gravel layer (Figure 3a) overlying the Triassic bedrocks [9,23]. The Bünten Till is presently outcropping as a 50 cm thick reddish till layer containing clasts derived from the Alps and the Black Forest. This layer is not in its original position but is part of a push moraine [23]. The Bünten Till, attributed to the MEG [4], is located approximately 30 m below the surface, at an elevation of 345 m a.s.l. [21,22] (Figure 3b). Earlier, the Bünten Till was observed to be located at a lower level of the gravel pit in an autochthonous position, where it is overlain by the glaciofluvial Bünten Gravel. This has later partially been glaciotectonically deformed owing to broken clasts and folding events [21,22,23] (Figure 3a,b). These gravels predominantly consist of Alpine clasts. However, clasts derived from the Black Forest are also present [4]. The Bünten Gravel is overlain by a paleosol, which is considered to likely represent interglacial climatic conditions [4,21] (Figure 3b). The Wallbach Gravel, located approximately 15 m below the surface, is composed of glaciofluvial gravels of Alpine origin [4,21] (Figure 3a,b). The Bünten and the Wallbach Gravel were together glaciotectonically deformed resulting in a folding of the paleosol. A till layer with sediments derived from the Black Forest envelops the Wallbach Gravel [21]. This entire sequence has been interpreted as the Zeiningen Till [3,4]. Petrographic analyses of this till indicated its deposition by a glacier that originated from the Black Forest [3,4] (Figure 3a,b). The glacier advance depositing the Zeiningen Till has also been suggested to have deformed the underlying sedimentary units [4]. The uppermost unit of the Bünten gravel pit is a 10 m thick loess layer [3,4,21]. The youngest deposit of the Möhlinerfeld is the Möhlinerfeld Gravels, which partly stem from the Black Forest [3,4] (Figure 3a). These gravels overlie the Wallbach Gravels and the Bünten Gravels in the Möhlinerfeld, but are absent in the Bünten gravel pit [3,4,21].




3. Methodology


3.1. Sedimentary Analyses


Petrographic analyses of the clasts provide information regarding the provenance of the sedimentary sequences [24,25,26,27,28,29,30]. A sample set of at least 250 clasts was collected from the field utilizing a bucket, to avoid any visual bias [26,30]. The freshly sampled material from the till was sieved into the pebble fraction (2–6 cm). The clasts were petrographically classified into the following lithology classes: (1) light colored limestone, (2) dark colored limestone, (3) gray colored limestone, (4) sparitic limestone, (5) ocher colored limestone, (6) oosparite, (7) siliceous limestone, (8) vein quartz, (9) quartzite, (10) chert/hornstone, (11) radiolarite, (12) sandstone, and (13) crystallines [8,25,26,30]. The crystalline components are utilized to distinguish the Black Forest and the Alpine origin clasts. Red colored granite clasts characterize the Black Forest origin [31], whereas the greenish and white colored crystallines characterize the Alpine origin.



The clast morphometric analysis is a commonly utilized method to distinguish between glacial and fluvial transport mechanisms [32]. Among the several methods developed for these analyses [32,33,34], we applied the Cailleux method [33], appropriate for glacial and melt water environments [26,33]. As the transport resistance varies with the lithologies, it is essential to analyze clasts from the same lithology [26,32]. The dark colored limestone clasts account for the most abundant lithology and hence 100 such clasts were segregated from the pebble fraction for analytical purposes. Moreover, flattening (Ai) and roundness (Zi) indices for these clasts were determined in the following manner:


   A i   =     a + b     2 c       ×   100   



(1)






   Z i   =       2 r   1   a     ×   1000   



(2)




where a is the length of the clast, b the width, c the thickness, and r1 the radius of the smallest curvature [33,35].



The depositional environment and the transport mechanism were determined by analyzing the clast fabric [32,34,36,37,38]. The clast fabric provides information on the orientation of a single clast, which forms the basis for reconstruction of paleoflow directions [29,38,39,40]. Elongated clasts were examined for this purpose [40]; that is, only the clasts with an a-axis > 6.3 cm and a:b ratio of >1.5. Thus, it was ensured that measurements of elongated clasts were utilized for the paleoflow reconstruction. The orientation and the inclination of 25 clasts fulfilling these criteria were measured in the field.




