Contributions for the Understanding of the São Pedro do Sul (North of Portugal) Geohydraulic and Thermomineral System: Hydrochemistry and Stable Isotopes Studies
Abstract
:1. Introduction
2. Geological and Hydrogeological Settings
3. Methodology
4. Results and Discussion
4.1. Hydrogeochemical Approach
4.2. Stable Isotopes 2H and 18O
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira Gomes, L.M.; Albuquerque, F.; Fresco, H. Protection areas of the São Pedro do Sul Spa, Portugal. Eng. Geol. 2001, 60, 341–349. [Google Scholar] [CrossRef]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; John Wiley & Sons: New York, NY, USA, 1990; p. 824. [Google Scholar]
- Calado, C. A ocorrência de água sulfúrea alcalina no maciço hespérico: Quadro hidrogeológico e quimiogénese. Ph.D. Thesis, Lisbon University, Lisbon, Portugal, 2001. [Google Scholar]
- Sousa Oliveira, A. Hidrogeologia dos Sistemas Gasocarbónicos da Província Hidromineral Transmontana: Ribeirinha (Mirandela, Sandim (Vinhais), Segirei e Salgadela (Chaves). Ph.D. Thesis, Trás os Montes e Alto Douro University, Vila Real, Portugal, 2001. [Google Scholar]
- Morais, M. Sistemas hidrominerais nos terrenos graníticos da zona centro-ibérica em Portugal central: Perspetivas químicas, isotópicas e genéticas sobre as águas sulfúreas. Ph.D. Thesis, Coimbra University, Coimbra, Portugal, 2012. [Google Scholar]
- Marques, J.M.; Graça, H.; Eggenkamp, H.G.M.; Neves, O.; Carreira, P.M.; Matias, M.J.; Mayer, B.; Nunes, D.; Trancoso, V.N. Isotopic and hydrochemical data as indicators of recharge áreas, flow paths and water-rock interaction in the Caldas da Rainha —Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal). J. Hydrol. 2013, 476, 302–313. [Google Scholar] [CrossRef]
- Almeida, S.; Ferreira Gomes, L.M.; Carvalho, P.; Oliveira, A. Contribution to the knowledge about hydrogeochemistry of São Pedro do Sul thermomineral system. Comunicações Geológicas 2015, 102, 125–128. [Google Scholar]
- Taillefer, A.; Guillou-Frottier, L.; Soliva, R.; Magri, F.; Lopez, S.; Courrioux, G. Topographic and faults control of hydrothermal circulation along dormant faults in an orogen. Geochem. Geophys. Geosystems 2018, 19, 4972–4995. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Florentino, A.K.; Esteller, M.; Domínguez-Mariani, E.; Expósito, J.L.; Paredes, J. Hydrogeochemistry Isotopes and Geothermometry of Ixtapan de la Sal–Tonatico Hot Springs, Mexico. Environ. Earth Sci. 2019, 78, 600. [Google Scholar] [CrossRef]
- Barberio, M.D.; Gori, F.; Barbieri, M.; Boschetti, T.; Caracausi, A.; Cardello, G.L.; Petitta, M. Understanding the Origin and Mixing of Deep Fluids in Shallow Aquifers and Possible Implications for Crustal Deformation Studies: San Vittorino Plain, Central Apennines. Appl. Sci. 2021, 11, 1353. [Google Scholar] [CrossRef]
- Fronzi, D.; Mirabella, F.; Cardellini, C.; Caliro, S.; Palpacelli, S.; Cambi, C.; Valigi, D.; Tazioli, A. The Role of Faults in Groundwater Circulation before and after Seismic Events: Insights from Tracers, Water Isotopes and Geochemistry. Water 2021, 13, 1499. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X.; Yan, Y.; Ouyang, S.; Liu, F. Hydrogeochemical Characteristics of Hot Springs and Their Short-Term Seismic Precursor Anomalies along the Xiaojiang Fault Zone, Southeast Tibet Plateau. Water 2021, 13, 2638. [Google Scholar] [CrossRef]
- Soares, C.A.R. Estudo Hidrogeológico das Termas de S. Pedro do Sul; Internal Report; Direção Geral de Geologia e Minas: Lisbon, Portugal, 1981.
