Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
- To test, evaluate and implement script-based technical cartographic methods of geospatial data analysis by GMT;
- To perform semi-automatic mapping of raster data using various GMT modules through utilisation of the script-based data processing for spatial analysis.
2. Materials and Methods
2.1. General Approach
2.1.1. Data
2.1.2. Software
2.2. Technical Workflow
3. Results
4. Discussion
4.1. Perspectives of the Script-Based Techniques in Cartography
4.2. Cartographic Perspectives in the Environmental Analysis
4.3. Outlook and Future Developments
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPT | Colour Palette Table |
DCW | Digital Chart of the World |
DSRAD | Downward Surface Shortwave Radiation |
EOF | End of File |
GEBCO | General Bathymetric Chart of the Oceans |
GDAL | Geospatial Data Abstraction Library |
GIS | Geographic Information System |
GMT | Generic Mapping Tools |
GRASS GIS | Geographic Resources Analysis Support System GIS |
GUI | Graphical User Interface |
IDL | Interactive Data Language |
NetCDF | Network Common Data Form |
PDSI | Palmer Drought Severity Index |
QGIS | Quantum GIS |
SAGA GIS | System for Automated Geoscientific Analyses GIS |
SD | Standard Deviation |
SWE | Snow Water Equivalent |
VPD | Vapor Pressure Deficit |
VAP | Vapor Pressure |
Appendix A. GMT Scripts for Topographic Map
Appendix A.1. GMT Script for Topographic Map, Figure 1
Appendix B. GMT Scripts for Climate Maps
Appendix B.1. GMT Script for Map in Figure 2: Average Minimal Temperature in Mongolia in 2019
Appendix B.2. GMT Script for Map in Figure 3: Average Maximal Temperature in Mongolia in 04.2019
Appendix B.3. GMT Script for Map in Figure 4: Wind Speed in Mongolia in 2019
Appendix B.4. GMT Script for Map in Figure 5: Soil Moisture in Mongolia in 2019
Appendix B.5. GMT Script for Map in Figure 6: Downward Surface Shortwave Radiation in Mongolia in 2019
Appendix B.6. GMT Script for Map in Figure 7: Snow Water Equivalent in Mongolia in 2019
Appendix B.7. GMT Script for Map in Figure 8: Vapor Pressure Deficit in Mongolia in 2019
Appendix B.8. GMT Script for Map in Figure 9: Vapor Pressure Anomaly in Mongolia in 2019
Appendix B.9. GMT Script for Map in Figure 10: Monthly Precipitation in Mongolia in 2019
Appendix B.10. GMT Script for Map in Figure 11: Palmer Drought Severity Index (PDSI) in Mongolia in 2019
References
- Dashkhuu, D.; Kim, J.P.; Chun, J.A.; Lee, W.S. Long-term trends in daily temperature extremes over Mongolia. Weather Clim. Extrem. 2015, 8, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Natsagdorj, L.; Munkhbat, B.; Purevjav, G. Climate biocapacity of Mongolia and its change. Proc. Mong. Acad. Sci. 2019, 59, 54–70. [Google Scholar] [CrossRef]
- An, Q.; He, H.; Nie, Q.; Cui, Y.; Gao, J.; Wei, C.; Xie, X.; You, J. Spatial and Temporal Variations of Drought in Inner Mongolia, China. Water 2020, 12, 1715. [Google Scholar] [CrossRef]
- Sattler, D.N.; Bishkhorloo, B.; Graham, J.M. Climate change threatens nomadic herding in Mongolia: A model of climate change risk perception and behavioral adaptation. J. Environ. Psychol. 2021, 75, 101620. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, W.; Yuan, Y.; Ye, W.; Mu, Y. Interannual variability of vegetation sensitivity to climate in China. J. Environ. Manag. 2022, 301, 113768. [Google Scholar] [CrossRef]
- Lemenkova, P. Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Rep. 2021, 11, 67–85. [Google Scholar] [CrossRef]
