Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost
Abstract
:1. Introduction
2. Thermal Interaction of a Well with Permafrost: Physical Problem Formulation
- —density, specific heat, and thermal conductivity of solid particles, respectively. Thermal conductivity was calculated as a function of temperature, tabulated, or polynomial;
- —density, specific heat, and thermal conductivity of fluid, respectively.
- —porosity, phase composition (ice saturation, possibly depending on temperature according to the unfrozen water curve), specific heat of phase transitions, and the temperature at the beginning and end of phase transitions, respectively;
- - density, effective heat capacity, and thermal conductivity of permafrost, respectively, found as:
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Istomin, V.A.; Yakushev, V.S. Gas Hydrates at Natural Conditions; Nedra: Moscow, Russia, 1991; 236p. (In Russian) [Google Scholar]
- Max, D.M.; Johnson, A.H.; Dillon, W.P. Natural Gas Hydrate—Arctic Ocean Deepwater Resource Potential; Springer: Dordrecht, The Netherlands, 2013; p. 113. ISBN 978-3-319-02508-7. [Google Scholar]
- Chuvilin, E.; Davletshina, D. Formation and accumulation of pore methane hydrates in permafrost: Experimental modeling. Geosciences 2018, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Yakushev, V.S.; Chuvilin, E.M. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg. Sci. Technol. 2000, 31, 189–197. [Google Scholar] [CrossRef]
- Chuvilin, E.; Bukhanov, B.; Davletshina, D.; Grebenkin, S.; Istomin, V. Dissociation and self-preservation of gas hydrates in permafrost. Geosciences 2018, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Kizyakov, A.I.; Sonyushkin, A.V.; Leibman, M.O.; Zimin, M.V.; Khomutov, A.V. Geomorphological conditions of the gas-emission crater and its dynamics in Central Yamal. Earth’s Cryosphere 2015, 19, 15–25. [Google Scholar]
- Buldovicz, S.N.; Khilimonyuk, V.Z.; Bychkov, A.Y.; Ospennikov, E.N.; Vorobyev, S.A.; Gunar, A.Y.; Gorshkov, E.I.; Chuvilin, E.M.; Cherbunina, M.Y.; Kotov, P.I.; et al. Cryovolcanism on the Earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Sci. Rep. 2018, 8, 13534. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kishankov, A. Complex of geophysical studies of the Seyakha catastrophic gas blowout crater on the Yamal Peninsula, Russian Arctic. Geosciences 2020, 10, 215. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kargina, T.; Chuvilin, E.; Bukhanov, B.; Umnikov, A. New catastrophic gas blowout and giant crater on the Yamal Peninsula in 2020: Results of the expedition and data processing. Geosciences 2021, 11, 71. [Google Scholar] [CrossRef]
- Chuvilin, E.; Ekimova, V.; Davletshina, D.; Sokolova, N.; Bukhanov, B. Evidence of gas emissions from permafrost in the Russian Arctic. Geosciences 2020, 10, 383. [Google Scholar] [CrossRef]
- Chuvilin, E.; Stanilovskaya, J.; Titovsky, A.; Sinitsky, A.; Sokolova, N.; Bukhanov, B.; Spasennykh, M.; Cheremisin, A.; Grebenkin, S.; Davletshina, D.; et al. A Gas-emission crater in the Erkuta River valley, Yamal Peninsula: Characteristics and potential formation model. Geosciences 2020, 10, 170. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Sokolova, N.S.; Bukhanov, B.A.; Davletshina, D.A.; Spasennykh, M.Y. Formation of gas-emission craters in Northern West Siberia: Shallow controls. Geosciences 2021, 11, 393. [Google Scholar] [CrossRef]
- Couch, E.J.; Keller, H.H.; Watts, J.W. Permafrost Thawing around Producing Oil Wells. J. Can. Pet. Technol. 1970, 9, PETSOC-70-02-06. [Google Scholar] [CrossRef]
- Degterev, B.V. Production well protection methods in permafrost. In Drilling and Operation of gas wells in the North; VNIIGAS: Moscow, Russia, 1977; pp. 160–170. (In Russian) [Google Scholar]
- Smirnov, V.S. Efficiency of thermal insulation on casing pipes for various purposes. In Drilling and Operation of Gas Wells in the North; VNIIGAS: Moscow, Russia, 1977; pp. 171–175. (In Russian) [Google Scholar]
