Carbon in Mineralised Plutons
Abstract
:1. Introduction
Geological Setting
2. Materials and Methods
2.1. Whole-Rock Analysis
2.2. Isotopic Analysis
2.3. Scanning Electron Microscopy (SEM)
3. Results
3.1. Field Observations and Sampling
3.2. Scanning Electron Microscopy (SEM)
3.3. Whole-Rock Analysis
3.4. Isotopic Analysis
4. Discussion
4.1. Evidence for Crustal Assimilation
4.2. Elemental Enrichment during Magmatic Assimilation
4.3. Implications for Orogenic Mineralisation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, J.G.T.; Parnell, J.; Bullock, L.A.; Boyce, A.J.; Perez, M.; Feldmann, J. Mobilisation of Arsenic, Selenium and Uranium from Carboniferous Black Shales in West Ireland. Appl. Geochem. 2019, 109, 104401. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace Element Content of Sedimentary Pyrite in Black Shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Parnell, J.; Perez, M.; Armstrong, J.; Bullock, L.; Feldmann, J.; Boyce, A.J. A Black Shale Protolith for Gold-Tellurium Mineralisation in the Dalradian Supergroup (Neoproterozoic) of Britain and Ireland. Appl. Earth Sci. 2017, 126, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Little, S.H.; Vance, D.; Lyons, T.W.; McManus, J. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. Am. J. Sci. 2015, 315, 77–119. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Virtanen, V.J.; Heinonen, J.S.; Molnár, F.; Schmidt, M.W.; Marxer, F.; Skyttä, P.; Kueter, N.; Moslova, K. Fluids as Primary Carriers of Sulphur and Copper in Magmatic Assimilation. Nat. Commun. 2021, 12, 6609. [Google Scholar] [CrossRef]
- Thériault, R.D.; Barnes, S.-J.; Severson, M.J. The Influence of Country-Rock Assimilation and Silicate to Sulfide Ratios (R Factor) on the Genesis of the Dunka Road Cu-Ni-Platinum-Group Element Deposit, Duluth Complex, Minnesota. Can. J. Earh Sci. 1997, 34, 375–389. [Google Scholar] [CrossRef]
- Naldrett, A.J. World-Class Ni-Cu-PGE Deposits: Key Factors in Their Genesis. Miner. Depos. 1999, 34, 227–240. [Google Scholar] [CrossRef]
- Ihlenfeld, C.; Keays, R.R. Crustal Contamination and PGE Mineralization in the Platreef, Bushveld Complex, South Africa: Evidence for Multiple Contamination Events and Transport of Magmatic Sulfides. Miner. Depos. 2011, 46, 813–832. [Google Scholar] [CrossRef]
- Pina, R.; Lunar, R.; Ortega, L.; Gervilla, F.; Alapieti, T.; Martinez, C. Petrology and Geochemistry of Mafic-Ultramafic Fragments from the Petrology and Geochemistry of Mafic-Ultramafic Fragments from the Aguablanca Ni-Cu Ore Breccia, Southwest Spain. Econ. Geol. 2006, 101, 865–881. [Google Scholar] [CrossRef] [Green Version]
- Makkonen, H.V.; Halkoaho, T.; Konnunaho, J.; Rasilainen, K.; Kontinen, A.; Eilu, P. Ni-(Cu-PGE) Deposits in Finland—Geology and Exploration Potential. Ore Geol. Rev. 2017, 90, 667–696. [Google Scholar] [CrossRef]
- Samalens, N.; Barnes, S.; Sawyer, E.W. The Role of Black Shales as a Source of Sulfur and Semimetals in Magmatic Nickel-Copper Deposits: Example from the Partridge River Intrusion, Duluth Complex, Minnesota, USA. Ore Geol. Rev. 2017, 81, 173–187. [Google Scholar] [CrossRef]