- Dugerdil, L.; Ménot, G.; Peyron, O.; Jouffroy-Bapicot, I.; Ansanay-Alex, S.; Antheaume, I.; Behling, H.; Boldgiv, B.; Develle, A.L.; Grossi, V.; et al. Late Holocene Mongolian climate and environment reconstructions from brGDGTs, NPPs and pollen transfer functions for Lake Ayrag: Paleoclimate implications for Arid Central Asia. Quat. Sci. Rev. 2021, 273, 107235. [Google Scholar] [CrossRef]
- Dashtseren, A. Permafrost in Mongolia. In The Physical Geography of Mongolia; Springer International Publishing: Cham, Switzerland, 2021; pp. 119–133. [Google Scholar] [CrossRef]
- Tsedevdorj, S.O. Glaciers of Mongolia. In The Physical Geography of Mongolia; Springer International Publishing: Cham, Switzerland, 2021; pp. 101–117. [Google Scholar] [CrossRef]
- Blomdin, R.; Heyman, J.; Stroeven, A.P.; Hättestrand, C.; Harbor, J.M.; Gribenski, N.; Jansson, K.N.; Petrakov, D.A.; Ivanov, M.N.; Alexander, O.; et al. Glacial geomorphology of the Altai and Western Sayan Mountains, Central Asia. J. Maps 2016, 12, 123–136. [Google Scholar] [CrossRef]
- Otgonbayar, M.; Atzberger, C.; Chambers, J.; Amarsaikhan, D.; Böck, S.; Tsogtbayar, J. Land Suitability Evaluation for Agricultural Cropland in Mongolia Using the Spatial MCDM Method and AHP Based GIS. J. Geosci. Environ. Prot. 2017, 5, 238–263. [Google Scholar] [CrossRef] [Green Version]
- Lemenkova, P. SAGA GIS for Computing Multispectral Vegetation Indices by Landsat TM for Mapping Vegetation Greenness. Contemp. Agric. 2021, 70, 67–75. [Google Scholar] [CrossRef]
- Munkhtur, P.; Erdenedalai, A. Assessment of Natural Resource Potential of the Landscape of Mongolia (Based on Agricultural Production Resource). Proc. Mong. Acad. Sci. 2020, 60, 28–42. [Google Scholar] [CrossRef]
- Erdenebaatar, N.; Damdinsuren, A. Geographical analysis of forest types based on a digital elevation model generated from synthetic aperture radar. Proc. Mong. Acad. Sci. 2020, 60, 43–54. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Wu, Y.; Zhao, S. Vegetation dynamics and their response to hydrothermal conditions in Inner Mongolia, China. Glob. Ecol. Conserv. 2022, 34, e02034. [Google Scholar] [CrossRef]
- O’Gorman, K.; Thompson, K. Tourism and culture in Mongolia: The case of the Ulaanbaatar Nadaam. In Tourism and Indigenous Peoples; Butler, R., Hinch, T., Eds.; Butterworth-Heinemann: Oxford, UK, 2007; Chapter 12; pp. 161–175. [Google Scholar] [CrossRef]
- Buckley, R.; Ollenburg, C.; Zhong, L. Cultural landscape in mongolian tourism. Ann. Tour. Res. 2008, 35, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Gantemur, D. Nomadic tourism: Stakeholder collaboration management for tourism development in Mongolia. Proc. Mong. Acad. Sci. 2020, 60, 59–72. [Google Scholar] [CrossRef]
- Klaučo, M.; Gregorová, B.; Koleda, P.; Stankov, U.; Marković, V.; Lemenkova, P. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environ. Eng. Manag. J. 2017, 2, 449–458. [Google Scholar] [CrossRef]
- Fan, P.; Chen, J.; John, R. Urbanization and environmental change during the economic transition on the Mongolian Plateau: Hohhot and Ulaanbaatar. Environ. Res. 2016, 144, 96–112. [Google Scholar] [CrossRef] [Green Version]
- Khishigdorj, D.; Tseyenkhand, P. Implications of rural settlement patterns for development. Proc. Mong. Acad. Sci. 2019, 59, 14–20. [Google Scholar] [CrossRef]
- Oyunjargal, D.; Byambatseren, C. The effects of environmental issues on residential house price (in the case of Ulaanbaatar city). Proc. Mong. Acad. Sci. 2018, 58, 117–130. [Google Scholar] [CrossRef]
- Samdandorj, M.; Ts, P. Geospatial modeling approaches for mapping topsoil organic carbon stock in northern part of Mongolia. Proc. Mong. Acad. Sci. 2019, 59, 4–17. [Google Scholar] [CrossRef]