- Gryaznov, G.S. Designs of Gas Production Wells in Permafrost Areas; Nedra: Moscow, Russia, 1978; 136p. (In Russian) [Google Scholar]
- Istomin, V.A.; Degterev, B.V.; Kolushev, N.P. Guidelines for Calculation of Thawing and Refreezing Rates of Soils during Choosing a Well Construction in Permafrost; VNIIGAS: Moscow, Russia, 1981; 67p. (In Russian) [Google Scholar]
- Istomin, V.A.; Istomin, A.Z.; Degtyarev, B.V.; Kolushev, N.R. The effect of the duration of thermal exposure on the time of refreezing of rocks around a well drilled in the permafrost zone. Izv. VUZ "Neft’ I Gaz" 1983, 3, 17–20. [Google Scholar]
- Andreev, O.F.; Istomin, V.A.; Vrachev, V.V.; Kolushev, N.R.; Miklin, S.R.; Podborny, E.E. Methodological Guidelines for Predicting Thermal and Mechanical Interaction of Wells with Frozen Grounds; VNIIGAS: Moscow, Russia, 1987; 95p. (In Russian) [Google Scholar]
- Dubina, M.M.; Krasovitsky, B.A. Heat Transfer and Mechanics of Interaction of Pipelines and Wells with Soils; Nauka: Novosibirsk, Russia, 1983; 163p. (In Russian) [Google Scholar]
- Medvedsky, R.I. Construction and Operation of Oil and Gas Wells in Permafrost; Nedra: Moscow, Russia, 1987; 230p. (In Russian) [Google Scholar]
- Korotaev, Y.P.; Krivosheyin, B.L.; Novakovskii, V.N. Thermodynamic calculations of gas production wells. In Proceedings of the Ministry of Petroleum Chemistry and Gas Industry; Nedra: Moscow, Russia, 1976; 116, pp. 106–109. (In Russian). [Google Scholar]
- Argunov, K.K.; Bondarev, E.A.; Rozhin, I.I. Thermal interaction of oil wells with permafrost rocks. Sci. Educ. 2008, 4, 78–84. (In Russian) [Google Scholar]
- Gorelik, Y.B.; Shabarov, A.B.; Sysoev, Y.S. Dynamics of thawing of frozen soils in the two wells influence zone. Earth’s Cryosphere 2008, 12, 59–65. (In Russian) [Google Scholar]
- STO Gazprom 2-3.2-036-2005.; Methodological Guidelines for Taking into Account Geocryological Conditions for Selecting Production Well Designs. IRC Gazprom: Moscow, Russia, 2005; 62p. (In Russian)
- STO Gazprom 2-3.1-233-2008; Methodology for Conducting Permafrost Engineering for Exploration and Development of Hydrocarbon Deposits. IRC Gazprom: Moscow, Russia, 2008; 166p. (In Russian)
- Filimonov, M.Y.; Vaganova, N.A. Simulation of thermal stabilization of soil around various technical systems operating in permafrost. Appl. Math. Sci. 2013, 7, 7151–7160. [Google Scholar] [CrossRef]
- Khrustalev, L.N.; Gunar, A.Y. Thermal influence of gas and oil boreholes on the stability of a gravity platform located on the Arctic continental shelf. Earth’s Cryosphere 2015, 19, 75–80. [Google Scholar]
- Zakirova, E.A.; Garris, N.A.; Pereskokov, K.A. Determining thawing radius of permafrost surrounding a borehole based on thermal insulation effect of cement sheath. Transp. Storage Oil Gas 2018, 4, 69–74. (In Russian) [Google Scholar]
- Wang, X.; Wang, Z.; Deng, X.; Sun, B.; Zhao, Y.; Fu, W. Coupled thermal model of wellbore and permafrost in Arctic regions. Appl. Therm. Eng. 2017, 123, 1291–1299. [Google Scholar] [CrossRef]
- Gorelik, Y.B.; Khabitov, A.K. The role of thermal insulation of wells in determining the distance between wellheads in areas of permafrost distribution. Bull. Tyumen State Univ. Ser. Phys. Math. Model. 2019, 5, 10–26. (In Russian) [Google Scholar]
- Goodman, M.A. Handbook of Arctic Well Completions; Gulf Publishing: Houston, TX, USA, 1978; 52p. [Google Scholar]
- Goodman, M.; Fischer, F.J.; Garrett, D. Thaw subsidence analysis for multiple wells on a gravel island. In Proceedings of the 4th Canadian Permafrost Conference «Engineering Applications in Permafrost Areas», Calgary, AB, Canada, 2–6 March 1982; pp. 497–506. [Google Scholar]
- Xie, J. Analysis of Thaw Subsidence Impacts on Production Wells. SIMULIA Customer Conference 2009. Available online: https://www.semanticscholar.org/paper/Analysis-of-Thaw-Subsidence-Impacts-on-Production-Xie/ff158bfc58824e50be79270fb75760fe2bb13ff6#paper-header (accessed on 1 February 2022).