3.2. Isochron-Burial Dating


The isochron-burial dating technique is generally utilized to establish a chronology for 0.1 Ma to 5 Ma old terrestrial deposits such as fluvial terraces, paleosols, and glaciofluvial gravels [30,41,42,43,44,45,46,47,48,49,50,51,52,53,54]. It can be further applied to deposits composed of clasts, with a more complex pre-burial history or which experienced post-burial production [41,48,51,55]. The technique is based on the radioactive decay of cosmogenic 10Be and 26Al and uses the difference between the production ratio at the surface at the point of deposition and the measured 26Al/10Be ratio of the deposit to calculate the depositional age [41,45,47,48,51]. The samples should have different pre-burial histories in order to calculate their isochron-burial age; that is, they should differ in the inherited nuclide concentrations. To fulfill this criterion, samples of different lithologies, sizes, and shapes were collected [45,46,47,48,49,51,54].



Sampling, Sample Preparation, and Measurements


A total of 12 samples, 11 clasts (quartzite, sandstone, and granite) and a sediment sample (of 50 small quartz pebbles) were collected from the Bünten Till. The samples for cosmogenic 10Be and 26Al analysis were prepared at the Surface Exposure Laboratory of the University of Bern. The sediment and nine clast samples were leached and purified ([51], and references therein) to obtain 50 g pure quartz. Ideally, Al concentrations <30 ppm are required for high quality 26Al/27Al Accelerator Mass Spectrometry (AMS) analysis [51,54]. However, the new AMS facility (MILEA), recently developed at ETH Zurich, measures 10Be and 26Al with higher efficiency [56], allowing us to use samples with higher total Al concentrations (>100 ppm). Before dissolving, the total Al concentrations of the samples were checked utilizing inductively coupled plasma optical emission spectrometry (ICP-OES) at the Institute of Geological Sciences, University of Bern. In addition, samples with extremely high total Al concentrations (>100 ppm) were subjected to additional leaching steps or were abandoned. Six samples with lowest total Al concentrations and a sufficient amount of pure quartz were dissolved (Table 1). A full process 10Be blank was processed in a batch of nine samples. Samples were spiked with 200 µL and the full 10Be process blank with 400 µL of 1 g/L 9Be carrier. The cosmogenic 10Be and 26Al was extracted following the protocol by Akçar et al. [51]. The 10Be/9Be and the 26Al/27Al ratios were measured in the MILEA AMS facility at ETH Zurich [57,58]. An error weighted average full process blank ratio of (2.76 ± 0.18) × 10−15 was utilized to correct the measured 10Be/9Be ratios. ICP-OES, at the Institute of Geological Sciences, University of Bern, was utilized to determine the total Al concentrations. The CRONUS-Earth exposure age calculator was utilized to calculate the 26Al/10Be ratios, which were referenced to 07KNSTD ([59] and the updates from v. 2.2 to v. 2.3 published by Balco in June 2016; http://hess.ess.washington.edu/math/al_be_v23/al_be_multiple_v23.html; accessed on 13 January 2021). The isochron-burial ages were calculated with the MatLab® code provided by ([45]; personal communication with Darryl Granger) considering 1σ measurement uncertainties. To calculate an isochron-burial age, we applied a production rate of 4.00 ± 0.32 atoms/gSiO2/a cosmogenic 10Be at the surface, due to spallation at sea level high latitude (SLHL) [60]. In addition, a surface production ratio of 6.75 was applied for the 26Al/10Be ratio [41]. The time dependent Lm scheme [61,62] was utilized to calculate the altitude/latitude scaling of the surface production rate. Half-lives of 1.387 Ma for 10Be [63,64] and 0.705 Ma for 26Al [65,66] were used. For the determination of an isochron-burial age, initially measured 26Al concentrations were plotted against the measured 10Be concentrations. Furthermore, a regression was calculated through the measured 10Be and 26Al concentrations. Subsequently, the slope of the regressed line was utilized to estimate an initial isochron-burial age based on the offset from the initial surface production ratio [41,45]. Based on this initial age estimate, the post-burial production component is determined, subtracted from the measured concentrations and the resulting inherited concentrations are corrected for isotope decay [41,45]. After determining the pre-burial erosion rates based on the corrected inherited 10Be concentrations, an inherited 26Al/10Be ratio was calculated [45]. The inherited isotope ratios were applied to estimate a linearization factor, which was applied to correct for post-burial production [45]. The corrected 10Be and 26Al concentrations were again plotted against each other. Finally, these steps have been iterated until age convergence [41,45]. For fluvial depositional environments, the initial ratio equals the surface production ratio, as fluvial clasts are assumed to stem from the surface. Therefore, the surface production ratio of 6.75 [41] is commonly utilized as the initial ratio in calculating isochron-burial ages. This technique has often been applied for determining the age of fluvial terraces (e.g., [43], among others). In landscapes sculptured repeatedly by deep erosion, such as glacial landscapes, the production ratio at depth becomes equal to the initial ratio [51]. As muogenic production becomes dominant with depth, the 26Al/10Be ratio increases. For example, Braucher et al. [67,68] and Margreth et al. [69] reported a value up to 8.3. In the following, we briefly outline how a glacially created, transported, and deposited clast can account for an initial ratio higher than the surface ratio (6.75). During glacial erosion, the clasts are first excavated by the glacier from the bedrock at depth (deep erosion) (cf. Figure 7 in [51]). Subsequently, these clasts are transported either subglacially or englacially, i.e., completely shielded from cosmic rays. Later, they are embedded in a glacial deposit, such as the Bünten till in this study, or in a glaciofluvial deposit. In both cases, such clasts will never be exposed at the surface prior to burial and their initial ratio will be >6.75. As one cannot determine the original depth at the source, from which a clast originates, Akçar et al. [51] suggested to use the production ratio at depth (between 6.75 and 8.4, average value is 7.6) for the isochron-burial age calculations for landscapes dominated by deep erosion. In addition, Knudsen et al. [42] applied the P-PINI (Particle Pathway Inversion of Nuclide Inventories) method to model burial ages, utilizing a source to sink approach. Their modelling demonstrated that the majority of initial 26Al/10Be ratios at the source were larger than 7.2 (cf. Figure 8 in [42]). They concluded that these samples were derived from environments which experienced fast and deep erosion due to glacier activity. Based on these lines of evidence, the isochron-burial age of the Bünten Till was calculated with initial ratios of 6.75, 7.6, and 8.4, respectively. The isochron-burial age calculated with an initial ratio of 7.6 has been considered in the ensuing discussion.