- Kolář, T.; Kusbach, A.; Čermák, P.; Štěrba, T.; Batkhuu, E.; Rybníček, M. Climate and wildfire effects on radial growth of Pinus sylvestris in the Khan Khentii Mountains, north-central Mongolia. J. Arid Environ. 2020, 182, 1–10. [Google Scholar] [CrossRef]
- Lemenkova, P. Sentinel-2 for High Resolution Mapping of Slope-Based Vegetation Indices Using Machine Learning by SAGA GIS. Transylv. Rev. Syst. Ecol. Res. 2020, 22, 17–34. [Google Scholar] [CrossRef]
- Meng, F.; Luo, M.; Sa, C.; Wang, M.; Bao, Y. Quantitative assessment of the effects of climate, vegetation, soil and groundwater on soil moisture spatiotemporal variability in the Mongolian Plateau. Sci. Total Environ. 2022, 809, 152198. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Lemenkova, P. SAGA GIS for information extraction on presence and conditions of vegetation of northern coast of Iceland based on the Landsat TM. Acta Biol. Marisiensis 2020, 3, 10–21. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Nottebaum, V.; Hülle, D. Aspects of late Quaternary geomorphological development in the Khangai Mountains and the Gobi Altai Mountains (Mongolia). Geomorphology 2018, 312, 24–39. [Google Scholar] [CrossRef]
- Lehmkuhl, F. Holocene glaciers in the Mongolian Altai: An example from the Turgen–Kharkhiraa Mountains. J. Asian Earth Sci. 2012, 52, 12–20. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.; Sa, C.; Duan, Y.; Bao, Y.; Liu, T.; De Maeyer, P. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau. Catena 2021, 206, 105505. [Google Scholar] [CrossRef]
- Bao, G.; Liu, Y.; Liu, N.; Linderholm, H.W. Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing. Clim. Dyn. 2015, 44, 717–733. [Google Scholar] [CrossRef]
- Chen, J.; Dong, G.; Chen, J.; Jiang, S.; Qu, L.; Legesse, T.G.; Zhao, F.; Tong, Q.; Shao, C.; Han, X. Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecol. Indic. 2022, 135, 108560. [Google Scholar] [CrossRef]
- Zemmrich, A. The classification of Mongolias steppes from the view of Russian and Mongolian geobotany. Arch. Nat. Conserv. Landsc. Res. 2005, 44, 17–35. [Google Scholar]
- Li, G.; Yu, Z.; Wang, W.; Ju, Q.; Chen, X. Analysis of the spatial Distribution of precipitation and topography with GPM data in the Tibetan Plateau. Atmos. Res. 2021, 247, 105259. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Bense, V.F. Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau. Geoderma 2019, 333, 57–68. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S. Performance assessment of merged multisatellite precipitation datasets over diverse climate and complex topography. In Precipitation Science; Michaelides, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 14; pp. 391–420. [Google Scholar] [CrossRef]
- Saavedra, M.; Junquas, C.; Espinoza, J.C.; Silva, Y. Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmos. Res. 2020, 234, 104711. [Google Scholar] [CrossRef]
- Lei, H.; Li, H.; Zhao, H.; Ao, T.; Li, X. Comprehensive evaluation of satellite and reanalysis precipitation products over the eastern Tibetan plateau characterized by a high diversity of topographies. Atmos. Res. 2021, 259, 105661. [Google Scholar] [CrossRef]
- Dai, Y.; Tian, L.; Zhu, P.; Dong, Z.; Zhang, R. Dynamic aeolian erosion evaluation and ecological service assessment in Inner Mongolia, northern China. Geoderma 2022, 406, 115518. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, Y.; Xie, G.; Wang, Y.; Zhen, L.; Zhang, C.; Jiang, Y. Interregional ecosystem services benefits transfer from wind erosion control measures in Inner Mongolia. Environ. Dev. 2020, 34, 100496. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Wang, H.; Gong, J.; Li, S.; Dou, H.; Dang, D. Soil wind erosion evaluation and sustainable management of typical steppe in Inner Mongolia, China. J. Environ. Manag. 2021, 277, 111488. [Google Scholar] [CrossRef]