- Gorelik, Y.B.; Soldatov, P.V. Method of calculation of axial load on the wellbore casing during thawing of frozen host sediments. Earth’s Cryosphere 2018, 22, 44–53. [Google Scholar]
- Sun, T.; Liu, C.; Yue, Z.; Hu, T.; Liao, Y. Predicting the Healthy Operation of Heavy Oil Well Casings in Permafrost Regions. Math. Probl. Eng. 2021, 2021, 8893159. [Google Scholar] [CrossRef]
- Mitchell, R.F.; Goodman, M.A. Permafrost thaw-subsidence casing design. J. Pet. Technol. 1976, 30, 455–460. [Google Scholar] [CrossRef]
- Goodman, M.A. Loading mechanisms in thawed permafrost around Arctic wells. J. Press. Vessel Technol. 1977, 99, 641–645. [Google Scholar] [CrossRef]
- Gabr, M.A.; Wang, J.; Kiger, S.A. Effect of boundary conditions on buckling of friction piles. J. Eng. Mech. 1994, 120, 1392–1400. [Google Scholar] [CrossRef]
- Smith, R.E. Development of petroleum reserves in Arctic Alaska: A brief discussion. Cold Regions Sci. Technol. 1983, 7, 195–199. [Google Scholar] [CrossRef]
- Gryaznov, G.S. Construction of Oil and Gas Wells in the North; TGU: Tumen, Russia, 1983; 101p. (In Russian) [Google Scholar]
- Polozkov, A.V.; Magomedov, M.Z.; Nikitin, V.N. Well construction in the North: A review. Drill. Gas Gas Condens. Wells 1987, 5, 39. (In Russian) [Google Scholar]
- Bykov, I.Y. Development of Methods and Approaches for Well Construction in Permafrost Conditions in the North-East of the European Part of Russia. Ph.D. Thesis, UGNTU, Ufa, Russia, 1996; 307p. [Google Scholar]
- Yakushev, V.S.; Istomin, V.A. Operation of wells and field facilities in various permafrost conditions. In Actual Problems of Development, Operation and Production on Gas Fields; VNIIGAS: Moscow, Russia, 2003; pp. 410–418. (In Russian) [Google Scholar]
- Khrustalev, L.N. Fundamentals of Geotechnics in Cryolithozone; MSU Press: Moscow, Russia, 2005; 544p. (In Russian) [Google Scholar]
- Popov, A.P. Geotechnical Management of Gas Production System in Permafrost. Condition Prediction and Reliability. Ph.D. Thesis, TGU, Tumen, Russia, 2005; 353p. [Google Scholar]
- Yakushev, V.S. Gas and Gas Condensate Fields Development at Complicated Geocryological Conditions; A Textbook; Gubkin Oil&Gas University: Moscow, Russia, 2014; 190p. (In Russian) [Google Scholar]
- Vasil’eva, Z.A.; Efimov, S.I.; Yakushev, V.S. Prediction of heat interaction between oil and gas producing wells and permafrost rocks, containing metastable gas hydrates. Earth’s Cryosphere 2016, 20, 65–69. [Google Scholar]
- Vasil’eva, Z.A.; Yakushev, V.S. Influence of gas well thermal insulation parameters on thawing intensity of permafrost and intrapermafrost gas hydrates. Earth’s Cryosphere 2017, 21, 92–98. [Google Scholar]
- Chuvilin, E.M.; Bukhanov, B.A.; Tipenko, G.S.; Tumskoy, V.E.; Istomin, V.A.; Grebenkin, S.I. Evaluation of the thermal and mechanical interaction of gas production wells with gas hydrate bearing permafrost. In Proceedings of the Conference “Geomodel 2019”, Vienna, Austria, 9–13 September 2019. [Google Scholar] [CrossRef]