- Luque, F.J.; Huizenga, J.-M.; Crespo-Feo, E.; Wada, H.; Ortega, L.; Barrenechea, J.F. Vein Graphite Deposits: Geological Settings, Origin, and Economic Significance. Miner. Depos. 2014, 49, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Condie, K.C.; des Marais, D.J.; Abbott, D. Precambrian Superplumes and Supercontinents: A Record in Black Shales, Carbon Isotopes, and Paleoclimates? Precambrian Res. 2001, 106, 239–260. [Google Scholar] [CrossRef]
- Parnell, J.; Armstrong, J.G.T.; Brolly, C.; Boyce, A.J.; Heptinstall, E. Carbon in Mineralized Ultramafic Intrusions, Caledonides, Northern Britain. Lithos 2020, 374–375, 105711. [Google Scholar] [CrossRef]
- Thomas, C.W.; Graham, C.M.; Ellam, R.M.; Fallick, A.E. 87Sr/86Sr Chemostratigraphy of Neoproterozoic Dalradian Limestones of Scotland and Ireland: Constraints on Depositional Ages and Time Scales. J. Geol. Soc. 2007, 161, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Mason, A.J. The Palaeoproterozoic Anatomy of the Lewisian Complex, NW Scotland: Evidence for Two ‘Laxfordian’ Tectonothermal Cycles. J. Geol. Soc. 2016, 173, 153–169. [Google Scholar] [CrossRef]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace Element Content of Sedimentary Pyrite as a New Proxy for Deep-Time Ocean–Atmosphere Evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Large, R.R.; Mukherjee, I.; Gregory, D.D.; Steadman, J.A.; Maslennikov, V.V.; Meffre, S. Ocean and Atmosphere Geochemical Proxies Derived from Trace Elements in Marine Pyrite: Implications for Ore Genesis in Sedimentary Basins. Econ. Geol. 2017, 112, 423–450. [Google Scholar] [CrossRef]
- Johnson, S.C.; Large, R.R.; Coveney, R.M.; Kelley, K.D.; Slack, J.F.; Steadman, J.A.; Gregory, D.D.; Sack, P.J.; Meffre, S. Secular Distribution of Highly Metalliferous Black Shales Corresponds with Peaks in Past Atmosphere Oxygenation. Miner. Depos. 2017, 52, 791–798. [Google Scholar] [CrossRef]
- Stephenson, D.; Mendum, J.R.; Fettes, D.J.; Smith, C.G.; Gould, D.; Tanner, P.W.G.; Smith, R.A. The Dalradian Rocks of the North-East Grampian Highlands of Scotland. Proc. Geol. Assoc. 2013, 124, 318–392. [Google Scholar] [CrossRef] [Green Version]
- Parnell, J.; Brolly, C.; Boyce, A.J. Mixed Metamorphic and Fluid Graphite Deposition in Palaeoproterozoic Supracrustal Rocks of the Lewisian Complex, NW Scotland. Terra Nova 2021, 33, 541–550. [Google Scholar] [CrossRef]
- Armstrong, J.G.T.; Parnell, J.; Perez, M.; Feldmann, J. Te-Rich Protolith for PGE Mineralisation in NE Scotland. In Proceedings of the 15th SGA Biennial Meeting, Glasgow, UK, 27–30 August 2019; Volume 4, pp. 1661–1664. [Google Scholar]
- Halliday, A.N.; Graham, C.M.; Aftalion, M.; Dymoke, P. Short Paper: The Depositional Age of the Dalradian Supergroup: U-Pb and Sm-Nd Isotopic Studies of the Tayvallich Volcanics, Scotland. J. Geol. Soc. 1989, 146, 3–6. [Google Scholar] [CrossRef]