- Otgontuya, L.; Elmarsdottir, A.; Lkhagvajav, N.; Munkhbat, C. Influence of different grazing intensity on above-ground biomass in Mongolian rangeland. Proc. Mong. Acad. Sci. 2019, 59, 29–38. [Google Scholar] [CrossRef]
- Addison, J.; Davies, J.; Friedel, M.; Brown, C. Do pasture user groups lead to improved rangeland condition in the Mongolian Gobi Desert? J. Arid Environ. 2013, 94, 37–46. [Google Scholar] [CrossRef]
- Klaučo, M.; Gregorová, B.; Stankov, U.; Marković, V.; Lemenkova, P. Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosci. 2013, 5, 28–42. [Google Scholar] [CrossRef]
- Lemenkova, P. The visualization of geophysical and geomorphologic data from the area of Weddell Sea by the Generic Mapping Tools. Stud. Quat. 2021, 38, 19–32. [Google Scholar] [CrossRef]
- Bumtsend, B.; Munkhtur, P.; Erdenedalai, A. Assessment of Eco-geomorphological potential of Mongolia. Proc. Mong. Acad. Sci. 2020, 60, 1–16. [Google Scholar] [CrossRef]
- Yu, K.; Lehmkuhl, F.; Schlütz, F.; Diekmann, B.; Mischke, S.; Grunert, J.; Murad, W.; Nottebaum, V.; Stauch, G.; Zeeden, C. Late Quaternary environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and palaeoclimate evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 514, 77–91. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Chen, J. Migration under economic transition and changing climate in Mongolia. J. Arid Environ. 2021, 185, 104333. [Google Scholar] [CrossRef]
- Tugjamba, N.; Walkerden, G. Traditional and modern ecosystem services thinking in nomadic Mongolia: Framing differences, common concerns, and ways forward. Ecosyst. Serv. 2021, 51, 101360. [Google Scholar] [CrossRef]
- Feng, A.; Chao, Q. An overview of assessment methods and analysis for climate change risk in China. Phys. Chem. Earth Parts A/B/C 2020, 117, 102861. [Google Scholar] [CrossRef]
- Wang, J.; Nathan, R.; Horne, A.; Peel, M.C.; Wei, Y.; Langford, J. Evaluating four downscaling methods for assessment of climate change impact on ecological indicators. Environ. Model. Softw. 2017, 96, 68–82. [Google Scholar] [CrossRef]
- Guo, H.; Wang, R.; Garfin, G.M.; Zhang, A.; Lin, D.; Liang, Q.; Wang, J. Rice drought risk assessment under climate change: Based on physical vulnerability a quantitative assessment method. Sci. Total Environ. 2021, 751, 141481. [Google Scholar] [CrossRef]
- Bolortsetseg, B.; Tuvaansuren, G. The potential impacts of climate change on pasture and cattle production in Mongolia. Water Air Soil Pollut. 1996, 92, 95–105. [Google Scholar] [CrossRef]
- Sasaki, T.; Nambu, M.; Iwachido, Y.; Yoshihara, Y.; Batdelger, G.; Kinugasa, T. Responses of plant productivity and carbon fluxes to short-term experimental manipulations of climate change and species loss in a Mongolian grassland. J. Arid Environ. 2022, 198, 104690. [Google Scholar] [CrossRef]
- Tugjamba, N.; Walkerden, G.; Miller, F. Climate change impacts on nomadic herders’ livelihoods and pastureland ecosystems: A case study from Northeast Mongolia. Reg. Environ. Chang. 2021, 21, 105. [Google Scholar] [CrossRef]
- Chuluun, T.; Altanbagana, M.; Ojima, D.; Tsolmon, R.; Suvdantsetseg, B. Vulnerability of Pastoral Social-Ecological Systems in Mongolia. In Rethinking Resilience, Adaptation and Transformation in a Time of Change; Springer: Cham, Switzerland, 2017; pp. 73–88. [Google Scholar] [CrossRef]
- Maasri, A.; Gelhaus, J. Stream invertebrate communities of Mongolia: Current structure and expected changes due to climate change. Aquat. Biosyst. 2012, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Dai, H.; Gu, Z. Sandstorms and desertification in Mongolia, an example of future climate events: A review. Environ. Chem. Lett. 2021, 19, 4063–4073. [Google Scholar] [CrossRef]