- Yakushev, V.S. Difficulties for Gas-Bearing Permafrost. Oil Gas J. Russ. 2017, 1, 66–70. [Google Scholar]
- Yakushev, V.S. Natural gas liberations around production wells at Russian Arctic gas fields. Geosciences 2020, 10, 184. [Google Scholar] [CrossRef]
- Avetov, N.R.; Krasnova, E.A.; Yakushev, V.S. About possible causes and nature of gas showing around gas and gas-condensate wells at the territory of Yamburg oil-and-gas-condensate field. Vesti Gazov. Nauki 2018, 33, 33–40. (In Russian) [Google Scholar]
- Chuvilin, E.M.; Bukhanov, B. Effect of hydrate accumulation conditions on thermal conductivity of gas-saturated soils. Energy Fuels 2017, 31, 5246–5254. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Perlova, E.V.; Baranov, Y.B.; Kondakov, V.V.; Osokin, A.B.; Yakushev, V.S. The Structure and Properties of Permafrost in the Southern Part of the Bovanenkovo Gas-Condensate Field; GEOS: Moscow, Russia, 2007; p. 137. [Google Scholar]
- Badu, Y.V.; Gafarov, N.A.; Podborny, E.E. Permafrost in Oil-Gas-Condensate Fields of the Yamal Peninsula. Book 2. Permafrost in the Bovanenkovo Field; Gazprom Expo: Moscow, Russia, 2013; p. 424. (In Russian) [Google Scholar]
- Badu, Y.B. Effects of Gas Accumulations on the Orign and Evolution of Permafrost in Gas Reservoirs of the Yamal Peninsula; Nauchnyi Mir: Moscow, Russia, 2018; p. 232. (In Russian) [Google Scholar]
- Yakushev, V.S. Natural Gas and Gas Hydrates within the Permafrost Zone; VNIIGAZ: Moscow, Russia, 2009; 192p. (In Russian) [Google Scholar]
- Svendsen, J.I.; Alexanderson, H.; Astakhov, V.I.; Demidov, I.; Dowdeswell, J.A.; Funder, S.; Gataullin, V.; Henriksen, M.; Hjort, C.; Houmark-Nielsen, M.; et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 2004, 23, 1229–1271. [Google Scholar] [CrossRef]
- Astakhov, V.; Shkatova, V.; Zastrozhnov, A.; Chuyko, M. Glacio-morphological Map of the Russian Federation. Quat. Int. 2016, 420, 4–14. [Google Scholar] [CrossRef]
- Seregina, N.V. Improvement of the Design of Heat-Insulated Lifting Pipes for Gas Production Wells in Permafrost. Ph.D. Thesis, Gazprom VNIIGAZ LLC, Moscow, Russia, 2017; 131p. (In Russian). [Google Scholar]
- Samarsky, A.A.; Moiseenko, B.D. Cost-effective end-to-end invoice schemes in Stefan’s multidimensional problem. USSR Comput. Math. Math. Phys. 1965, 5, 816–817. (In Russian) [Google Scholar]
- Tarnawski, V.R.; Leong, W.H. Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils. Int. J. Thermophys. 2016, 37, 2–48. [Google Scholar] [CrossRef]
- Drzyzga, A. The latest mathematical and empirical models to calculate the thermal conductivity of the soils. In E3S Web of Conferences; MPSU2021; EDP Sciences: Les Ulis, France, 2021; Volume 323, p. 00007. [Google Scholar] [CrossRef]
- Henninges, J.; Huenges, E.; Burkhardt, H. In situ thermal conductivity of gas-hydrate-bearing sediments of the Mallik 5L-38 well. J. Geophys. Res. 2005, 110, B11206. [Google Scholar] [CrossRef] [Green Version]
- Chuvilin, E.; Bukhanov, B. Thermal conductivity of frozen sediments containing self-preserved pore gas hydrates at atmospheric pressure: An experimental study. Geosciences 2019, 9, 65. [Google Scholar] [CrossRef] [Green Version]