- Oliver, G.J.H.; Wilde, S.A.; Wan, Y. Geochronology and Geodynamics of Scottish Granitoids from the Late Neoproterozoic Break-up of Rodinia to Palaeozoic Collision. J. Geol. Soc. 2008, 165, 661–674. [Google Scholar] [CrossRef]
- Stephenson, D.; Mendum, J.R.; Fettes, D.J.; Leslie, A.G. The Dalradian Rocks of Scotland: An Introduction. Proc. Geol. Assoc. 2013, 124, 3–82. [Google Scholar] [CrossRef] [Green Version]
- McKervey, J.A.; Gunn, A.G.; Styles, M.T. Platinum-Group Elements in Ordovician Magmatic Ni-Cu Sulfide Prospects in Northeast Scotland. Can. Mineral. 2007, 45, 335–353. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.A.; Boyce, A.J.; Fallick, A.E. A Sulphur Isotope Study of Ni-Cu Mineralization in the Huntly-Knock Caledonian Mafic and Ultramafic Intrusions of Northeast Scotland. J. Geol. Soc. 1989, 146, 675–684. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, S. Upper Crustal Abundances of Trace Elements: A Revision and Update. Chem. Geol. 2008, 253, 205–221. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. ISBN 978-0-08-043751-4. [Google Scholar]
- Wedepohl, K.H. The Composition of the Continental Crust. Geochim. Et Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC Approved Mineral Symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Horita, J.; Polyakov, V.B. Carbon-Bearing Iron Phases and the Carbon Isotope Composition of the Deep Earth. Proc. Natl. Acad. Sci. USA 2015, 112, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labidi, J.; Cartigny, P.; Moreira, M. Non-Chondritic Sulphur Isotope Composition of the Terrestrial Mantle. Nature 2013, 501, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Drummond, D.A.; Cloutier, J.; Boyce, A.J.; Prave, A.R. Petrogenesis and Geochemical Halos of the Amphibolite Facies, Lower Proterozoic, Kerry Road Volcanogenic Massive Sulfide Deposit, Loch Maree Group, Gairloch, NW Scotland. Ore Geol. Rev. 2020, 124, 103623. [Google Scholar] [CrossRef]
- Gregory, D.D.; Lyons, T.W.; Large, R.R.; Jiang, G.; Stepanov, A.S.; Diamond, C.W.; Figueroa, M.C.; Olin, P. Whole Rock and Discrete Pyrite Geochemistry as Complementary Tracers of Ancient Ocean Chemistry: An Example from the Neoproterozoic Doushantuo Formation, China. Geochim. Et Cosmochim. Acta 2017, 216, 201–220. [Google Scholar] [CrossRef]
- Armstrong, J.G.T.; Parnell, J.; Bullock, L.A.; Perez, M.; Boyce, A.J.; Feldmann, J. Tellurium, Selenium and Cobalt Enrichment in Neoproterozoic Black Shales, Gwna Group, UK: Deep Marine Trace Element Enrichment during the Second Great Oxygenation Event. Terra Nova 2018, 30, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Chappaz, A.; Lyons, T.W.; Gregory, D.D.; Reinhard, C.T.; Gill, B.C.; Li, C.; Large, R.R. Does Pyrite Act as an Important Host for Molybdenum in Modern and Ancient Euxinic Sediments? Geochim. Et Cosmochim. Acta 2014, 126, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Large, R.R.; Mukherjee, I.; Gregory, D.; Steadman, J.; Corkrey, R.; Danyushevsky, L.V. Atmosphere Oxygen Cycling through the Proterozoic and Phanerozoic. Miner. Depos. 2019, 54, 485–506. [Google Scholar] [CrossRef]
