A Detailed Liquefaction Susceptibility Map of Nestos River Delta, Thrace, Greece Based on Surficial Geology and Geomorphology
Abstract
:1. Introduction
Geology-Geomorphology
2. Materials and Methods
2.1. Geological Map of Nestos River Delta
2.2. Historical Orthophoto Maps
2.3. Declassified Satellite Imagery
2.4. Methods
- <500 yr: Consists of fluvial deposits forming abandoned stream/meanders, point-bars, deltas and levees and also coastal deposits and oxbow lakes.
- Holocene: In this category, the lagoonal and marshy deposits are grouped, not only surrounding the lagoons (saltmarsh) but also developed in the most internal parts of the floodplain. Consequently, the geomorphological features of the old beach barriers were included.
- Pleistocene: Deposits of alternating coarse (sands and gravels) and fine (clays, silts) grained materials and screes.
3. Results
- Low susceptibility: swamp deposits
- Moderate susceptibility: floodplain, coastal deposits, lagoonal
- High susceptibility: current river, channel deposits
- Non liquefiable: Pleistocene deposits, screes
- Low susceptibility: swamp and marsh deposits
- Moderate susceptibility: natural levees, floodplain deposits, beach barriers, lagoonal deposits
- High susceptibility: coastal deposits, coast, oxbow lakes
- Very high susceptibility: former riverbed, point-bars, deltaic deposits, current river channel, anthropogenic levee.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kramer, S.L. Geotechnical Earthquake Engineering, 1st ed.; Prentice Hall: Washington, DC, USA, 1996; p. 653. [Google Scholar]
- Youd, T.L. Liquefaction, Flow and Associated Ground Failure; No. 688; U.S. Geological Survey: Washington, DC, USA, 1973. [Google Scholar]
- De Martini, P.M.; Cinti, F.R.; Cucci, L.; Smedile, A.; Pinzi, S.; Brunori, C.A.; Molisso, F. Sand volcanoes induced by the April 6th 2009 Mw 6.3 L’Aquila earthquake: A case study from the Fossa area. Ital. J. Geosci. 2012, 131, 410–422. [Google Scholar]
- van Ballegooy, S.; Malan, P.; Lacrosse, V.; Jacka, M.E.; Cubrinovski, M.; Bray, J.D.; O’Rourke, T.D.; Crawford, S.A.; Cowan, H. Assessment of liquefaction induced land damage for residential Christchurch. Earthq. Spectra 2014, 30, 31–55. [Google Scholar] [CrossRef]
- Emergeo Working Group. Liquefaction phenomena associated with the Emilia earthquake sequence of May–June 2012 (Northern Italy). Nat. Hazards Earth Syst. Sci. 2013, 13, 1–13. [Google Scholar]
- Valkaniotis, S.; Ganas, A.; Papathanassiou, G.; Papanikolaou, M. Field observations of geological effects triggered by the January—February 2014 Cephalonia (Ionian Sea, Greece) earthquakes. Tectonophysics 2012, 630, 150–157. [Google Scholar] [CrossRef]
- Waller, R.M. Effects of the March 1964 Alaska Earthquake on the Hydrology of South Central Alaska; U.S. Government Printing Office: Washington, DC, USA, 1996; pp. A1–A28. [Google Scholar]
- Seed, H.B.; Idriss, I.M. Analysis of liquefaction: Niigata earthquake. J. Soil Mech. Found. Div. ASCE 1967, 93, 81–83. [Google Scholar] [CrossRef]
- Elgamal, A.W.; Zeghal, M.; Parra, E. Liquefaction of reclaimed island in Kobe, Japan. J. Geotech. Eng.-ASCE 1996, 122, 39–49. [Google Scholar] [CrossRef]
- Wang, C.Y.; Dreger, D.S.; Wang, C.H.; Mayeri, D.; Berryman, J.G. Field relations among coseismic ground motion, water level change and liquefaction for the 1999 ChiChi (mw = 7.5) earthquake, Taiwan. Geophys. Res. Lett. 2003, 30, 1890. [Google Scholar] [CrossRef]
- Wong, A.; Wang, C.Y. Field relations between the spectral composition of ground motion and hydrological effects during the 1999 Chi-Chi (Taiwan) earthquake. J. Geophys. Res. 2007, 112, B10305. [Google Scholar] [CrossRef]