4. Results


4.1. Sedimentary Analyses


4.1.1. Sediments of the Bünten Gravel Pit


The till in the Bünten gravel pit is located approximately 30 m below the surface (Figure 4a). The 50 cm thick till layer is observed to be tilted (Figure 4b). The till is poorly sorted, with clast sizes ranging up to 20 cm (Figure 4c,d). The clasts are matrix supported, consisting of reddish colored clay and silt (Figure 4c,d). Two groups of paleoflow directions were measured, one towards N and another towards W, resulting in a NW mean paleoflow direction. The Bünten gravels overlying the till are poorly sorted with a maximum clast size of approximately 25 cm. A sandy to silty matrix can be observed. The horizontally bedded glaciofluvial gravels, located to the west of the Bünten Till, are nearly 10 m thick (Figure 4b). They contain a matrix predominantly composed of sand and minor amounts of silt. A maximum clast size of 25 cm has been reported from these gravels. At a depth of 10 m below the surface, the glaciofluvial gravel sequence exhibits cross bedding (Figure 4a).




4.1.2. Clast Petrography


The results of the clast petrography for 275 samples are shown in Figure 5. Most of the clasts are dark colored limestones (21%), successively followed by gray colored limestones (14%), quartzites (13%), and crystalline clasts (9%). The crystalline clasts can be further categorized as those of the Black Forest origin (4%) and those of the Alpine origin (5%). The ocher-colored limestones and oosparites account for 8% and 6% of the total clasts, respectively. The sparitic and siliceous limestones contain relative abundances of 7% each. Sandstones, vein quartz clasts, and cherts exhibit a relative abundance of 4% each. The light colored limestone clasts and the weathered components represent 2% and 1% of the total clasts, respectively. Since only one radiolarite clast was found, its abundance was too small to be represented on the pie diagram.




4.1.3. Clast Morphometry


A total of 110 clasts were measured to calculate the roundness index (Zi) and the flattening index (Ai) (Figure 6 and Figure 7). The Zi values range from 50 to 550, with a few clasts displaying values between 600 and 700 (Figure 6). The median of the roundness index (Md(Zi)) is 244. The clasts exhibit bimodal distribution, the first highest mode being represented between 100 and 150 and the second between 250 and 300. The calculated flattening indices vary between 100 and 450 with a median (Md(Ai)) of 180 (Figure 7).