- Stüeken, E.E.; Foriel, J.; Buick, R.; Schoepfer, S.D. Selenium Isotope Ratios, Redox Changes and Biological Productivity across the End-Permian Mass Extinction. Chem. Geol. 2015, 410, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Parnell, J.; Perez, M.; Armstrong, J.; Bullock, L.; Feldmann, J.; Boyce, A.J. Geochemistry and Metallogeny of Neoproterozoic Pyrite in Oxic and Anoxic Sediments. Geochem. Perspect. Lett. 2018, 7, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Holwell, D.A.; Mcdonald, I. A Review of the Behaviour of Platinum Group Elements within Natural Magmatic Sulfide Ore Systems. Platin. Met. Rev. 2010, 54, 26–36. [Google Scholar] [CrossRef]
- Zhu, Z.; Campbell, I.H.; Allen, C.M.; Burnham, A.D. S-Type Granites: Their Origin and Distribution through Time as Determined from Detrital Zircons. Earth Planet. Sci. Lett. 2020, 536, 116140. [Google Scholar] [CrossRef]
- Cuadros, F.A.; Botelho, N.F.; Fuck, R.A.; Dantas, E.L. The Peraluminous Aurumina Granite Suite in Central Brazil: An Example of Mantle-Continental Crust Interaction in a Paleoproterozoic Cordilleran Hinterland Setting? Precambrian Res. 2017, 299, 75–100. [Google Scholar] [CrossRef]
- Ahmad, M.; Munson, T.; Wygralak, A. Chapter 8: Murphy Province. In Proceedings of the Geology and Mineral Resources of the Northern Territory; Special Publication 5; Munson, T., Johnston, K., Fuller, M., Eds.; Northern Territory Geological Survey: Darwin, NT, Australia, 2013; pp. 8:1–8:8. ISBN 9780724572571. [Google Scholar]
- Scott, R.A.; Polya, D.A.; Pattrick, R.A.D. Proximal Cu + Zn Exhalites in the Argyll Group Dalradian, Creag Bhocan, Perthshire. Scott. J. Geol. 1988, 24, 97–112. [Google Scholar] [CrossRef]
- Araujo, S. The Palmeiropolis Volcanogenic Massive Sulfide Deposit, Tocantins State. In Base Metal Deposits of Brazil; Silva, M., Misi, A., Eds.; CPRM: Salvador, Bahia, Brazil, 1999; pp. 64–74. [Google Scholar]
- DeMatties, T.A. Early Proterozoic Volcanogenic Massive Sulfide Deposits in Wisconsin: An Overview. Econ. Geol. 1994, 89, 1122–1151. [Google Scholar] [CrossRef]
- Franklin, J.M.; Gibson, H.L.; Jonasson, I.R.; Galley, A.G. Volcanogenic Massive Sulfide Deposits. Econ. Geol. 100th Anniv. Vol. 2005, 16, 523–560. [Google Scholar]
- Barrie, C.T.; Abdalla, M.A.F.; Hamer, R.D. Volcanogenic Massive Sulphide–Oxide Gold Deposits of the Nubian Shield in Northeast Africa. In Mineral Deposits of North Africa, Mineral Resource Reviews; Bouabdellah, M., Slack, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 417–435. [Google Scholar]
Locality | Lithology | Lab Code | Au (ppm) | Ag (ppm) | Co (ppm) | Cr (ppm) | Cu (ppm) | Mn (ppm) | Mo (ppm) | Ni (ppm) | Pb (ppm) | Pd (ppm) | Pt (ppm) | Se (ppm) | Te (ppm) | Ti (%) | V (ppm) | W (ppm) | Zn (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