- Aydan, O.; Ulusay, R.; Atak, V.O. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (turkey) at selected sites on shorelines. Environ. Geol. 2008, 54, 165–182. [Google Scholar]
- Lai, C.; Bozzoni, F.; Conca, D.; Famà, A.; Özcebe, A.; Zuccolo, E.; Meisina, C.; Bonì, R.; Bordoni, M.; Cosentini, R.; et al. Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale. Bull. Earthq. Eng. 2021, 19, 4013–4057. [Google Scholar] [CrossRef]
- Ferreira, C.; Viana da Fonseca, A.; Ramos, C.; Saldanha, A.S.; Amoroso, S.; Rodrigues, C. Comparative analysis of liquefaction susceptibility assessment methods based on the investigation on a pilot site in the greater Lisbon area. Bull. Earthq. Eng. 2020, 18, 109–138. [Google Scholar] [CrossRef]
- Bartlett, S.F. Liquefaction-Induced Ground Failures and Bridge Damage in Southern Alaska Along the Alaskan Railroad and Highway during the 1964 Alaskan Earthquake. In Proceedings of the 10th National Conference on Earthquake Engineering, Anchorage, AK, USA, 21–25 July 2014. [Google Scholar]
- Iwasaki, T.; Tokida, K.; Tatsuoka, F.; Watanabe, S.; Yasuda, S.; Sato, H. Microzonation for soil liquefaction potential using simplified methods. In Proceedings of the 3rd International Conference on Microzonation, Seattle, WA, USA, 28 June–1 July 1982. [Google Scholar]
- Toprak, S.; Holzer, T.L. Liquefaction Potential Index: Field Assessment. J. Geotech. Geoenviron. Eng. ASCE 2003, 129, 315–322. [Google Scholar] [CrossRef]
- Lee, D.H.; Ku, C.S.; Yuan, H. A study of the liquefaction risk potential at Yanlin. Taiwan. Eng. Geol. 2003, 71, 97–117. [Google Scholar] [CrossRef]
- Juang, C.H.; Chia-Nan, L.; Chen, C.H.; Hwang, J.H.; Lu, C.C. Calibration of liquefaction potential index: A re-visit focusing on a new CPTU model. Eng. Geol. 2008, 102, 19–30. [Google Scholar] [CrossRef]
- Papathanassiou, G. LPI-based approach for calibrating the severity of liquefaction induced failures and for assessing the probability of liquefaction surface evidence. Eng. Geol. 2008, 96, 94–104. [Google Scholar] [CrossRef]
- Van Ballegooy, S.; Malan, P.; Jacka, M.E.; Lacrosse, V.; Leeves, J.R.; Lyth, J.E. Methods for characterizing effects of liquefaction in terms of damage severity. In Proceedings of the 15th WCEE, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Tonkin & Taylor Ltd. Canterbury Earthquakes 2010 and 2011. Land Report as at 29 February 2012; Earthquake Commission: Wellington, New Zealand, 2013; p. 108. [Google Scholar]
- Papathanassiou, G.; Ganas, A.; Valkaniotis, S. Recurrent liquefaction-induced failures triggered by 2014 Cephalonia, Greece earthquakes: Spatial distribution and quantitative analysis of liquefaction potential. Eng. Geol. 2016, 200, 18–30. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Mantovani, A.; Tarabusi, G.; Rapti, D.; Caputo, R. Assessment of liquefaction potential for two liquefaction prone area considering the May 20, 2012 Emilia (Italy) earthquake. Eng. Geol. 2015, 189, 1–16. [Google Scholar] [CrossRef]
- Youd, T.L.; Perkins, D.M. Mapping of liquefaction induced ground failure potential. J. Geotech. Eng. Div. 1978, 104, 433–446. [Google Scholar] [CrossRef]
- Wakamatsu, K. Evaluation of liquefaction susceptibility based on detailed geomorphological classification. In Proceedings of the Annual Meeting of Architectural Institute of Japan, Tokai, Japan, 7–10 September 1992; pp. 1443–1444. [Google Scholar]
- CDMG. Guidelines for Analyzing and Mitigating Liquefaction Hazards in California; Special Publication, 63; California Department of Conservation, Division of Mines and Geology: Sacramento, CA, USA, 1999; p. 117. [Google Scholar]