4.2. Isochron-Burial Dating


At the Möhlin site twelve samples were collected, of which six samples were processed to extract cosmogenic 10Be and 26Al. After leaching, these samples exhibited a total Al concentration between 49 ppm and 161 ppm (Table 1). The processed samples contain lithologies of quartzite (MÖHL-1, MÖHL-4, MÖHL-5, and MÖHL-7) and sandstone (MÖHL-10). MÖHL-12 is a sediment sample.



The results of the cosmogenic 10Be and 26Al measurements are displayed in Table 2. The 10Be/9Be ratios range from 1.24 × 10−14 to 8.60 × 10−14. The relative measurement uncertainty of the 10Be/9Be ratios lies between 4% and 11%. The full process blank accounts for 3% to 23% of the measured 10Be/9Be ratios. The calculated, blank corrected 10Be concentrations vary between (3.8 ± 0.5) × 103 atoms/g and (25.3 ± 1.3) × 103 atoms/g. The total Al amount varies between 3 and 9 mg, and the total Al concentrations between 60 and 190 ppm, respectively. The measured 26Al/27Al ratios range from 1.25 × 10−14 to 9.56 × 10−14 with relative uncertainties of 3% to 11%. The calculated concentrations of the 26Al are between (44.3 ± 3.2) × 103 atoms/g and (172.0 ± 13.4) × 103 atoms/g. The 26Al/10Be ratio ranges from 6.8 ± 0.4 to 13.3 ± 2.3. The sample MÖHL-10 was excluded from the modeling of the isochron-burial age, as it lies beyond the two-sigma solution space [49].



For the Bünten Till, a lower isochron-burial age limit of 260 ± 110 ka, with an initial ratio of 6.75, was calculated using the code provided by [45] and personal communication with Darryl Granger. The mean initial ratio of 7.6 yielded an age of 500 ± 100 ka. An upper age boundary of 700 ± 100 ka was calculated using an initial ratio of 8.4 (Figure 8). In order to explore the contribution of post-burial nuclide production in the measured concentrations, we re-calculated the isochron-burial age by using St [62] and LSDn scaling scheme [70] and based on the Bender approach, which do not include the post burial component (cf. [48]). Use of both calculations with different scaling schemes and Bender code did not alter the isochron-burial age, which indicates a minimum contribution of post-burial production. The 500 ± 100 ka age will be henceforth utilized with regards to the MEG.





5. Discussion


5.1. Provenance of the Sediments


Given the proximity of Möhlin to the Black Forest, it is important to establish whether the till in the Bünten gravel pit represents the most extensive position of Alpine glaciers or has been deposited by a paleoglacier from the Black Forest. The petrography of the clasts is essential to understand the origin of the paleoglacier. Several varieties of limestone (60%) reported from Möhlin, including the dark colored, gray colored, light colored, and siliceous limestone clasts, possibly have their origins in the Helvetic and Penninic Nappes of the Alps [71,72,73]. These nappes cover extensive areas and therefore the precise provenance cannot be determined. The ocher colored limestone, oosparite, and sparitic limestone clasts probably originated from the Jura Mountains in the northern and western parts of the northern Alpine Foreland and/or south of the Black Forest [71,72,73]. The quartzite clasts are currently exposed in the Valaisian Alps and eastern Central Alps, and have also been observed in the Molasse Conglomerates [74,75,76]. The composition of the crystalline components from the till indicates a Black Forest as well as an Alpine origin.



The presence of Alpine and Black Forest origin clasts in the Bünten Till can be explained by the reworking of previously deposited Alpine clasts by a glacier initiating from the Black Forest or vice versa. Previous studies reported the presence of Alpine and Black Forest lithologies at various locations between Brennet and Laufenburg (Figure 1) and thus, numerous theories were proposed for the origin of the paleoglacier. In 1895, Gutzwiller [19] observed the coexistence of the Alpine and Black Forest material in a glacial deposit, but did not make a clear statement regarding the origin of this paleoglacier. Reichelt [77] concluded that the two glaciers merged to the east, close to the city of Laufenburg (Figure 1). However, Pfannenstiel [78] suggested that the glacier initiated from the Black Forest and coalesced with the Alpine glacier approximately 5 km east of Möhlin (Figure 1). A few studies proposed that the glacier from the Wehra Valley advanced close to Möhlin, but did not reach the Möhlinerfeld [79,80] (Figure 1). Müller-Dick [22] suggested that the glacier depositing the Bünten Till was of Alpine origin, while a second glacier advance depositing the Zeiningen Till originated from the Black Forest.