- Haven, H.; Konings, R.; Schoonen, M.; Jansen, J.; Vriend, S.; Van Der Weijden, C.; Buitenkamp, J. Geochemical studies in the drainage basin of the Rio Vouga (Portugal): II. A model for the origin of hydrothermal water in the Vouzela region. Chem. Geol. 1985, 51, 225–238. [Google Scholar] [CrossRef]
- Cavaco, A. Projecto geotérmico de S. Pedro do Sul: Fase 1, Estudo Prévio de viabilidade. I item, Final Report; Internal Report; Câmara Municipal de São Pedro do Sul: São Pedro do Sul, Portugal, 1991. [Google Scholar]
- Cavaco, A. Definição do Perímetro de Proteção ao Aquífero de S. Pedro do Sul, Final Report; Internal Report Vol. I; Câmara Municipal de São Pedro do Sul: São Pedro do Sul, Portugal, 1995. [Google Scholar]
- Nolasco, S.M. Relatório de Trabalhos Geológicos e Geofísicos Efectuados nos Polos do Vau e das Termas; Projecto Geotérmico de S. Pedro do Sul, D.G.G.M.-Direção Geral de Geologia e Minas: Lisboa, Portugal, 1991; Volume II.
- Serviço de Fomento Mineiro. Projecto Geotérmico de S. Pedro do Sul: Relatório dos Trabalhos Geológicos e Geofísicos Efectuados nos Polos do Vau e das Termas. In Protocolo entre a Direcção-Geral de Geologia e Minas e a Câmara Municipal de S. Pedro do Sul; Serviço de Fomento Mineiro: Lisboa, Portugal, 1991. [Google Scholar]
- Ferreira, N.; Castro, P.; Godinho, M.M.; Neves, L.; Pereira, A.; Ferreira Pinto, A.; Simões, L.; Silva, F.; Aguado, B.; Azevedo, M.; et al. Folha 17-A Viseu. Carta geológica de Portugal à escala 1:50000; LNEG-Laboratório Nacional de Energia e Geologia, I. P.: Lisboa, Portugal, 2010. [Google Scholar]
- Ferreira Gomes, L.M.; Trota AP, N.; Sousa Oliveira, A.; Almeida, S.M.S. Reservoir considerations and direct uses of São Pedro do Sul hydromineral and geothermal field, northern Portugal. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Prague, Czech Republic, 11–15 September 2017; p. 9. [Google Scholar] [CrossRef]
- Cox, S.F.; Knackstedt, M.A.; Braun, J. Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev. Econ. Geol. 2001, 14, 1–24. [Google Scholar]
- Carreira, P.M.; Marques, J.M.; Monteiro Santos, F.A.; Andrade, M.; Matias, H.; Luzio, R.; Nunes, D. Role of geophysics, geochemistry and environmental isotopes in the assessment of Caldas de Monção low-temperature geothermal system. Geotherm. Resour. Counc. Trans. 2005, 29, 209–213. [Google Scholar]
- Carreira, P.M.; Marques, J.M.; Espinha Marques, J.; Chaminé, H.I.; Fonseca, P.E.; Monteiro Santos, F.; Moura, R.M.; Carvalho, J.M. Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: An isotopic and hydrogeochemical approach. Hydrogeol. J. 2011, 19, 117–131. [Google Scholar] [CrossRef]
- Matiatos, I.; Alexopoulos, A.; Zouridakis, N. Use of stable isotopes in the determination of the mean altitude of recharge and the investigation of function mechanism of spring waters in Argolis Peninsula (Greece). Bull. Geol. Soc. Greece 2010, 43, 1792–1801. [Google Scholar] [CrossRef] [Green Version]
- Marques, J.M.; Matos, C.; Carreira, P.M.; Espinha Marques, J.; Teixeira, J.; Chaminé, H.I. Assessment of mixing between shallow and thermal waters using geochemical and environmental isotope tracers (N Portugal): A review and reinterpretation. Environ. Earth Sci. 2014, 72, 2557–2567. [Google Scholar] [CrossRef]
- Prada, S.; Virgílio Cruz, J.; Figueira, C. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal. J. Hydrology 2016, 536, 409–425. [Google Scholar] [CrossRef]
- Bahir, M.; Carreira, P.M.; Ouhamdouch, S.; Chamchati, H. Recharge conceptual model and mineralization of groundwater in a semi-arid region; Essaouira basin (Morocco). Procedia Earth Planet. Sci. 2017, 17, 69–72. [Google Scholar] [CrossRef]