- Witter, C.R.; Knudsen, L.K.; Sowers, M.J.; Wentworth, M.C.; Koehler, D.R.; Randolph, C.E. Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California; Open file report 2006-1037; USGS: Reston, VA, USA, 2006; p. 43. [Google Scholar]
- Wotherspoon, L.M. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Eng. Geol. 2012, 125, 45–55. [Google Scholar] [CrossRef]
- Di Manna, P.; Guerrieri, L.; Piccardi, L.; Vittori, E.; Castaldini, D.; Berlusconi, A.; Bonadeo, L.; Comerci, V.; Ferrario, F.; Gambillara, R.; et al. Ground effects induced by the 2012 seismic sequence in Emilia: Implications for seismic hazard assessment in the Po Plain. Ann. Geophys. 2012, 55, 697–703. [Google Scholar] [CrossRef]
- Bastin, S.; Quigley, M.; Bassett, K. Paleoliquefaction in easter Christchurch, New Zealand. Geol. Soc. Am. Bull. 2015, 12, 1348–1365. [Google Scholar] [CrossRef]
- Bastin, S.; Stringer, M.; Green, R.; Wotherspoon, L.; van Ballegooy, S.; Cox, B.; Osuchowski, A. Geomorphological controls on the distribution of liquefaction in Blenheim, New Zealand, during the 2016 Mw7.8 Kaikoura Earthquake. In Geotechnical Earthquake Engineering and Soil Dynamics V: Liquefaction Triggering, Consequences, and Mitigation; GSP 290; American Society of Civil Engineers: Reston, VA, USA, 2018. [Google Scholar]
- Papathanassiou, G.; Valkaniotis, S.; Ganas, A.; Stampolidis, A.; Rapti, D.; Caputo, R. Floodplain evolution and its influence on liquefaction clustering: The case study of March 2021 Thessaly, Greece, seismic sequence. Eng. Geol. 2022, 298, 106542. [Google Scholar] [CrossRef]
- Civico, R.; Brunori, C.A.; De Martini, P.M.; Pucci, S.; Cinti, F.R.; Pantosti, D. Liquefaction susceptibility assessment in fluvial plains using airborne lidar: The case of the 2012 Emilia earthquake sequence area (Italy). Nat. Haz. Earth Syst. Sci. 2015, 15, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Stringer, M.E.; Bastin, S.; McGann, C.; Cappellaro, C.; El Kortbawi, M.; McMahon, R.; Wotherspoon, L.; Green, R.; Aricheta, J.; Davis, R.; et al. Geotechnical aspects of the 2016 Kaikōura Earthquake on the South Island of New Zealand. Bull. N. Z. Soc. Earthq. Eng. 2017, 50, 117–141. [Google Scholar] [CrossRef]
- Villamor, P.; Almond, P.; Tuttle, M.; Giona-Bucci, M.; Langridge, R.M.; Clark, K.; Ries, W.; Bastin, S.H.; Eger, A.; Vandergoes, M. Liquefaction features produced by the 2010–2011 Canterbury earthquake sequence in Southwest Christchurch, New Zealand and preliminary assessment of paleoliquefaction features. Bull. Seismol. Soc. Am. 2016, 106, 1747–1771. [Google Scholar] [CrossRef]
- Minarelli, L.; Amoroso, S.; Civico, R.; De Martini, P.M.; Lugli, S.; Martelli, L.; Molisso, F.; Rollins, K.M.; Salocchi, A.; Stefani, M.; et al. Liquefied sites of the 2012 Emilia earthquake: A comprehensive database of the geological and geotechnical features (Quaternary alluvial Po plain, Italy). Bull. Earthq. Eng. 2022, 20, 3659–3697. [Google Scholar] [CrossRef]
- Mavroulis, S.; Lekkas, E.; Carydis, P. Liquefaction Phenomena Induced by the 26 November 2019, Mw = 6.4 Durres (Albania) earthquake and Liquefaction Susceptibility Assessment in the Affected Area. Geosciences 2021, 11, 215. [Google Scholar] [CrossRef]
- Mountrakis, D.; Tranos, M.; Papazachos, C.; Thomaidou, E.; Karagianni, E.; Vamvakaris, D. Neotectonic and seismological data concerning major active faults, and the stress regimes of Northern Greece. Geol. Soc. Lond. Special Publ. 2006, 260, 649–670. [Google Scholar] [CrossRef]
- Chousianitis, K.; Ganas, A.; Evangelidis, C.P. Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. J. Geophys. Res. Solid Earth 2015, 120, 3909–3931. [Google Scholar] [CrossRef]