Layer | Depth Interval, m | Moisture Content W, wt. % | Porosity, Volume Fraction | Density of Solid Particles, kg/m3 | Heat Capacity of Solid Particles, J/kg×K | Thermal Conductivity of Solid Particles, W/mK |
---|---|---|---|---|---|---|
1 | 0–150 | 32 | 0.45 | 2600 | 758 | 2.4 |
2 | 150–250 | 22 | 0.36 | 2550 | 700 | 2.4 |
3 | 250–550 | 23 | 0.37 | 2550 | 710 | 1.9 |
No | Casing | Outer Diameter, mm | Inner Diameter, mm | Cement Outer Diameter, mm | Depth, m |
---|---|---|---|---|---|
1 | Conductor pipe | 426 | 404 | 490 | 120 |
2 | Surface casing | 324 | 304 | 394 | 450 |
3 | Intermediate casing | 245 | 224 | 295 | 774 |
168 | 150 | 216 | 774 m to reservoir | ||
4 | Lifting pipe with insulation | 168 | 100 | --- | 55 |
5 | Lifting pipe | 114 | 100 | --- | 55 m to reservoir |
Temperature, °C | Relative Content of Unfrozen Water, % | ||
---|---|---|---|
5 | 100 | 1000.0 | 4186 |
0 | 100 | 1000.0 | 4186 |
−0.9 | 100 | 1000.0 | 4186 |
−1 | 20 | 933.6 | 32,001 |
−2 | 11 | 926.1 | 8918 |
−4 | 7 | 922.8 | 7193 |
−6 | 4 | 920.3 | 3814 |
−8 | 3 | 919.5 | 3793 |
−10 | 2 | 918.7 | 3438 |
Temperature, °C | Hydrate Saturation, % | Effective Heat Capacity, | |
---|---|---|---|
10 | 0 | 1000.0 | 4186 |
0 | 0 | 1000.0 | 4186 |
−0.9 | 0 | 1000.0 | 4186 |
−1 | 0 | 917.0 | 8634 |
−1.5 | 2 | 916.7 | 28,365 |
−2 | 10 | 915.3 | 28,404 |
−2.5 | 18 | 913.9 | 8656 |
−3 | 20 | 913.6 | 2060 |
−5 | 20 | 913.6 | 2060 |
Temperature, °C | Hydrate Saturation, % | Fluid Density | Effective Heat Capacity |
---|---|---|---|
10 | 0 | 700.0 | 4186 |
0 | 0 | 670.0 | 4186 |
−0.9 | 0 | 700.0 | 4186 |
−1 | 0 | 641.9 | 11,451 |
−1.5 | 2 | 641.6 | 39,645 |
−2 | 10 | 640.2 | 39,724 |
−2.5 | 18 | 638.8 | 11,496 |
−3 | 20 | 638.5 | 2060 |
−5 | 20 | 638.5 | 2060 |
Temperature, °C | Hydrate Saturation, % | Effective Heat Capacity | |
---|---|---|---|
10 | 0 | 1000.0 | 4186 |
0 | 0 | 1000.0 | 4186 |
−0.9 | 0 | 1000.0 | 4186 |
−1 | 0 | 917.0 | 15,208 |
−1.5 | 4 | 916.3 | 54,690 |
−2 | 20 | 913.6 | 58,145 |
−2.5 | 37 | 910.7 | 11,989 |
−3 | 40 | 910.2 | 2060 |
−5 | 40 | 910.2 | 2060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvilin, E.; Tipenko, G.; Bukhanov, B.; Istomin, V.; Pissarenko, D. Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost. Geosciences 2022, 12, 115. https://doi.org/10.3390/geosciences12030115
Chuvilin E, Tipenko G, Bukhanov B, Istomin V, Pissarenko D. Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost. Geosciences. 2022; 12(3):115. https://doi.org/10.3390/geosciences12030115
Chicago/Turabian StyleChuvilin, Evgeny, Gennadiy Tipenko, Boris Bukhanov, Vladimir Istomin, and Dimitri Pissarenko. 2022. "Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost" Geosciences 12, no. 3: 115. https://doi.org/10.3390/geosciences12030115
APA StyleChuvilin, E., Tipenko, G., Bukhanov, B., Istomin, V., & Pissarenko, D. (2022). Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost. Geosciences, 12(3), 115. https://doi.org/10.3390/geosciences12030115