- Scott, B.E.; Newell, D.L.; Jessup, M.J.; Grambling, T.A.; Shaw, C.A. Structural Controls on Crustal Fluid Circulation and Hot Spring Geochemistry Above a Flat-Slab Subduction Zone, Peru. Geochem. Geophys. Geosystems 2020, 21, e2020GC008919. [Google Scholar] [CrossRef]
- Apollaro, C.; Tripodi, V.; Vespasiano, G.; De Rosa, R.; Dotsika, E.; Fuoco, I.; Critelli, S.; Muto, F. Chemical Isotopic and geotectonic relations of the warm and cold waters of the Galatro and Antonimina thermal areas, southern Calabria, Italy. Mar. Pet. Geol. 2019, 109, 469–483. [Google Scholar] [CrossRef]
- Aydin, H.; Karaku¸s, H.; Mutlu, H. Hydrogeochemistry of Geothermal Waters in Eastern Turkey: Geochemical and Isotopic Constraints on Water-Rock Interaction. J. Volcanol. Geotherm. 2020, 390, 106708. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Pereira, E.; Moreira, A.; Gonçalves, S.; Rodrigues, J.; Silva, A. Folha 13-D Oliveira de Azeméis. Carta geológica de Portugal à escala 1:50000; INETI-Instituto Nacional de Engenharia, Tecnologia e Inovação, I. P.: Lisboa, Portugal, 2006. [Google Scholar]
- Schermerhorn, L.; Sluijk, D.; Ramos, J.; Ávila Martins, J.; Fernandes, A.; Farinha Ramos, J. Folha 14-C Castro Daire, Carta Geológica de Portugal à Escala 1:50000; Serviços Geológicos de Portugal: Lisboa, Portugal, 1977. [Google Scholar]
- LNEG Laboratório Nacional de Energia e Geologia. Carta Geológica de Portugal, Folha 17-A (Viseu), Escala 1:50000; LNEG-Laboratório Nacional de Energia e Geologia, I. P.: Lisboa, Portugal, 2009. [Google Scholar]
- Pereira, E.; Rodrigues, J.; Gonçalves, L.; Moreira, A.; Silva, A. Noticia Explicativa da Folha 13-D Oliveira de Azeméis; INETI-Instituto Nacional de Engenharia, Tecnologia e Inovação, I. P.: Lisboa, Portugal, 2007. [Google Scholar]
- Schermerhorn, L. Notícia explicativa da folha 14 C Castro Daire; Serviços Geológicos de Portugal: Lisboa, Portugal, 1980. [Google Scholar]
- Ferreira, N.; Godinho, M.M.; Neves, L.; Pereira, A.S.; Castro, P.; Santos, T.B. Notícia Explicativa da Folha 17-A Viseu; LNEG-Laboratório Nacional de Energia e Geologia, I. P.: Lisboa, Portugal, 2010; ISBN 978-989-675-010-7. [Google Scholar]
- Serviços Geológicos de Portugal. Carta Geológica de Portugal à Escala 1:500000; Serviços Geológicos de Portugal: Lisboa, Portugal, 1992. [Google Scholar]
- IGeoE Instituto Geográfico do Exército. Cartas Militares de Portugal à Escala 1:25000, nº 165, 166, 176, 177; Série M888, Instituto Geográfico do Exército: Lisbon, Portugal, 1995. [Google Scholar]
- Pereira, E.; Ferreira, N. Geologia Regional e Controlo Estrutural das Nascentes de S. Pedro do Sul. Comun. Serv. Geol. Portugal 1985, 71, 17–25. [Google Scholar]
- Clarke, D.B. The mineralogy of peraluminous granites: A review. Can. Mineral. 1981, 19, 3–17. [Google Scholar]
- Marques, J.M.; Matias, M.J.; Basto, M.J.; Carreira, P.M.; Aires-Barros, L.A.; Goff, F.E. Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks. Geothermics 2010, 39, 152–160. [Google Scholar] [CrossRef]
- Barnicoat, A.; Sheldon, H.; Ord, A. Faulting and fluid flow in porous rocks and sediments: Implications for mineralisation and other processes. Miner. Depos. 2009, 44, 705–718. [Google Scholar] [CrossRef]
- Truesdell, A.H. Summary of Section III. Geochemical techniques in exploration. In Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, CA, USA, 20 May 1975; pp. 53–79. [Google Scholar]
- Giggenbach, W.F. Geothermal solute equilibria-Derivation of Na-K-Ca-Mg geoindicators. Geochim. Et Cosmochim. Acta 1988, 52, 2759–2765. [Google Scholar] [CrossRef]
- IGM Instituto Geológico Mineiro. Recursos Geotérmicos em Portugal Continental: Baixa Entalpia. Obtido de LNEG. 1998. Available online: http://www.lneg.pt/CienciaParaTodos/edicoes_online/diversos/rec_geotermicos/texto (accessed on 15 April 2016).