- Basili, R.; Kastelic, V.; Demircioglu, M.B.; Garcia Moreno, D.; Nemser, E.S.; Petricca, P.; Sboras, S.P.; Besana-Ostman, G.M.; Cabral, J.; Camelbeeck, T.; et al. The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. 2013. Available online: https://edsf13.ingv.it/ (accessed on 1 September 2022). [CrossRef]
- Ganas, A. NOAFAULTS Version 4.0 [Data Set]. Zenodo. 2022. Available online: https://zenodo.org/record/6326260#.Y0Yp2UxByUk (accessed on 1 September 2022). [CrossRef]
- Kilias, A.; Mountrakis, D. Kinematics of the crystallne sequences in the western Rhodope massif. Geol Rhodopica 1990, 2, 100–116. [Google Scholar]
- Maratos, G.; Andronopoulos, V. The fauna of limestones of Aliki-Alexandroupolis, (Rhodope phyllites). Bull. Geol. Soc. 1965, 6, 348–352. [Google Scholar]
- Papadopoulos, P. Geological Map of Greece Scale 1:50000, Sheet Ferai-Peplos-Ainos; I.G.M.E.: Athens, Greece, 1980. [Google Scholar]
- Maravelis, A.G.; Boutelier, D.; Catuneanu, O.; Seymour, K.S.; Zelilidis, A. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and Northern Greece. Tectonophysics 2016, 674, 1–19. [Google Scholar] [CrossRef]
- Pollak, W.H. Structural and lithological development of the Prinos-Kavala basin, Sea of Thrace, Greece: Athens. Ann. Geologique Pays Hellenic 1979, II, 1003–1011. [Google Scholar]
- Kilias, A.; Falalakis, G.; Sfeikos, A.; Papadimitriou, E.; Vamvaka, A.; Gkarlaouni, C. The Thrace basin in the Rhodope province of NE Greece—A tertiary supradetachment basin and its geodynamic implications. Tectonophysics 2013, 595, 90–105. [Google Scholar] [CrossRef]
- Stournaras, G. Evolution et Comportement d un Systeme Aquifer Heterogene. Geologie et Hydrogeology du Delta Nestos (Greece) et de ses Bordures. Doctoral Thesis, University Grenoble, Grenoble, France, 1984. [Google Scholar]
- Psilovikos, A.; Vavliakis, E.; Laggalis, T. Natural and anthropogenic processes of recent evolution in delta of Nestos. Bull. Geol. Soc. Greece 1988, XX, 313–324. [Google Scholar]
- Youd, T.L. Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bridge Site; Technical report, MCEER-98-005; Multidisciplinary Center for Earthquake Engineering Research: Provo, Utah, 1998; p. 58. [Google Scholar]
- YDROEREUNA. Hydrological Survey of Alluvial Area in Delta of Nestos; YDROEREUNA: Athens, Greece, 1978. (In Greek) [Google Scholar]
- YDRODOMIKI. Economic Feasibility Study of Irrigation in Rhodope-Xanthi-Kavala and Drama Districts by Thisavros-Temenos Dams of Nestos River; Department of Agriculture: Athens, Greece, 1985. (In Greek) [Google Scholar]
- Gkiougkis, I.; Pouliaris, C.; Pliakas, F.-K.; Diamantis, I.; Kallioras, A. Conceptual and Mathematical Modeling of a Coastal Aquifer in Eastern Delta of R. Nestos (N. Greece). Hydrology 2021, 8, 23. [Google Scholar] [CrossRef]
- Hawker, L.; Uhe, P.; Paulo, L.; Sosa, J.; Savage, J.; Sampson, C.; Neal, J. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett. 2022, 17, 024016. [Google Scholar] [CrossRef]
- Kouris, C. Geological Map of Greece scale 1:50000, Sheet Avdhira-Mesi; I.G.M.E.: Athens, Greece, 1980. [Google Scholar]
- Kouris, C. Geological Map of Greece Scale 1:50000, Sheet Chrisoupolis; I.G.M.E.: Athens, Greece, 1982. [Google Scholar]
- Kronnberg, P. Geological Map of Greece Scale 1:50000, Sheet Lekani; I.G.M.E.: Athens, Greece, 1980. [Google Scholar]
- Kronnberg, P.; Eltgen, H. Geological Map of Greece scale 1:50000, Sheet Xanthi; I.G.M.E.: Athens, Greece, 1980. [Google Scholar]
- Gkiougkis, I. Investigation of Seawater Intrusion into Coastal Aquifers in Deltaic Environment. The Case of Nestos River Delta. Ph.D. Thesis, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece, 2009. [Google Scholar]