South Harris | Meta-granite | CAT11 | 0.0033 | 0.119 | 21.3 | 116.5 | 98 | 843 | 4.64 | 12.2 | 8.15 | <0.002 | 0.006 | 1.33 | 0.07 | 0.709 | 193.5 | 142.5 | 99.4 |
Meta- gabbro | CAT12 | 0.0050 | 0.183 | 46 | 286 | 178.5 | 2570 | 4.18 | 82.2 | 3.76 | <0.002 | 0.004 | 1.96 | 0.152 | 1.195 | 374 | 148 | 186 | |
Bin Quarry | Graphitic Pyroxenite | STORM 708 | 0.0059 | 0.210 | 157 | 147 | 564 | 153.5 | 10.15 | 661 | 2.8 | 0.011 | 0.002 | 3.80 | 0.34 | 0.036 | 41.3 | 114 | 9.5 |
STORM 708B | 0.0035 | 0.221 | 198 | 142 | 556 | 110 | 13.4 | 774 | 3.5 | 0.014 | 0.003 | 3.80 | 0.33 | 0.040 | 39.8 | 111.5 | 10.0 | ||
STORM 709A | 0.0017 | 0.097 | 99.5 | 199 | 225 | 104 | 5.06 | 339 | 2.16 | 0.006 | 0.002 | 1.40 | 0.18 | 0.043 | 56.8 | 97.3 | 11.1 | ||
STORM 709B | 0.0015 | 0.279 | 454 | 192 | 618 | 63.5 | 20.1 | 1370 | 3.27 | 0.033 | <0.002 | 6.00 | 0.95 | 0.039 | 52.9 | 137 | 11.1 | ||
STORM 710A | 0.0016 | 0.368 | 320 | 137.5 | 1050 | 89 | 22.9 | 1500 | 4.27 | 0.026 | 0.003 | 8.90 | 1.26 | 0.027 | 41.2 | 107 | 6.3 | ||
STORM 710B | 0.0023 | 0.304 | 345 | 165.5 | 1230 | 154 | 24.4 | 1610 | 2.17 | 0.043 | <0.002 | 8.60 | 0.99 | 0.030 | 48.9 | 42.4 | 11.3 | ||
STORM 710C | 0.0025 | 0.344 | 358 | 165.5 | 776 | 97 | 25.8 | 1520 | 3.25 | 0.018 | <0.002 | 7.90 | 0.94 | 0.030 | 44.2 | 74.1 | 5.9 | ||
STORM 710D | 0.0030 | 0.353 | 234 | 176.5 | 534 | 119 | 17.35 | 1010 | 2.26 | 0.013 | 0.003 | 5.40 | 0.68 | 0.034 | 47.2 | 42.8 | 7.5 | ||
STORM 721 | <0.0002 | 1.080 | 1050 | 104.5 | 1050 | 26 | 74.8 | 5870 | 12.8 | 0.057 | 0.002 | 24.90 | 3.64 | 0.038 | 30.4 | 133.5 | 7.0 | ||
STORM 722 | <0.0002 | 0.341 | 555 | 57.9 | 1245 | 196 | 44.9 | 1820 | 5.65 | 0.081 | 0.003 | 16.70 | 1.62 | 0.138 | 63.9 | 680 | 31.7 | ||
Average (n = 10) | 0.0022 | 0.360 | 377 | 149 | 785 | 111 | 25.9 | 1647 | 4.2 | 0.030 | 0.003 | 8.74 | 1.09 | 0.046 | 46.7 | 154 | 11.1 | ||
1σ | 0.0014 | 0.244 | 269 | 54 | 383 | 692 | 19.3 | 1475 | 3.0 | 0.023 | 0.001 | 6.65 | 0.94 | 0.353 | 96.1 | 163 | 52.5 | ||
Olivine Gabbro | STORM 712A | 0.0002 | 0.011 | 39.5 | 46.8 | 28.5 | 186 | 0.09 | 45 | 0.167 | 0.001 | <0.002 | 0.1 | 0.02 | 0.011 | 11.3 | 105.5 | 12.9 | |
Global | Upper Crustal Average Values | 0.0015 | 0.053 | 17.3 | 92 | 28 | 527 | 1.1 | 47 | 17 | 0.0005 | 0.0005 | 0.09 | 0.027 | 0.38 | 97 | 1.9 | 67 |
Locality | Lithology | Lab Code | TOC (%) | S (%) |
---|---|---|---|---|
South Harris | Metagranite | CAT11A | 1.60 | 0.26 |
CAT11B | 1.45 | 0.43 | ||
CAT11C | 1.90 | 0.44 | ||
CAT11D | 2.37 | 0.32 | ||
CAT11E | 1.66 | 0.23 | ||
CAT11F | 1.81 | 0.30 | ||
Average (n = 6) | 1.80 | 0.33 | ||
1σ | 0.29 | 0.08 | ||
Metagabbro | CAT12A | 0.54 | 1.75 | |
CAT12B | 0.75 | 0.01 | ||
CAT12C | 0.19 | 0.02 | ||
CAT12D | 0.11 | 0.09 | ||
CAT12E | 0.14 | 0.02 | ||
CAT12F | 0.18 | 0.01 | ||
Average (n = 6) | 0.32 | 0.31 | ||
1σ | 0.24 | 0.64 | ||
Bin Quarry | Graphitic Pyroxenite | STORM 708 | 0.86 | 2.70 |
STORM 708B | 1.27 | 3.16 | ||
STORM 709A | 0.84 | 1.32 | ||
STORM 709B | 2.41 | 5.59 | ||
STORM 710A | 6.05 | 6.31 | ||