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Trans. Am. Geophys. Union 1944, 914–928. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Koeniger, P.; Toll, M.; Himmelsbach, T. Stable isotopes of precipitation and spring waters reveal an altitude effect in the Anti-Lebanon Mountains, Syria. Hydrol. Process. 2016, 30, 2851–2860. [Google Scholar] [CrossRef]
- Steinfeld, B.; Scott, J.; Vilander, G.; Marx, L.; Quirk, M.; Lindberg, J.; Koerner, K. Revision of the hydrogeological conceptual models of two Portuguese thermomineral water systems: Similarities and differences. Sustain. Water Resour. Manag. 2019, 5, 117–133. [Google Scholar] [CrossRef]
- Yang, J.; Large, R.R.; Bull, S.W. Factors controlling free thermal convection in faults in sedimentary basins: Implications for the formation of zinc– lead mineral deposits. Geofluids 2004, 4, 237–247. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 1992, 258, 981–985. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Geophysical Monograph 78, Climate Change in Continental Isotopic Records; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Carreira, P.M.; Marques, J.M.; Carvalho, M.R.; Nunes, D.; Antunes da Silva, M. Carbon isotopes and geochemical processes in CO2-rich cold mineral water, N-Portugal. Environ. Earth Sci. 2014, 71, 2941–2953. [Google Scholar] [CrossRef]
- Carreira, P.M.; do Rosário Carvalho, M.; Nunes, J.C.; Grassa, F.; Capasso, G.; Marques, J.M. Preliminary Geochemical and Isotopic Results in Thermal and Cold Waters of Graciosa Volcanic Island (Azores). Procedia Earth Planet. Sci. 2017, 17, 630–633. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Roche, M.A.; Olivry, J.C.; Fontes, J.C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Carreira, P.M.; Nunes, D.; Valerio, P.; Araujo, M.F. A 15-year record of seasonal variation in the isotopic composition of precipitation water over continental Portugal. J. Radioanal. Nucl. Chem. 2009, 281, 153–156. [Google Scholar] [CrossRef]
Site | Alt. | EC | pH | Temp. | Total min. | SiO2 | Na+ | Ca2+ | K+ | Mg2+ | HCO3− | Cl− | SO42− | F− | δ18O | δ2H |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | μs/cm | °C | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ‰ | ‰ | ||
Thermal Springs | ||||||||||||||||
NT * | 156 | 400.28 | 8.81 | 65.0 | 364.59 | 76.60 | 90.90 | 3.01 | 3.25 | 0.03 | 122.05 | 27.49 | 10.24 | 17.98 | −6.44 | −36.80 |
AC1 * | 154 | 399.29 | 8.84 | 65.4 | 365.49 | 68.55 | 91.15 | 2.95 | 3.24 | 0.02 | 122.09 | 27.71 | 9.49 | 18.13 | −6.53 | −37.10 |
SDV1 * | 142 | 401.11 | 8.81 | 56.0 | 371.74 | 70.62 | 91.28 | 3.06 | 3.23 | 0.02 | 124.76 | 28.51 | 10.11 | 18.09 | −6.45 | −36.60 |
SDV2 * | 142 | 396.06 | 8.78 | 62.7 | 367.73 | 70.55 | 91.59 | 3.08 | 3.17 | 0.02 | 123.98 | 28.19 | 10.27 | 18.08 | −6.38 | −36.50 |
Cold Springs | ||||||||||||||||
AS1 | 1000 | 14.50 | 5.84 | 11.4 | 12.32 | 4.56 | 2.07 | 0.37 | 0.10 | 0.19 | 1.71 | 2.83 | <0.72 | <0.25 | −6.22 | −35.40 |
AS2 | 425 | 29.50 | 5.60 | 14.4 | 28.64 | 10.78 | 4.70 | 0.26 | 0.75 | 0.48 | 5.25 | 6.35 | <0.72 | <0.25 | −5.13 | −28.50 |
AS3 | 350 | 54.80 | 6.17 | 15.8 | 51.93 | 17.77 | 8.72 | 0.87 | 0.94 | 0.92 | 11.53 | 11.09 | <0.72 | <0.25 | −5.26 | −28.80 |
AS4 | 850 | 25.20 | 5.36 | 12.1 | 20.97 | 7.36 | 3.51 | 0.40 | 0.08 | 0.38 | 4.39 | 4.78 | <0.72 | <0.25 | −5.60 | −30.00 |
