Paleogene Lithostratigraphy and Recognition of the Marine Incursion of the Proto-Paratethys Sea in the Fergana Basin, Uzbekistan
Abstract
:1. Introduction
2. Geological Settings
3. Samples and Analytical Methods
3.1. Sampling
3.2. Sample Preparation for S Isotope Analyses
3.3. Sulfur Isotope Analysis of the BaSO4 Precipitates of the Carbonate-Associated Sulfate
3.4. Sr Isotope Analysis
4. Results
4.1. Lithological Descriptions of the Studied Sections
4.1.1. Karabulak Section
4.1.2. Varzyk Section
4.1.3. Gava-1 and Gava-2 Sections
4.2. Fossil Occurrence
4.3. Isotope Results
5. Discussion
5.1. Geological Correlation Based on Lithostratigraphy and Fossil Occurrence
5.2. Geological Age Estimation by S and Sr Isotopes
5.3. Recognition of the Fourth Transgression at the Northern Fergana Basin
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burtman, V.S. Cenozoic crustal shortening between the Pamir and Tien Shan and reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics 2000, 319, 69–92. [Google Scholar] [CrossRef]
- Bosboom, R.E.; Dupont-Bosboom, R.; Mandic, O.; Dupont-Nivet, G.; Proust, J.-N.; Ormukov, C.; Aminov, J. Late Eocene palaeogeography of the proto-Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). In Geological Evolution of Central Asian Basins and the Western Tien-Shan Range; Brunet, M.-F., McCann, T., Sobel, E.R., Eds.; Geological Society of London, Special Publications: London, UK, 2017; Volume 427, pp. 565–588. [Google Scholar]
- Jolivet, M. Mesozoic tectonic and topographic evolution of Central Asia and Tibet: A preliminary synthesis. In Geological Evolution of Central Asian Basins and the Western Tien-Shan Range; Brunet, M.-F., McCann, T., Sobel, E.R., Eds.; Geological Society of London, Special Publications: London, UK, 2017; Volume 427. [Google Scholar]
- Mirkamalov, R.H. Geological map of the Republic of Uzbekistan (1:2,500,000). In Atlas of the Geological Maps of the Republic of Uzbekistan; Turamuratov, I.B., Mirkamalov, R.H., Eds.; Research Institute of Mineral Resources (RIMR): Tashkent, Uzbekistan, 2016; pp. 18–19. [Google Scholar]
- Vialov, O.S. The Cretaceous and Paleogene of Fergana. Ac. Sci. USSR. Tadjik-Pamir Exped. Publ. 1936, 47, 1–47. [Google Scholar]
- Vialov, O.S. The boundary between the Cretaceous and the Paleogene at Fergana. Rep. Ac. Sci. USSR 1944, 42, 78–80. [Google Scholar]
- Vialov, O.S. The types of the Cretaceous Sections of Fergana. Rep. Ac. Sci. USSR 1945, 49, 277–280. [Google Scholar]
- Verzilin, N.N. The Cretaceous and pre-Cretaceous weathering crust of the Northern Fergana. Rep. Acad. Sci. USSR 1962, 146, 1153–1155. [Google Scholar]
- Verzilin, N.N. The Cretaceous deposits of the northern Fergana Basin and their oil-gas bearing. Leningr. Union Nat. Exp. Res. (LNR) Geol. Mineral. Dep. 1963, 120, 35–78. [Google Scholar]
- Glumakov, P.V. Fergana Depression. In Tectonics, Formation, and Oil-Gas Depositions of the Intermountain Basins; Nauka: Moscow, Russia, 1988; pp. 5–39. [Google Scholar]
- Abduazimova, I.M.; Kan, O.Y. The stratigraphy and paleogeography of the Cretaceous Fergana Depression by new case studies Part 1: Stratigraphy. J. Geol. Min. Res. 2012, 5, 3–12. [Google Scholar]
- Abduazimova, I.M.; Kan, O.Y. The stratigraphy and paleogeography of the Cretaceous Fergana Depression by new case studies Part 2: Paleogeography. J. Geol. Min. Res. 2012, 6, 3–10. [Google Scholar]