- Xeidakis, G.; Georgoulas, A.; Kotsovinos, N.; Delimani, P.; Varaggouli, E. Environmental degradation of the coastal zone of the west part of nestos river delta, N. Greece. In Proceeding of the 12th International Congress, Patras, Greece, 19–22 May 2010. [Google Scholar]
Data | Date | Spatial Resolution | Source |
---|---|---|---|
Historical Orthophoto maps | 1945 | 2 m | Hellenic Cadastre–HMGS |
Orthophoto maps | 2007–2009 | 0.5 m | Hellenic Cadastre |
Corona KH-4 | 18 August 1960 | 2–4 m | USGS/NARA |
11 August 1968 | 2–4 m | ||
DEM | - | 5 m | Hellenic Cadastre |
Geological Map by HSGME | Geomorphological Map Based on Aerial and Satellite Imagery |
---|---|
Holocene Floodplain deposits | Holocene Floodplain deposits |
Holocene Nestos River | <500 yr Current River channel |
Holocene Channel deposits | <500 yr Former River bed |
<500 yr Point-Bar | |
<500 yr Anthropogenic Levee | |
<500 yr Oxbow | |
<500 yr Levee | |
Holocene Coastal deposits | <500 yr Coastal deposits-dunes |
<500 yr Coast | |
Holocene Beach Barrier | |
<500 yr Delta-deltaic deposits | |
Holocene Swamp deposits | Holocene Marsh deposits |
Holocene Salt marsh deposits | |
Holocene Lagoonal deposits | Holocene Lagoonal deposits |
Pleistocene deposits (screes, tal) | Pleistocene deposits |
Geological Units Description | Classification of Liquefaction Susceptibility [25] |
---|---|
Holocene | |
Floodplain deposits | Moderate |
Channel deposits | High |
Coastal deposits | Moderate |
Swamp deposits | Low |
Nestos River | High |
Lagoons | Moderate |
Pleiocene–Pleistocene | |
Pleistocene deposits | Non liquefied |
Scree | Non liquefied |
Geological Units Description | Classification of Liquefaction Susceptibility [25] |
---|---|
<500 yr | |
Former riverbed | Very High |
Point-bar | Very High |
Deltaic deposits | Very High |
Current river channel | Very High |
Anthropogenic levee | Very High |
Coastal deposits (Dunes) | High |
Coast | High |
Levee | Moderate |
Oxbow | High |
Holocene | |
Floodplain | Moderate |
Marsh | Low |
Saltmarsh | Low |
Lagoonal | Moderate |
Beach barrier | Moderate |
Pleistocene | |
Screes, deposits | Non liquefied |
Liquefaction Susceptibility | Susceptibility Area (km2) | Susceptibility Area (%) |
---|---|---|
Non-liquefiable | 58.40 | 11.37 |
Low | 51.00 | 9.93 |
Moderate | 299.76 | 58.36 |
High | 18.88 | 3.68 |
Very High | 85.56 | 16.66 |
SUM | 513.60 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taftsoglou, M.; Valkaniotis, S.; Papathanassiou, G.; Klimis, N.; Dokas, I. A Detailed Liquefaction Susceptibility Map of Nestos River Delta, Thrace, Greece Based on Surficial Geology and Geomorphology. Geosciences 2022, 12, 361. https://doi.org/10.3390/geosciences12100361
Taftsoglou M, Valkaniotis S, Papathanassiou G, Klimis N, Dokas I. A Detailed Liquefaction Susceptibility Map of Nestos River Delta, Thrace, Greece Based on Surficial Geology and Geomorphology. Geosciences. 2022; 12(10):361. https://doi.org/10.3390/geosciences12100361
Chicago/Turabian StyleTaftsoglou, Maria, Sotirios Valkaniotis, George Papathanassiou, Nikos Klimis, and Ioannis Dokas. 2022. "A Detailed Liquefaction Susceptibility Map of Nestos River Delta, Thrace, Greece Based on Surficial Geology and Geomorphology" Geosciences 12, no. 10: 361. https://doi.org/10.3390/geosciences12100361
APA StyleTaftsoglou, M., Valkaniotis, S., Papathanassiou, G., Klimis, N., & Dokas, I. (2022). A Detailed Liquefaction Susceptibility Map of Nestos River Delta, Thrace, Greece Based on Surficial Geology and Geomorphology. Geosciences, 12(10), 361. https://doi.org/10.3390/geosciences12100361