AS5 | 505 | 59.90 | 6.01 | 13.9 | 61.03 | 20.89 | 9.26 | 1.57 | 1.55 | 0.78 | 13.36 | 10.36 | 1.48 | <0.25 | −5.43 | −28.40 |
AS6 | 440 | 25.20 | 5.17 | 15.6 | 21.21 | 8.67 | 3.63 | 0.33 | 0.09 | 0.20 | 3.17 | 5.11 | <0.72 | <0.25 | −5.16 | −28.40 |
AS7 | 725 | 32.60 | 5.24 | 13.3 | 31.44 | 12.32 | 4.79 | 0.74 | 0.30 | 0.25 | 5.55 | 6.07 | <0.72 | <0.25 | −5.81 | −32.30 |
AS8 | 850 | − | − | 12.7 | − | − | − | − | − | − | − | − | − | − | −5.51 | −28.50 |
AS9 | 700 | − | − | 12.9 | − | − | − | − | − | − | − | − | − | − | −5.01 | −25.50 |
AS10 | 270 | − | − | 14.8 | − | − | − | − | − | − | − | − | − | − | −4.87 | −26.90 |
AS11 | 275 | − | − | 14.7 | − | − | − | − | − | − | − | − | − | − | −5.09 | −28.20 |
AS12 | 320 | − | − | 13.9 | − | − | − | − | − | − | − | − | − | − | −5.03 | −27.80 |
AS13 | 445 | − | − | 13.3 | − | − | − | − | − | − | − | − | − | − | −5.37 | −29.50 |
AS14 | 510 | − | − | 15.0 | − | − | − | − | − | − | − | − | − | − | −5.19 | −29.30 |
AS15 | 250 | − | − | 16.7 | − | − | − | − | − | − | − | − | − | − | −5.00 | −27.70 |
Boreholes | ||||||||||||||||
AF2 | 115.80 | 4.70 | 18.0 | 81.51 | 17.09 | 12.55 | 1.85 | 3.65 | 2.20 | <0.50 | 15.84 | <0.72 | <0.25 | − | − | |
AF3 | 81.00 | 5.98 | 22.7 | 84.73 | 27.24 | 9.87 | 1.66 | 1.36 | 3.00 | 27.57 | 9.21 | 3.92 | <0.25 | − | − | |
AF4 | 33.10 | 5.21 | 14.3 | 26.65 | 9.15 | 4.92 | 0.53 | 0.22 | 0.30 | 4.58 | 6.94 | <0.72 | <0.25 | − | − | |
AF5 | 63.90 | 5.75 | 12.8 | 52.06 | 9.16 | 7.10 | 3.75 | 0.90 | 1.20 | 15.86 | 7.41 | 6.24 | <0.25 | − | − | |
AF1A | 88.30 | 5.43 | 15.5 | 64.77 | 14.32 | 11.82 | 2.06 | 0.62 | 1.70 | 6.34 | 14.05 | 8.40 | <0.25 | − | − |
Ref. | Geother. K2/Mg (°C) | Maximum Depth (km) | Geother. SiO2(°C) | Maximum Depth (km) | Average Maximum Depth (km) |
---|---|---|---|---|---|
NT | 111.9 | 3.00 | 122.8 | 3.33 | 3.17 |
AC1 | 117.8 | 3.18 | 117.2 | 3.16 | 3.17 |
SDV1 | 117.7 | 3.17 | 118.7 | 3.20 | 3.19 |
SDV2 | 117.2 | 3.16 | 118.6 | 3.20 | 3.18 |
Average | 116.1 | 3.13 | 119.3 | 3.22 | 3.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, S.; Gomes, L.; Oliveira, A.; Carreira, P. Contributions for the Understanding of the São Pedro do Sul (North of Portugal) Geohydraulic and Thermomineral System: Hydrochemistry and Stable Isotopes Studies. Geosciences 2022, 12, 84. https://doi.org/10.3390/geosciences12020084
Almeida S, Gomes L, Oliveira A, Carreira P. Contributions for the Understanding of the São Pedro do Sul (North of Portugal) Geohydraulic and Thermomineral System: Hydrochemistry and Stable Isotopes Studies. Geosciences. 2022; 12(2):84. https://doi.org/10.3390/geosciences12020084
Chicago/Turabian StyleAlmeida, Solange, Luís Gomes, Alcino Oliveira, and Paula Carreira. 2022. "Contributions for the Understanding of the São Pedro do Sul (North of Portugal) Geohydraulic and Thermomineral System: Hydrochemistry and Stable Isotopes Studies" Geosciences 12, no. 2: 84. https://doi.org/10.3390/geosciences12020084
APA StyleAlmeida, S., Gomes, L., Oliveira, A., & Carreira, P. (2022). Contributions for the Understanding of the São Pedro do Sul (North of Portugal) Geohydraulic and Thermomineral System: Hydrochemistry and Stable Isotopes Studies. Geosciences, 12(2), 84. https://doi.org/10.3390/geosciences12020084