- Nyamtseren, M.; Feng, Q.; Deo, R. A Comparative Study of Temperature and Precipitation-Based Aridity Indices and Their Trends in Mongolia. Int. J. Environ. Res. 2018, 12, 887–899. [Google Scholar] [CrossRef]
- Jie, W.; Xiao, C.; Zhang, C.; Zhang, E.; Li, J.; Wang, B.; Niu, H.; Dong, S. Remote sensing-based dynamic monitoring and environmental change of wetlands in southern Mongolian Plateau in 2000–2018. China Geol. 2021, 4, 353–363. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, B.; Gao, J.; Wang, Z. Impacts of Climate Change on Corn Production in Inner Mongolia, China. In Proceedings of the 2010 International Conference on Multimedia Technology, Ningbo, China, 29–31 October 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Bao, H.; Wang, X.; Zhang, W. Relationship between the vegetation types and topographical factors from Wula mountain, Inner Mongolia: Based on ALOS data. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 2358–2362. [Google Scholar] [CrossRef]
- Unkelbach, J.; Dulamsuren, C.; Behling, H. Late Holocene climate and land-use history in the Mongolian Altai Mountains: Combined evidence from palynological, macro-charcoal and tree-ring analyses. Trees For. People 2021, 4, 100073. [Google Scholar] [CrossRef]
- Unkelbach, J.; Dulamsuren, C.; Klinge, M.; Behling, H. Holocene high-resolution forest-steppe and environmental dynamics in the Tarvagatai Mountains, north-central Mongolia, over the last 9570 cal yr BP. Quat. Sci. Rev. 2021, 266, 107076. [Google Scholar] [CrossRef]
- Minderlein, S.; Menzel, L. Evapotranspiration and energy balance dynamics of a semi-arid mountainous steppe and shrubland site in Northern Mongolia. Environ. Earth Sci. 2015, 73, 593–609. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z.; Huang, Y.; Xia, X.; Wei, Y.; Lin, X.; Sun, W. Preseason heat requirement and days of precipitation jointly regulate plant phenological variations in Inner Mongolian grassland. Agric. For. Meteorol. 2022, 314, 108783. [Google Scholar] [CrossRef]
- Liu, Y.; You, C.; Zhang, Y.; Chen, S.; Zhang, Z.; Li, J.; Wu, Y. Resistance and resilience of grasslands to drought detected by SIF in inner Mongolia, China. Agric. For. Meteorol. 2021, 308–309, 108567. [Google Scholar] [CrossRef]
- Gradel, A.; Haensch, C.; Ganbaatar, B.; Dovdondemberel, B.; Nadaldorj, O.; Günther, B. Response of white birch (Betula platyphylla Sukaczev) to temperature and precipitation in the mountain forest steppe and taiga of northern Mongolia. Dendrochronologia 2017, 41, 24–33. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Welk, E.; Jäger, E.J.; Hauck, M.; Mühlenberg, M. Range-habitat relationships of vascular plant species at the taiga forest-steppe borderline in the western Khentey Mountains, northern Mongolia. Flora Morphol. Distrib. Funct. Ecol. Plants 2005, 200, 376–397. [Google Scholar] [CrossRef]
- Klinge, M.; Schneider, F.; Li, Y.; Frechen, M.; Sauer, D. Variations in geomorphological dynamics in the northern Khangai Mountains, Mongolia, since the Late Glacial period. Geomorphology 2022, 401, 108113. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- Lemenkova, P. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geogr. Tech. 2019, 14, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Kasalica, V.; Lamprecht, A.L. Automated composition of scientific workflows: A case study on geographic data manipulation. In Proceedings of the 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands, 29 October–1 November 2018; pp. 362–363. [Google Scholar] [CrossRef]