- Burtman, V.S.; Molnar, P. Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir; Special Papers; GSA: Boulder, CO, USA, 1993; Volume 281. [Google Scholar]
- Burtman, V.S.; Skobelev, S.F.; Molnar, P. Late Cenozoic slip on the Talas-Fergana Fault, the Tien Shan, Central Asia. GSA Bull. 1996, 108, 1004–1021. [Google Scholar] [CrossRef]
- Pomazkov, K.D. (Ed.) Kyrgyz Ssr Geological Description; USSR Geology Publishing House (NEWPA): Moscow, Russia, 1972. [Google Scholar]
- Askarov, F.A.; Bigaeva, A.R.; Saydyganiev, S.S. Absolute Geochronology of the Magmatic Formations of Uzbekistan; FAN UzSSR; Publications of Academy of Sciences UzSSR: Tashkent, Uzbekistan, 1974; pp. 127–134. (In Russian) [Google Scholar]
- Nalivkin, D.V. Geology of USSR; Publications of the Academy of Science USSR: Moscow, Russia, 1962. [Google Scholar]
- Bande, A.; Radjabov, S.; Sobel, E.D.; Sim, T. Cenozoic palaeoenvironmental and tectonic controls on the evolution of the northern Fergana Basin. In Geological Evolution of Central Asian Basins and the Western Tien Shan Range; Brunet, M.-F., McCann, T., Sobel, E.R., Eds.; The Geological Society of London, Special Publications: London, UK, 2017; Volume 427, pp. 313–335. [Google Scholar]
- Maruoka, T.; Isozaki, U. Sulfur and carbon isotopic systematics of Guadalupian-Lopingian (Permian) mid-Panthalassa: δ34S and δ13C profiles in accreted paleo-atoll carbonates in Japan. Island Arc 2020, 29, e12362. [Google Scholar] [CrossRef]
- Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K. Oxygen isotope corrections for online δ34S analysis. Rapid Commun. Mass Spectrom. 2002, 16, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Coplen, T.B.; Krouse, H.R. Sulphur isotope data consistency improved. Nature 1998, 392, 32. [Google Scholar] [CrossRef]
- Mayer, B.; Krouse, H.R. Procedures for sulfur isotope abundance studies. In Handbook of Stable Isotope Analytical Techniques; de Groot, P.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 538–596. [Google Scholar]
- Maruoka, T.; Koeberl, C.; Matsuda, J.; Syono, Y. Carbon isotope fractionation between graphite and diamond during shock experiments. Meteorit. Planet. Sci. 2003, 38, 1255–1262. [Google Scholar] [CrossRef]
- Takahashi, T.; Hirahara, Y.; Miyazaki, T.; Vaglarov, B.S.; Chang, Q.; Tatsumi, Y. Precise determination of Sr isotope ratios in igneous rock samples and application to micro-analysis of plagioclase phenocrysts. JAMSTEC Rep. Res. Dev. 2009, 2009, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, J.; Hara, H.; Ueno, K.; Charoentitirat, T.; Maruoka, T.; Miyazaki, T.; Miyahigashi, A.; Lugli, S. Characterization of sulfate mineral deposits in central Thailand. Island Arc 2017, 26, e12175. [Google Scholar] [CrossRef] [Green Version]
- Wakai, S.; Kawai, T.; Nagaishi, K.; Ishikawa, T. Sequential chemical separation of Sr, Nd and Pb from geological samples using multi-step extraction column chromatography. JAMSTEC Rep. Res. Dev. 2018, 27, 1–12. [Google Scholar] [CrossRef] [Green Version]
- McArthur, J.M.; Howarth, R.J.; Shields, G.A. Strontium Isotope Stratigraphy. In The Geologic Time Scale 2012, 1st ed.; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1, pp. 127–144. [Google Scholar]
- Horiuchi, Y.; Charusiri, P.; Hisada, K. Identification of an anastomosing river system in the Early Cretaceous Khorat Basin, northern Thailand, using stratigraphy and paleosols. J. Asian Earth Sci. 2012, 61, 62–77. [Google Scholar] [CrossRef]