The lithology of a paleoglacier from the Black Forest should ideally contain contributions of: red colored granites, minor amounts of Mesozoic carbonates, and a few Tertiary rocks [71,72,73,81]. A southbound advancement of the Black Forest paleoglacier potentially enabled its encounter with some Alpine clasts, reworked from the deposits along the course of the River Rhine. In contrast, theoretically, a paleoglacier from the Alps would have predominantly transported carbonate clasts from the Helvetic and Penninic Nappes, along with quartzite clasts, crystalline clasts (such as Julier granite, Aare granite, and Serpentinites, among others), and a few Mesozoic rocks from the Jura Mountains, allowing limited contribution of the clasts from the Black Forest. Clast petrographic analysis during this study revealed coexistence of sediments from both provenances. The components from the Black Forest demonstrate a rather small relative abundance.



The morphometry of the clasts embedded in the Bünten Till points towards a glacially influenced sediment [35,82]. According to Cailleux and Tricart [35], and Schlüchter [82], clasts with a roundness index between 150 and 300 were deposited in the proximity of a glaciofluvial environment. Two third of the clasts from the Bünten Till show Zi values below 300, of which a third contain values between 50 and 150, which indicate a glacial deposition. The clasts with Zi values above 300, therefore, probably represent better rounded clasts and are interpreted as indicators for reworked sediment [82]. We accordingly conclude that one third of the quartz vein clasts in the Bünten Till are fresh material delivered from the Alps, whereas, two thirds appear to bear evidence of reworking by the glacier. The Ai values point towards a compact shape and, therefore, glacial and glaciofluvial transport in contrast to the flat and disc shaped clasts, which are interpreted as evidence of a fluvial transport [34]. In brief, we propose that the Bünten Till was deposited by a glacier descending from the Alps based on the petrographical composition of the sediment, the morphometry, and the measured paleoflow direction towards the northwest. The Black Forest lithologies encountered in the sediment were most probably eroded from outcrops located further east of Möhlin and close to the River Rhine (Figure 1).




5.2. Age of the MEG in the Northern Hemisphere


Previous studies have tentatively reconstructed the age of the MEG based on the morphostratigraphy of the northern Alpine Foreland, whereas the obtained 500 ± 100 ka corresponds to the age of the most extensive position of Alpine glaciers. The chronology of the MEG lies within the time range suggested by previous studies and implied by the morphostratigraphy of the northern Alpine Foreland [2,4,16,17]. Schlüchter [2,16] suggested that this advance occurred after the Deckenschotter glaciations and the Brunhes/Matuyama transition. Based on the OSL ages from the loess cover, Gaar et al. [17] tentatively attributed the deposition of the Zeiningen Till to MIS 6, thus implying that the MEG predates the Zeiningen Till (Figure 3a).



Based on the existing data and results obtained from this study, we suggest the following chronostratigraphy for the Möhlinerfeld area. At approximately 500 ka, the Alpine glaciers reached their most extensive position. The Bünten Till indicates that a glacier lobe covered the Möhlinerfeld; however, evidence for the thickness of the ice and the position of the ice margins at that time is lacking. The measured paleoflow directions suggest that the ice margin was located NW of the Bünten gravel pit. According to Frei [10], the Rhone Lobe covered the Möhlinerfeld during the MEG. Such an assumption implies that the Rhone Lobe reached an approximate minimum length of 315 km. This further implies that the glacier during the MEG was nearly 35 km longer than that during the LGM. The deposition of the gravels and the Zeiningen Till located on top of the Bünten Till occurred between 500 ka and 60 ka, as per the age of the loess coverage [17] (Figure 3a). An age of 160 ka, corresponding to the MIS 6, was suggested for the Zeiningen Till [17]. Assuming that the Zeiningen Till is of the MIS 6 age, the Bünten Gravel would have been either deposited during the MEG or the Habsburg glaciation, with the Wallbach Gravel overlying the Bünten Gravel during the Habsburg or Hagenholz/first advance of the Beringen glaciation, respectively (Figure 3a,b). The deposition of the Möhlinerfeld Gravel can be tentatively attributed to the Beringen glaciation (Figure 3a).