- Lemenkova, P. Mapping topographic, geophysical and gravimetry data of Pakistan—A contribution to geological understanding of Sulaiman Fold Belt and Muslim Bagh Ophiolite Complex. Geophysica 2021, 56, 3–26. [Google Scholar] [CrossRef]
- Spinellis, D. Drawing Tools. IEEE Softw. 2009, 26, 12–13. [Google Scholar] [CrossRef]
- Lemenkova, P. Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Pol. Polar Res. 2021, 42, 1–23. [Google Scholar] [CrossRef]
- Virden, W.; Habermann, T.; Glover, G.; Divins, D.; Sharman, G.; Fox, C. Multibeam bathymetric data at NOAA/NGDC. In Proceedings of the Oceans ’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No. 04CH37600), Kobe, Japan, 9–12 November 2004; Volume 2, pp. 1159–1162. [Google Scholar] [CrossRef]
- Tsutsumida, N.; Saizen, I.; Matsuoka, M.; Ishii, R. Addressing urban expansion using feature-oriented spatial data in a peripheral area of Ulaanbaatar, Mongolia. Habitat Int. 2015, 47, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Lemenkova, P. NOAA Marine Geophysical Data and a GEBCO Grid for the Topographical Analysis of Japanese Archipelago by Means of GRASS GIS and GDAL Library. Geomat. Environ. Eng. 2020, 14, 25–45. [Google Scholar] [CrossRef]
- Amarsaikhan, D.; Blotevogel, H.H.; Ganzorig, M.; Moon, T.H. Applications of remote sensing and geographic information systems for urban land-cover change studies in Mongolia. Geocarto Int. 2009, 24, 257–271. [Google Scholar] [CrossRef]
- Nakayama, T.; Wang, Q.; Okadera, T. Evaluation of spatio-temporal variations in water availability using a process-based eco-hydrology model in arid and semi-arid regions of Mongolia. Ecol. Model. 2021, 440, 109404. [Google Scholar] [CrossRef]
- Lemenkova, P. GRASS GIS for topographic and geophysical mapping of the Peru-Chile Trench. Forum Geogr. 2020, 19, 143–157. [Google Scholar] [CrossRef]
- Park, H.; Fan, P.; John, R.; Ouyang, Z.; Chen, J. Spatiotemporal changes of informal settlements: Ger districts in Ulaanbaatar, Mongolia. Landsc. Urban Plan. 2019, 191, 103630. [Google Scholar] [CrossRef]
- O’Sullivan, R. Movement across a ‘mountain barrier’: Mapping accessibility with rock-art and GIS in the Altai Mountains, Eastern Eurasia. J. Archaeol. Sci. Rep. 2019, 27, 101979. [Google Scholar] [CrossRef]
- Tuvshin, G.; Khosbayar, T.; Davaadorj, D. The methodology of studying changes in the Gobi region’s lake area. Proc. Mong. Acad. Sci. 2018, 58, 28–39. [Google Scholar] [CrossRef]
- Lemenkova, P. Fractal surfaces of synthetical DEM generated by GRASS GIS module r.surf.fractal from ETOPO1 raster grid. J. Geod. Geoinf. 2020, 7, 86–102. [Google Scholar] [CrossRef]
- Lemenkova, P. Evaluating land cover types from Landsat TM using SAGA GIS for vegetation mapping based on ISODATA and K-means clustering. Acta Agric. Serbica 2021, 26, 159–165. [Google Scholar] [CrossRef]
- Holguín, L.R.; Sternberg, T. A GIS based approach to Holocene hydrology and social connectivity in the Gobi Desert, Mongolia. Archaeol. Res. Asia 2018, 15, 137–145. [Google Scholar] [CrossRef]
- Frigeri, A.; Hare, T.; Neteler, M.; Coradini, A.; Federico, C.; Orosei, R. A working environment for digital planetary data processing and mapping using ISIS and GRASS GIS. Planet. Space Sci. 2011, 59, 1265–1272. [Google Scholar] [CrossRef]
- Lemenkova, P. GRASS GIS Modules for Topographic and Geophysical Analysis of the ETOPO1 DEM and Raster Data: North Fiji Basin, Pacific Ocean. Geogr. Napoc. 2020, 14, 27–38. [Google Scholar] [CrossRef]
- Shi, H.; Du, Z.; Lu, Y.; Hu, X.; Ke, X. Amery Ice Shelf Digital Elevation Model from GLAS and GMT. In Proceedings of the 2009 Third International Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009; Volume 2, pp. 129–133. [Google Scholar] [CrossRef]