STORM 710B | 3.43 | 6.67 | ||
STORM 710C | 4.30 | 6.59 | ||
STORM 710D | 3.22 | 4.45 | ||
STORM 721 | 15.05 | 18.60 | ||
STORM 722 | 11.95 | 9.51 | ||
Average (n = 10) | 4.94 | 6.49 | ||
1σ | 4.60 | 4.62 | ||
Olivine Gabbro | STORM 712A | 0.00 | 0.16 |
Region | Context | Locality | Lithology | Lab Code | Grid Reference | δ13C |
---|---|---|---|---|---|---|
South Harris | Intrusion | Rodel | Metagranite | HAR1 | NG 052833 | −22.3 |
HAR2 | NG 052833 | −23.9 | ||||
HAR3 | NG 052833 | −19.6 | ||||
Country Rock | Rodel Pier | Schist | PPG13 | NG 047830 | −24.2 | |
Rodel Church | Schist | PPG15 | NG 048832 | −25.1 | ||
PPG16 | NG 048832 | −24.9 | ||||
Stuaidh | Schist | PPG10 | NG 043832 | −24.5 | ||
PPG11 | NG 043832 | −24.8 | ||||
PPG12 | NG 043832 | −25.0 | ||||
Wester Ross | Country Rock | Gairloch | Schist | PPG6 | NG 822736 | −24.0 |
PPG7 | NG 822736 | −24.5 | ||||
PPG8 | NG 822736 | −24.4 | ||||
PPG9 | NG 822736 | −24.4 | ||||
PPG26 | NG 822736 | −23.6 | ||||
NE Scotland | Intrusion | Bin Quarry | Graphitic Pyroxenite | WAB11 | NJ 498430 | −21.8 |
WAB12 | NJ 498430 | −21.2 | ||||
Country Rock | Allt Nathrach | Amphibolite | WAB10 | NJ 1510 | −19.8 | |
Cairn of Claise | Pelite | WAB38 | NO 185795 | −23.0 | ||
Glenbuchat | Pelite | WAB13 | NJ 336177 | −22.4 | ||
Mortlach | Pelite | WAB34 | NJ 442482 | −26.1 | ||
WAB35 | NJ 442482 | −18.5 | ||||
Portsoy | Pelite | AW1 | NJ 585685 | −26.5 | ||
Altanower Forest | Pelite | WAB4 | NO 0882 | −16.4 | ||
WAB5 | NO 0882 | −16.5 | ||||
Coulins Burn | Pelite | WAB16 | NJ 325187 | −22.9 | ||
WAB17 | NJ 325187 | −23.8 |
Context | Locality | Lithology | Mineral | Lab Code | Grid Reference | δ34S |
---|---|---|---|---|---|---|
Intrusion | Rodel | Metagranite | Pyrite | CAT11-dS1 | NG 052833 | 0.0 |
CAT11-dS2 | NG 052833 | 0.1 | ||||
Metagabbro | Pyrite | CAT12-dS1 | NG 052833 | 5.3 | ||
CAT12-dS2 | NG 052833 | 0.7 | ||||
Country Rock | Rodel | Marble | Pyrrhotite | CAT32-dS1 | NG 048832 | 11.3 |
CAT32-dS2 | NG 048832 | 11.4 | ||||
CAT32-dS3 | NG 048832 | 11.6 | ||||
Langavat | Marble | Pyrite | CAT33-dS1 | NG 048832 | 10.2 | |
Stuaidh | Graphitic Schist | Pyrite | JPDEEP181 | NG 042832 | 15.8 | |
JPDEEP182 | NG 042832 | 16.3 | ||||
Borve | Sulphidic Gneiss | Pyrrhotite | JPDEEP 159 | NG 027949 | −1.3 | |
JPDEEP160 | NG 027949 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armstrong, J.G.T.; Parnell, J.; Boyce, A.J. Carbon in Mineralised Plutons. Geosciences 2022, 12, 202. https://doi.org/10.3390/geosciences12050202
Armstrong JGT, Parnell J, Boyce AJ. Carbon in Mineralised Plutons. Geosciences. 2022; 12(5):202. https://doi.org/10.3390/geosciences12050202
Chicago/Turabian StyleArmstrong, Joseph G. T., John Parnell, and Adrian J. Boyce. 2022. "Carbon in Mineralised Plutons" Geosciences 12, no. 5: 202. https://doi.org/10.3390/geosciences12050202
APA StyleArmstrong, J. G. T., Parnell, J., & Boyce, A. J. (2022). Carbon in Mineralised Plutons. Geosciences, 12(5), 202. https://doi.org/10.3390/geosciences12050202