Glaciers played an important role in shaping the Quaternary landscapes of the northern Swiss Foreland. Glaciers that advanced onto the northern Alpine Foreland sculpted the overdeepened valleys (up to 300 m in depth) (see [83] and references therein). The MEG is considered responsible for the commencement of the overdeepened valley formation [4,12]. Therefore, we suggest that the first overdeepened valley formed not later than approximately 500 ka. Recently, several drill cores were obtained from overdeepened valleys in the Swiss northern Alpine Foreland to comprehensively analyze the infill and to reconstruct the glaciation history [83,84,85,86,87]. Sediments from the base of the investigated overdeepened valley fills were dated to approximately 180 ka [83,84,85,86,87]. Some of these also represent an older sedimentary infill [74]. According to these findings, the beginning of the overdeepening has been assigned to a glacial advance at 260 ka or older [83]. In the Lower Aare Valley, the presence of different sediment units implies that during 160 ka to 180 ka, the area was dominated by a periglacial setting; the lowermost sands covering a glacial diamicton are older than 180 ka [87]. The presence of glaciolacustrine sediments, dated by applying OSL, indicate that glacial lakes dominated the Wehn Valley and the Lower Glatt Valley between ca. 130 ka and ca. 180 ka [83,86] as well as between ca. 180 ka and >260 ka [84,86]. Assuming the challenges involved in OSL dating of proglacial sediments, the ages of roughly 260 ka might also be related to the upper limit of the OSL dating technique and can be reliable up to 200 ka [88,89]. The upper dating limit with OSL is given by the saturation of the dose, usually resulting in an age of 150 ka, but few deposits can be dated up to ca. 400 ka [89,90,91,92]. Based on these results, the MEG still possibly remains responsible for the first overdeepened valleys, albeit inconclusively.



Owing to the limitations of the OSL technique, with a few exceptions a chronology of only up to ca. 400 ka can be dated; that is, the OSL helps reconstruct chronology of deposits older than the LGM [93,94,95,96,97,98,99,100,101,102,103,104]. It is possible, however, that evidence of glaciation at 500 ka exists somewhere in the Alps. In the Upper Rhine Graben (URG) about 300 km north of Möhlin, recently deposited sediments in a fluvial environment partially influenced by gravitational processes were dated to 454 ± 29 ka and attributed to the MEG [96]. Two phases for the deposition of HT-complex sediments were revealed by OSL ages in the northern Alpine Foreland: one at approximately 160 ka and another at 260 ka (Figure 9). HT deposits, 20 km to the west of Möhlin, were dated at approximately 236 ka by OSL, suggesting that the underlying gravel units were deposited by a glaciation older than ca. 240 ka [93]. The 10Be depth-profile age indicates that at 270 ka this area was characterized by a distal glaciofluvial environment [94]. These two phases were also identified based on glaciofluvial sediments in Southern Germany [98]. In Austria, the glaciofluvial sediments from the penultimate glaciation, attributed to the HT, were dated to 140 ka [99,100]. In the Southern Alps, a cold phase was determined at ca. 250 ka [101], but there is some evidence that these sediments might be of earlier glaciations [102,103]. No deposits older than the LGM have been dated in the French Alps; however, there is evidence that there were glaciers present during the Middle Pleistocene [104]. These ages of the HT exhibit that the MEG is clearly older and should therefore be classified separately. In addition, very few MEG deposits have been dated so far. Therefore, the ca. 500 ka of the Bünten Till represents the only time constraint for the MEG in the Alps.