- Lemenkova, P. Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean. Baltica 2021, 34, 27–46. [Google Scholar] [CrossRef]
- Becker, N.C. Painting by numbers: A GMT primer for merging swath-mapping sonar data of different types and resolutions. Comput. Geosci. 2005, 31, 1075–1077. [Google Scholar] [CrossRef]
- Lemenkova, P. Submarine tectonic geomorphology of the Pliny and Hellenic Trenches reflecting geologic evolution of the southern Greece. Rud.-Geološko Zb. 2021, 36, 33–48. [Google Scholar] [CrossRef]
- Okubo, C.H.; Schultz, R.A.; Stefanelli, G.S. Gridding Mars Orbiter Laser Altimeter data with GMT: Effects of pixel size and interpolation methods on DEM integrity. Comput. Geosci. 2004, 30, 59–72. [Google Scholar] [CrossRef]
- Bat-Oyun, T.; Shinoda, M.; Cheng, Y.; Purevdorj, Y. Effects of grazing and precipitation variability on vegetation dynamics in a Mongolian dry steppe. J. Plant Ecol. 2016, 9, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Lemenkova, P. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geod. Cartogr. 2019, 45, 57–84. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Jiang, G.; Xu, C.; Wang, S. A tectonic geodesy mapping software based on QGIS. Geod. Geodyn. 2020, 11, 31–39. [Google Scholar] [CrossRef]
- Lemenkova, P. Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: A Case Study of Northern Iceland. Adv. Res. Life Sci. 2020, 4, 70–78. [Google Scholar] [CrossRef]
- Abatzoglou, J.; Dobrowski, S.; Parks, S.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenke, H. General Bathymetric Chart of the Oceans (GEBCO). In Encyclopedia of Marine Geosciences, 1st ed.; Encyclopedia of Earth Sciences; Springer: Dordrecht, The Netherlands, 2016; pp. 268–269. [Google Scholar] [CrossRef]
- Lemenkova, P. Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Misc. Geogr. 2020, 25, 1–13. [Google Scholar] [CrossRef]
- Lemenkova, P. Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea. Ann. Univ. Mar. Curie-Sklodowska Sect. B Geogr. Geol. Mineral. Petrogr. 2020, 75, 115–141. [Google Scholar] [CrossRef]
- Ghanem, M.E.; Kehel, Z.; Marrou, H.; Sinclair, T.R. Seasonal and climatic variation of weighted VPD for transpiration estimation. Eur. J. Agron. 2020, 113, 125966. [Google Scholar] [CrossRef]
- Li, M.; Yao, J.; Guan, J.; Zheng, J. Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmos. Res. 2021, 248, 105199. [Google Scholar] [CrossRef]
- Song, X.; Bai, P.; Ding, J.; Li, J. Effect of vapor pressure deficit on growth and water status in muskmelon and cucumber. Plant Sci. 2021, 303, 110755. [Google Scholar] [CrossRef]
- Palmer, W. Meteorological Drought; Research Paper No. 45; NOAA National Climatic Data Center: Asheville, NC, USA, 1965. [Google Scholar]
- GEBCO Compilation Group. GEBCO 2020 Grid; British Oceanographic Data Centre (BODC): Liverpool, UK, 2020. [Google Scholar]
- Liu, Y.; Wu, Z.; Zhao, D.; Zhou, J.; Shang, J.; Wang, M.; Zhu, C.; Luo, X. Construction of High-Resolution Bathymetric Dataset for the Mariana Trench. IEEE Access 2019, 7, 142441–142450. [Google Scholar] [CrossRef]
- Nock, K.; Bonanno, D.; Elmore, P.; Smith, L.; Ferrini, V.; Petry, F. Applying single-image super-resolution for the enhancement of deep-water bathymetry. Heliyon 2019, 5, e02570. [Google Scholar] [CrossRef]
- Lemenkova, P. GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geod. Cartogr. 2020, 46, 98–112. [Google Scholar] [CrossRef]
- Saito, K.; Nagata, Y.; Nakada, T.; Taketomi, C. High-Resolution Bathymetry Mapping for the Bering Continental Shelf. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Heiner, M.; Galbadrakh, D.; Kiesecker, J. Shifting Winds in the Mongolian Gobi Desert: Nature and Traditions Face the Modern Era. In Encyclopedia of the World’s Biomes; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Oxford, UK, 2020; pp. 78–84. [Google Scholar] [CrossRef]