- Bosboom, R.E.; Dupont-Nivet, G.; Houben, A.J.; Brinkhuis, H.; Villa, G.; Mandic, O.; Stoica, M.; Zachariasse, W.J.; Guo, Z.; Li, C.; et al. Late Eocene sea retreat from the Tarim Basin (West China) and concomitant asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 299, 385–398. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Strauss, H. The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 132, 97–118. [Google Scholar] [CrossRef]
- Kampschulte, A.; Strauss, H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 2004, 204, 255–286. [Google Scholar] [CrossRef]
- Surakotra, N.; Promkotra, S.; Charusiri, P.; Maruoka, T.; Hisada, K. Sulfur, strontium, carbon, and oxygen isotopes of calcium sulfate deposits in Late Carboniferous rocks of the Loei-Wang Saphung (LWS) Area, Loei Province, Thailand. Geosciences 2018, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Paytan, A.; Gray, E.T. Sulfur Isotopic Stratigraphy. In The Geological Time Scale 2012, 1st ed.; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1, pp. 167–180. [Google Scholar]
- Paytan, A.; Yao, W.; Faul, K.L.; Gray, E.T. Sulfur Isotope Stratigraphy. In The Geologic Time Scale 2020, 1st ed.; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 259–278. [Google Scholar]
- Paytan, A.; Kastner, M.; Campbell, D.; Thiemens, M.H. Sulfur isotope composition of Cenozoic seawater sulfate. Science 1998, 282, 1459–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paytan, A.; Kastner, M.; Campbell, D.; Thiemens, M.H. Seawater sulfur isotope fluctuations in the cretaceous. Science 2004, 304, 1663–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArthur, J.M.; Howarth, R.J.; Shields, G.A.; Zhou, Y. Strontium Isotope Stratigraphy. In The Geologic Time Scale 2020, 1st ed.; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 211–238. [Google Scholar]
- Kaplan, I.R.; Rittenberg, S.C. Microbiological fractionation of sulfur isotopes. J. General Microbiology 1964, 34, 195–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, T.; Yang, H.; Lan, X.; Yu, C.; Xue, Y.; Zhang, Y.; Hu, L.; Zhong, S.; Wei, J. Marine Late Cretaceous and Early Tertiary Stratigraphy and Petroleum Geology in Western Tarim Basin, China; China Sci. Press: Beijing, China, 1989; 141p. [Google Scholar]
- Lan, X.; Wei, J. Late Cretaceous-Early Tertiary Marine Bivalve Fauna from the Western Tarim Basin; China Sci. Press: Beijing, China, 1995; pp. 1–212. [Google Scholar]
- Bosboom, R.E.; Dupont-Nivet, G.; Grothe, A.; Brinkhuis, H.; Villa, G.; Mandic, O.; Stoica MHuang, W.; Yang, W.; Guo, Z.; Krijgsman, W. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res. 2014, 26, 621–640. [Google Scholar] [CrossRef]
Section | Sequence | Sample No. | Lithology | Material | SCAS (wt%) | Error | δ34S | Error | 87Sr/86Sr | 2SE Error |
---|---|---|---|---|---|---|---|---|---|---|
Gava 1 | Upper | FS42 | Limestone Bed | Oyster | 0.141 | 0.004 | 19.988 | 0.745 | ||
FS41 | Limestone Bed | Oyster | 0.220 | 0.003 | 20.128 | 0.066 | 0.707826 | 0.000006 | ||
LS2-01 | Limestone Bed | Oyster | 0.093 | 0.006 | 21.193 | 0.111 | 0.708063 | 0.000007 | ||
LS1-04 | Limestone Bed | Limestone | 0.026 | 0.001 | 19.437 | 0.080 | 0.707889 | 0.000006 | ||
Lower | FS12 | Shell Bed | Bivalve | 0.160 | 0.001 | 16.627 | 0.067 | |||
FS11 | Shell Bed | Bivalve | 0.136 | 0.007 | 16.429 | 0.094 | 0.707772 | 0.000006 | ||
SB2-03 | Shell Bed | Bivalve | 0.157 | 0.004 | 16.663 | 0.130 | ||||
SB2-02 | Shell Bed | Bivalve | 0.212 | 0.005 | 16.633 | 0.096 | ||||