At approximately 500 ± 100 ka, the glaciers apparently reached their most extensive position, not only in the Alps but also in other parts of Europe and of the northern hemisphere [106] (Figure 9). The Fennoscandian ice sheet reached its most extensive position during the Elsterian glaciation, covering Northern Europe and advancing up to Central Germany [107,108,109]. Fluvial sediments overlying Elsterian till were analyzed with the luminescence technique and dated between 447 ± 52 ka and 387 ± 48 ka, indicating that the Elsterian stage occurred during MIS 12 [108]. Dated glaciofluvial sediments indicate a glacier advance during the Elsterian glaciation between 461 ± 34 ka and 421 ± 25 ka [109] (Figure 9). In the Netherlands and the western part of Germany, archives of the Elsterian stage exist, which are not considered to represent the most extensive glaciation [110,111]. The MEG is considered as a glacier advance that initiated the overdeepening of valleys not only in the Swiss northern Alpine Foreland but also in Northern Europe (Elsterian glaciation) [112]. Glaciofluvial deposits indicate that the British ice sheet had the maximum extent (the Anglian stage) during 440 ka [113,114] (Figure 9). The presence of the Eurasian ice sheet (500 ka) can be observed in Russia. A till layer overlying interglacial sediments has been dated to 510 ka using the thermoluminescence technique [115]. This till layer corresponds to the Oka glaciation (tentatively correlating with the Elsterian glaciation) at 500–460 ka [116]. Although the Oka glaciation occurred comparably with the Möhlin glaciation, it did not reach its most extensive position in that area. The Don glaciation, considered to have had the largest extent, occurred prior to the Oka glaciation and therefore predates 500 ka [111,115]. The U/Th analysis of the secondary carbonates precipitated in the pores of the glaciofluvial deposits in the Balkan Mountains suggests that the MEG occurred between 470 and 420 ka [117,118,119,120]. Glaciations dating 500 ka have also been reported from North America [121,122]. There are, for instance, glacial deposits overlain by ca. 470 ka old basalts and underlain by marine deposits of 570 ka [121] or a till deposit with a suggested minimum age of 424–478 ka [122] (Figure 9). Evidence of a 500 ka old glaciation have been retrieved from the Tibetan Plateau, where glacial deposits were dated to 460–571 ka by the electron spin resonance (ESR) technique [123,124,125] (Figure 9). This indicates that the age of the MEG is consistent with other glacier advances in the northern hemisphere.





6. Conclusions


The Bünten gravel pit close to Möhlin, deposited by the MEG, was comprehensively examined during this study. Based on the petrographic analyses and the results of paleoflow direction, we conclude that the glacier originated from the Alps and that the Black Forest clasts were incorporated into the till due to reworking of the nearby sediments. Moreover, the isochron-burial dating of the Bünten Till to 500 ± 100 ka provides the first direct chronology for the MEG, thus addressing the complex chronostratigraphy of the Swiss northern Alpine Foreland. However, for improved understanding regarding the age and the extent of the most extensive glaciation in the Alps, further studies on stratigraphy and chronostratigraphy of MEG deposits are essential. We thus infer that the MEG is apparently synchronous with other glacier advances in the northern hemisphere.
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Figure 2. (a) Simplified geological map of the area around the Bünten gravel pit. For its extent, please refer to Figure 1. The yellow dot indicates the sampling site. The white angles in (a) and the yellow ones in (b) display the locations where the pictures in Figure 4 were captured. (b) DEM (Digital Elevation Model) of the Bünten gravel pit. The background map and the geological 1:500,000 map are reproduced with the authorization of the Swiss Federal Office of Topography (swisstopo). 
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Figure 3. (a) Cross-section A–B showing the different units in the Möhlinerfeld (modified after [23]). (b) Stratigraphic column of the Bünten Gravel Pit (modified after [21]). 






Figure 3. (a) Cross-section A–B showing the different units in the Möhlinerfeld (modified after [23]). (b) Stratigraphic column of the Bünten Gravel Pit (modified after [21]).



[image: Geosciences 12 00039 g003]







[image: Geosciences 12 00039 g004 550] 





Figure 4. Field photographs of the Möhlin site. (a) Overview of the Bünten gravel pit and spatial positioning of Figure 4b,d; (b) the Bünten Till (indicated by the red line) and spatial positioning of Figure 4c; (c) samples MÖHL-4 and MÖHL-5; and (d) sample MÖHL-2. 
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Figure 5. Clast petrography of the Bünten Till analyzed at the Möhlin site. 
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Figure 6. Histogram illustrating roundness index of clasts at the Möhlin site. 
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Figure 7. Histogram illustrating flattening index of clasts at the Möhlin site. 
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Figure 8. Isochron plot of the samples from the Möhlin site (the samples are plotted with 1σ uncertainties and the isochron-burial ages calculated with the initial ratios 6.75, 7.6, and 8.4). The best fit isochron-line is indicated in blue and the light blue envelope shows the 1σ solution space. The sample indicated in gray and labeled with an asterisk (*) is defined as an outlier and therefore excluded from the isochron-burial age calculation. 
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Figure 9. δ18O variation in the last 1 Ma (modified after [15]). The upper error ranges of the MEG, with an age of 500 ± 100 ka, overlap with those of the Elsterian stage in Northern Europe, the Anglian stage in Great Britain, moraines on the Tibetan Plateau, while its lower error ranges overlap with glaciofluvial sediments of North America. The Alpine glaciations of 250 ka and 160 ka represent separate glaciation events that do not correlate with the MEG. The light blue bar indicates the end of Deckenschotter glaciations, which took place between ca. 2.6 and 0.9 Ma [42,54]. The red dashed line indicates the Mid Pleistocene Revolution (MPR) occurring at around 0.95 Ma [105] and the green one the boundary between the Middle and Late Pleistocene [1]. 