- Rina, W.; Bao, G.; Tong, S.; Bao, Y.; Shan, Y.; Huang, X.; Ying, H.; Du, L. Multi-Climate Factors and the Preceding Growth Stage of Vegetation Co-Regulated the Variation of the End of Growing Season in Northeast Inner Mongolia, China. IEEE Access 2020, 8, 221525–221538. [Google Scholar] [CrossRef]
- Long, H.; Li, X.; Bao, Y.; Huang, L.; Li, Z. Time lag analysis between vegetation and climate change in Inner Mongolia. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1513–1516. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, L.; Yu, J.; Wang, W.; Li, X.; Ke, Y.; Li, J. Land Surface Ecosystem Change Due to Natural and Anthropology Effects-The Ordos Case, Inner Mongolia. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6479–6482. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Dashpurev, B.; Wesche, K.; Jäschke, Y.; Oyundelger, K.; Phan, T.N.; Bendix, J.; Lehnert, L.W. A cost-effective method to monitor vegetation changes in steppes ecosystems: A case study on remote sensing of fire and infrastructure effects in eastern Mongolia. Ecol. Indic. 2021, 132, 108331. [Google Scholar] [CrossRef]
- Sainnemekh, S.; Barrio, I.C.; Densambuu, B.; Bestelmeyer, B.; Ása, L. Aradóttir. Rangeland degradation in Mongolia: A systematic review of the evidence. J. Arid Environ. 2022, 196, 104654. [Google Scholar] [CrossRef]
- Batunacun; Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Ulaankhuu, K. The evaluation of environmental and socio-cultural impacts of tourism on the Khorgo-Terkhyn Tsagaan Nuur National Park. Proc. Mong. Acad. Sci. 2020, 60, 5–51. [Google Scholar] [CrossRef]
- Lemenkova, P. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. Geosci. Eng. 2019, 65, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Lemenkov, V.; Lemenkova, P. Using TeX Markup Language for 3D and 2D Geological Plotting. Found. Comput. Decis. Sci. 2021, 46, 43–69. [Google Scholar] [CrossRef]
- Mongolian Academy of Sciences. National Atlas of Mongolia; Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 2009. [Google Scholar]
- Pfeiffer, M.; Dulamsuren, C.; Wesche, K. Grasslands and Shrublands of Mongolia. In Encyclopedia of the World’s Biomes; Elsevier: Dordrecht, The Netherlands, 2020; pp. 759–772. [Google Scholar] [CrossRef]
- Altanbold, E.; Ulambadrakh, K.; Davaadorj, D.; Ganbold, B. To study origin and morphologic assessment of Bayan lake, western Mongolia. Proc. Mong. Acad. Sci. 2018, 58, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Jamyansuren, S.; Udval, B.; Batkhuu, N.; Bat-Erdene, J.; Fischer, M. Result of study on developing forest seed region in Mongolia. Proc. Mong. Acad. Sci. 2019, 59, 18–31. [Google Scholar] [CrossRef]
- Jugder, D. Estimation of vertical dust emission flux at a site in the Mongolian Gobi during a dust storm period. Proc. Mong. Acad. Sci. 2018, 58, 25–40. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemenkova, P. Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences 2022, 12, 140. https://doi.org/10.3390/geosciences12030140
Lemenkova P. Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences. 2022; 12(3):140. https://doi.org/10.3390/geosciences12030140
Chicago/Turabian StyleLemenkova, Polina. 2022. "Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data" Geosciences 12, no. 3: 140. https://doi.org/10.3390/geosciences12030140
APA StyleLemenkova, P. (2022). Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences, 12(3), 140. https://doi.org/10.3390/geosciences12030140