SB2-01 | Shell Bed | Bivalve | 0.175 | 0.002 | 16.638 | 0.106 | ||||
FS31 | Shell Bed | Bivalve | 0.271 | 0.011 | 14.936 | 0.055 | ||||
SB1-04 | Shell Bed | Bivalve | 0.181 | 0.002 | 16.523 | 0.116 | 0.707789 | 0.000006 | ||
SB1-03 | Shell Bed | Bivalve | 0.226 | 0.007 | 16.439 | 0.137 | ||||
SB1-02 | Shell Bed | Bivalve | 0.218 | 0.002 | 16.454 | 0.087 | ||||
SB1-01 | Shell Bed | Bivalve | 0.238 | 0.002 | 16.445 | 0.126 | ||||
Gava 2 | Upper | FS43 | Limestone Bed | Oyster | 0.188 | 0.002 | 20.888 | 0.076 | ||
FS44 | Limestone Bed | Oyster | 0.142 | 0.006 | 19.448 | 0.074 | ||||
LS2-04 | Limestone Bed | Oyster | 0.047 | 0.002 | 19.372 | 0.096 | ||||
Lower | FS53 | Shell Bed | Bivalve | 0.237 | 0.003 | 16.242 | 0.061 | |||
FS24 | Shell Bed | Bivalve | 0.207 | 0.003 | 16.063 | 0.070 | ||||
SB2-06 | Shell Bed | Bivalve | 0.193 | 0.001 | 16.378 | 0.090 | ||||
SB2-05 | Shell Bed | Bivalve | 0.172 | 0.001 | 16.759 | 0.078 | ||||
FS23 | Shell Bed | Bivalve | 0.178 | 0.003 | 16.150 | 0.068 | ||||
SB1-08 | Shell Bed | Bivalve | 0.125 | 0.001 | 16.577 | 0.098 | ||||
SB1-07 | Shell Bed | Bivalve | 0.250 | 0.005 | 16.504 | 0.105 | ||||
SB1-06 | Shell Bed | Bivalve | 0.185 | 0.002 | 16.317 | 0.098 | ||||
SB1-05 | Shell Bed | Bivalve | 0.135 | 0.002 | 16.172 | 0.076 | ||||
Verzyk | Upper | LL-01 | Limestone Bed | Limestone | 0.107 | 0.002 | 20.026 | 0.086 | ||
FS61 | Limestone Bed | Oyster | 0.112 | 0.002 | 20.213 | 0.075 | ||||
FS45 | Limestone Bed | Oyster | 0.077 | 0.002 | 20.351 | 0.095 | ||||
LS2-06 | Limestone Bed | Oyster | 0.046 | 0.012 | 19.777 | 0.155 | ||||
LS2-05 | Limestone Bed | Oyster | 0.072 | 0.001 | 19.913 | 0.115 | ||||
Lower | FS22 | Shell Bed | Bivalve | 0.162 | 0.002 | 16.653 | 0.075 | 0.707794 | 0.000007 | |
FS21 | Shell Bed | Bivalve | 0.195 | 0.008 | 16.371 | 0.132 | ||||
SB2-10 | Shell Bed | Bivalve | 0.153 | 0.027 | 16.241 | 0.289 | ||||
SB2-09 | Shell Bed | Bivalve | 0.313 | 0.004 | 16.320 | 0.083 | ||||
SB2-08 | Shell Bed | Bivalve | 0.202 | 0.004 | 16.624 | 0.084 | ||||
SB2-07 | Shell Bed | Bivalve | 0.228 | 0.016 | 16.642 | 0.093 | ||||
FS51 | Shell Bed | Bivalve | 0.186 | 0.008 | 15.485 | 0.068 | ||||
FS32 | Shell Bed | Bivalve | 0.161 | 0.005 | 15.992 | 0.062 | ||||
FS33 | Shell Bed | Bivalve | 0.192 | 0.002 | 16.638 | 0.089 | ||||
SB1-10 | Shell Bed | Bivalve | 0.155 | 0.001 | 16.818 | 0.080 | ||||
SB1-09 | Shell Bed | Bivalve | 0.154 | 0.001 | 16.678 | 0.080 | ||||
Karabulak | Upper | LL-02 | Limestone Bed | Limestone | 0.116 | 0.002 | 20.487 | 0.090 | ||
FS72 | Limestone Bed | Oyster | 0.090 | 0.002 | 20.487 | 0.091 | 0.707812 | 0.000005 | ||
FS82 | Limestone Bed | Oyster | 0.129 | 0.002 | 20.253 | 0.131 | ||||
FS71 | Limestone Bed | Oyster | 0.131 | 0.001 | 20.233 | 0.079 | ||||
LS2-07 | Limestone Bed | Oyster | 0.127 | 0.003 | 19.665 | 0.097 | ||||
FS81 | Limestone Bed | Oyster | 0.111 | 0.003 | 19.405 | 0.080 | ||||
Lower | SD-04 | Shell Bed | Bivalve | 0.128 | 0.003 | 15.957 | 0.079 | |||
SD-01 | Shell Bed | Bivalve | 0.161 | 0.003 | 16.018 | 0.103 | ||||
SB2-13 | Shell Bed | Bivalve | 0.176 | 0.001 | 16.308 | 0.087 | 0.707811 | 0.000006 | ||
SB2-12 | Shell Bed | Bivalve | 0.241 | 0.025 | 16.705 | 0.087 | ||||
SB2-11 | Shell Bed | Bivalve | 0.202 | 0.005 | 16.590 | 0.092 | ||||
SD-03 | Shell Bed | Bivalve | 0.189 | 0.003 | 16.588 | 0.082 | ||||
SD-02 | Shell Bed | Bivalve | 0.171 | 0.007 | 16.776 | 0.153 | ||||
FS52 | Shell Bed | Bivalve | 0.139 | 0.002 | 16.147 | 0.065 | ||||