Figure 9. δ18O variation in the last 1 Ma (modified after [15]). The upper error ranges of the MEG, with an age of 500 ± 100 ka, overlap with those of the Elsterian stage in Northern Europe, the Anglian stage in Great Britain, moraines on the Tibetan Plateau, while its lower error ranges overlap with glaciofluvial sediments of North America. The Alpine glaciations of 250 ka and 160 ka represent separate glaciation events that do not correlate with the MEG. The light blue bar indicates the end of Deckenschotter glaciations, which took place between ca. 2.6 and 0.9 Ma [42,54]. The red dashed line indicates the Mid Pleistocene Revolution (MPR) occurring at around 0.95 Ma [105] and the green one the boundary between the Middle and Late Pleistocene [1].



[image: Geosciences 12 00039 g009]







[image: Table] 





Table 1. Sample information for the Möhlin site.
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	Sample Name
	Lithology
	Weight (g)
	a-Axis (cm)
	Amount of Quartz after Leaching (g)
	Al Concentration after Leaching (ppm)





	MÖHL-1
	Quartzite
	1150
	12.7
	34
	76



	MÖHL-4
	Quartzite
	660
	12.3
	44
	161



	MÖHL-5
	Quartzite
	800
	9.3
	54
	145



	MÖHL-7
	Quartzite
	520
	8.2
	36
	94



	MÖHL-10
	Sandstone
	1630
	15.3
	46
	138



	1 MÖHL-12
	Quartz pebbles
	1610
	-
	67
	49







1 Sediment sample. Coordinates of the sampling site: 47.5533° N, 7.8716° E, 345 m a.s.l.
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Table 2. Cosmogenic 10Be and 26Al results of the samples from the Möhlin site.
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	Sample Name
	Quartz Dissolved (g)
	9Be Spike (mg)
	10Be/9Be (×10−14)
	Relative Uncertainty (%)
	Blank Correction (%)
	10Be Concentration (×103 Atoms/g)
	Total Al (ppm)
	Total Al (mg)
	26Al/27Al (×10−14)
	Relative Uncertainty (%)
	26Al Concentration (×103 Atoms/g)
	26Al/10Be





	MÖHL-1
	34.0800
	0.1990
	1.24
	10.2
	22.2
	3.8 ± 0.5
	158
	5.38
	1.42
	10.6
	50.1 ± 5.3
	13.3 ± 2.3



	MÖHL-4
	43.5431
	0.1980
	8.60
	4.8
	3.2
	25.3 ± 1.3
	185
	8.04
	4.17
	7.8
	172.0 ± 13.4
	6.8 ± 0.4



	MÖHL-5
	49.9954
	0.1991
	1.75
	7.4
	15.8
	3.9 ± 0.4
	159
	7.93
	1.25
	7.2
	44.3 ± 3.2
	11.3 ± 1.3



	MÖHL-7
	35.5300
	0.1990
	3.55
	6.3
	7.8
	12.2 ± 0.8
	106
	3.78
	3.85
	5.5
	91.5 ± 5.0
	7.5 ± 0.7



	MÖHL-10
	45.6933
	0.1993
	5.71
	4.6
	4.8
	15.8 ± 0.8
	157
	7.16
	4.12
	10.4
	144.0 ± 15.0
	9.1 ± 0.6



	1 MÖHL-12
	50.0300
	0.2000
	7.14
	4.2
	3.9
	18.3 ± 0.8
	63
	3.16
	9.56
	3.9
	134.5 ± 5.3
	7.3 ± 0.4







1 Sediment sample. Accelerator mass spectrometry (AMS) measurement errors at 1σ level, including the statistical (counting) error, the uncertainty of standard normalization, and the propagated error of blank correction. The error weighted average 10Be/9Be full-process blank ratio was (2.76 ± 0.18) ×10−15. 26Al/10Be ratios were calculated with the CRONUS-Earth exposure age calculator and were referenced to 07KNST (http://hess.ess.washington.edu/math/al_be_v23/al_be_multiple_v23.html; accessed on 13 January 2021); see [59] and update from v.2.2 to v.2.3 published by Balco in June 2016).
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