SB1-13 | Shell Bed | Bivalve | 0.143 | 0.001 | 16.554 | 0.073 | ||||
SB1-12 | Shell Bed | Bivalve | 0.175 | 0.001 | 16.654 | 0.086 | 0.707875 | 0.000007 | ||
SB1-11 | Shell Bed | Bivalve | 0.128 | 0.002 | 16.604 | 0.127 |
Alai Valley Basin and Fergana Basin (Kyrgyzstan) | This Study (Fergana Basin, Uzbekistan) | ||||||
---|---|---|---|---|---|---|---|
System | Formation | Thickness (m) | Age | Lithology | seq. | Thickness (m) | Lithology |
Palaeogene | Massaget Fm | Oligocene –Miocene | Massive red sandstones and conglomerates | ||||
Shurysay Fm | 20–160 | Oligocene | Brownish red-mudstones intercalated by siltstones, evaporite beds and sandstones | ||||
Sumsar Fm | 0–70 | Late Eocene –Oligocene | Reddish-brown mudstones and grey sandstones rich in oysters andother bivalves, shark teeth | ||||
Hanabad Fm | 5–70 | Late Eocene –Oligocene | Greenish-grey and red (calcareous) mudstones and siltstones, somemarls with bivalves | ||||
Isfara Fm | 5–55 | Late Eocene | Greenish-grey (calcareous) mudstones and siltstones, some green or white sandstones, somemarls with bivalves | ||||
Rishtam Fm | 5–60 | Late Eocene | Red mudstones with thin beds of red or grey siltstone and sandstone, some interbeds of marl and limestone with bivalves | ||||
Turkestan Fm | 5–150 | Middle–late Eocene | Greenish-grey mudstones with grey and white siltstones, sandstones, marls and limestones, red mudstone intervals at the top, rich in oysters and other bivalves | upper sequence | 30–50 | red mudstones with sandstones, several limestone beds, rich in oysters | |
Alai Fm | 10–210 | Middle Eocene | Greenish-grey mudstones with grey and white siltstones, marls and limestones, some gypsiferous red mudstone intervals in middle, richin oysters and other bivalves | ||||
Suzak Fm | 5–120 | Early Eocene | Complex coloured (calcareous) mudstones, siltstones and sandstones, bivalves | ? lower sequence | 5–30 | reddish- and greenish-color mudstones, sandstone shell beds, bivalves | |
Bukhara Fm | 20–80 | Paleocene | Limestones, evaporite beds and white sandstones with thin calcareous mudstone layers, bivalves and gastropods | ||||
Akdzhar Fm | 25–125 | Paleocene | Red mudstones and siltstones with interbeds of evaporite and dolomite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anvarov, O.U.O.; Kamata, Y.; Maruoka, T.; Kuroda, J.; Wakaki, S.; Hisada, K.-i. Paleogene Lithostratigraphy and Recognition of the Marine Incursion of the Proto-Paratethys Sea in the Fergana Basin, Uzbekistan. Geosciences 2022, 12, 203. https://doi.org/10.3390/geosciences12050203
Anvarov OUO, Kamata Y, Maruoka T, Kuroda J, Wakaki S, Hisada K-i. Paleogene Lithostratigraphy and Recognition of the Marine Incursion of the Proto-Paratethys Sea in the Fergana Basin, Uzbekistan. Geosciences. 2022; 12(5):203. https://doi.org/10.3390/geosciences12050203
Chicago/Turabian StyleAnvarov, Otabek Ulugbek Ogli, Yoshihito Kamata, Teruyuki Maruoka, Junichiro Kuroda, Shigeyuki Wakaki, and Ken-ichiro Hisada. 2022. "Paleogene Lithostratigraphy and Recognition of the Marine Incursion of the Proto-Paratethys Sea in the Fergana Basin, Uzbekistan" Geosciences 12, no. 5: 203. https://doi.org/10.3390/geosciences12050203
APA StyleAnvarov, O. U. O., Kamata, Y., Maruoka, T., Kuroda, J., Wakaki, S., & Hisada, K. -i. (2022). Paleogene Lithostratigraphy and Recognition of the Marine Incursion of the Proto-Paratethys Sea in the Fergana Basin, Uzbekistan. Geosciences, 12(5), 203. https://doi.org/10.3390/geosciences12050203